Introduction to MLAB
The Royal Road to Dynamical Simulations

Revision Date: September 24, 2015

Foster Morrison, author
Turtle Hollow Associates, Inc.
P.O. Box 3639
Gaithersburg, MD 20885 USA

Daniel Kerner, editor
Civilized Software, Inc.
12109 Heritage Park Circle
Silver Spring, MD 20906 USA
Email: csi@civilized.com
Web-site: http://www.civilized.com
(301) 962-3711

(© 1992-2014 Turtle Hollow Associates, Inc.

Contents

Preface ii
1 BASIC MATHEMATICS AND ITS IMPLEMENTATION IN MLAB 1
1.1 What You Need to Know 1
1.2 Getting Started with MLAB o 2
1.3 Foundations of Mathematics 2
1.4 Sets . . . o . e e 3
1.5 Numbers, Prime, Rational, and Real 4
1.6 Try Out MLAB 6
2 PROGRAMMING IN MLAB 10
2.1 More Numerical Analysis vs. Analysis 10
2.2 Legendre Polynomials 11
3 VECTORS AND MATRICES 13
3.1 Vectors e 13
3.2 Matrices, Linear Algebra, and Modern Algebra 14
3.3 Arrays ..o 16
3.4 Functional Analysis. 16

LINEAR DYNAMIC SYSTEMS AND MODELS

4.1 Difference Equations e
4.2 Differential Equations

4.3 Generalizations

LINEAR DYNAMIC SYSTEMS WITH INPUTS

5.1 Variation of Parameters and Filtering
5.2 Random Walks e

5.3 Time Series and Fourier Analysis

A SIMPLE NONLINEAR MODEL: “HUBBERT’S PIMPLE”

6.1 The Mathematics of Resource Depletion

6.2 A Simulation

A MORE COMPLEX NONLINEAR MODEL: VOLTERRA EQUATIONS

7.1 Simple Assumptions
7.2 Mathematical Propertieso

7.3 Fitting to a Noise-driven System oo

CELESTIAL MECHANICS AND HAMILTONIAN SYSTEMS

NONLINEAR SYSTEMS AND CHAOS

9.1 The Discrete Logistic

9.2 Lorenz’s Equations

10 ADVANCING WITH MLAB
10.1 Enhance the Demonstrations

10.2 A Reading and Practice Program

ii

19

19

21

23

25

25

26

27

30

30

31

34

34

35

36

37

39

40

41

43

A BIBLIOGRAPHY 46

B DEMONSTRATION *.DO FILES 48
B.1 BESSEL.DO e 51
B.2 BIZCYCLE.DO o 54
B.3 BOUNCE.DO e 58
B.4 DIFFEQ.DO e 65
B.5 DIRKB.DO o 68
B.6 FILTER.DO e 71
B.7 FITCYCLE.DO s e 78
B.8 HUBBERT.DO e 83
B.9 KUGEL.DO o 89
B.10 LALGEBRA.DO e 92
B.11 LEGENDRE.DO e 96
B.12 LIAPUNOV.DO 99
B.13 LINEAR.DO 104
B.14 LORENZ.DO e 107
B.15 MITCH.DO o e 110
B.16 ORTHO.DO 113
B.17 ORTHO2.DO 117
B8 POLLY.DO 121
B.19 POWER.DO e 124
B.20 RANDWALK.DO 127
B.21 ROUNDOFF.DO o e 131
B.22 SLABLF.DO 135

iii

B.23 VINTL.DO . ..

B.24 VOLTERRA.DO

C Index

v

PREFACE

The famous mathematician Euclid reportedly told the ruler of Egypt, Ptolemy I, “There is no royal
road to geometry.” Even the powerful and mighty would have to struggle through the thirteen
parts of Elements to master the subject.

Geometry cannot satisfy all the needs of contemporary scientists and engineers. The subject is
highly abstract and wonderfully rigorous, but far too constrained to model things that are intricate
or dynamic. We need differential equations, statistics, a few other odds and ends, and computers.

Most technical people are not mathematicians or programmers and they do need a “royal road” to
dynamical simulations and the other modeling chores associated with their work. Being a chemist,
biologist, engineer, or other specialist is just as demanding in its own way as serving as head of
state, so it is not also feasible to be an expert in applied mathematics and computer science.

Those with considerable needs and matching resources can hire specialized staff members. For
everybody else there are now available a number of computer programs that facilitate various
modeling tasks. One that is highly versatile, and the subject of this introductory manual, is MLAB
(for Mathematical LABoratory).

MLAB was initiated at the National Institutes of Health in the 1970s to enable a wide variety of
researchers to create essential mathematical models. The program is an interpreter, which means
it executes commands as they are received, like the GW-Basic provided with many personal
computers. Where MLAB differs from Basic is in being less general purpose and more focused on
performing certain critical modeling computations without needing to code them on a step-by-step
basis.

Many software packages can integrate ordinary differential equations numerically, but MLAB is
one of the very few that also can adjust parameters and initial conditions. MLAB is equally facile
at handling curve fitting, where the adjustments are linear or, as is the case with most differential
equation models, nonlinear. MLAB is a convenient calculator and handbook of functions, as well
as a programming language, and it has a publication quality graphics capability.

This user’s guide serves two purposes. First it will acquaint you with the MLAB syntax, which
resembles Basic, Pascal, C, and their progenitor, Fortran. Some knowledge of any of these will

make MLAB immediately familiar, at least up to a point. While you are acquiring MLAB skills,
the examples will also illustrate some of the important principles of pure and applied mathematics,
as well as modeling and simulation.

Read the text and then execute the *.DO file demonstrations supplied for each chapter that appear
in Appendix B. Be sure to study the insertedc omments that flash on the screen, as well as the
active MLAB commands. (The *.DO files are nothing more than ASCII code and can be printed
for easy reading; a better idea is to use your word processor, since some of the lines may be longer
than your paper. You can continue to review MLAB and expand your understanding of modeling
by modifying the supplied *.DO files. Start with the suggestions in Chapter 10 and then let your
imagination run.

This manual is designed to introduce modeling and MLAB usage in the simplest possible ways,
rather than the most general. Some carefully selected, readily available modeling texts are listed
in a brief bibliography; working through this manual first will make these books more accessible.

Ultimately, the greatest contribution of MLAB will be to education. Every citizen must become
aware of dynamical concepts and principles, not just the static precepts of geometry. Change,
equilibrium, stability, and random walks should be familiar to everybody, not just the experts
in modeling and mathematics. MLAB can be used to demonstrate these concepts to the vast
majority who will not specialize in mathematics or other technical disciplines. For those who do
pursue careers in science and engineering, a moderately sophisticated appreciation of dynamics
and modeling is essential.

Details on all the capabilities and syntax are given in the MLAB Reference Manual. An
advanced course, weighted in favor of life sciences and chemistry, is provided in the MLAB
Applications Manual. The total collection of *.DO files on the disk provides paradigms of
numerous modeling problems. In many cases these can be adapted to your own needs with
minimal modifications.

A primary purpose of this introduction is to help potential users decide to purchase MLAB.
Working through this manual with the trial version of MLAB will enable you to determine how
much of your work can be done with MLAB. For some specialists the answer is “none” and that
will be obvious; but for many others the portion will be 100 per cent.

When MLAB is applicable to your work, its value may be substantial. What would take days or
even months to do with programming can be done in a half an hour in MLAB.

More than just useful, modeling is an enjoyable activity. The symmetries, or lack thereof, of
mathematical constructions have certain aesthetic values; a few are rather entertaining. Now let
MLAB and its graphics introduce you to a few such examples.

Thanks are due to Marvin Stein for introducing me to MLAB and Gary Knott for much instruction
on its syntactical subtleties. My wife Nancy provided support by editing the manuscript and
producing the final camera ready copy.

vi

The MLAB programs (*.DO files) were developed and tested on a Heath-Zenith H-241 personal
computer with an Intel 80286 processor and 80287 floating point coprocessor and an EGA monitor.
The initial version was produced on this same computer with Microsoft Word, Version 4.0.

Foster Morrison

North Potomac, MD 20878
1992 November 10

vii

The original 1992 manuscript in Microsoft Word format was updated and translated to the LaTeX
markup language. The resulting manuscript was then processed with the latex program to generate
a Device Independent (.dvi) file; the resulting dvi-file was then converted to a PostScript (.ps) file
using the dvips program. The resulting ps-file was then converted to Portable Document Format
(.pdf) format with the ps2pdf12 program. The latex, dvips, and ps2pdf12 programs are standard
tools included with Linux computers.

The MLAB do-files and their graphical output appearing in Appendix B were tested on per-
sonal computers with Microsoft Windows XP and 7, Kubuntu Linux, and Apple Macintosh OSX
operating systems.

Chapter names in the Table of Contents, figure numbers in the text and List of Figures, section
numbers of do-files in Appendix B, and page numbers in the index, appear in the color blue and
provide clickable links to the respective content.

Daniel Kerner
Silver Spring, MD 20906
2014 February 28

viii

Chapter 1

BASIC MATHEMATICS AND ITS
IMPLEMENTATION IN MLAB

The MLAB Interpreter is designed to make calculations, especially the modeling of dynamic
systems, as easy as possible for the expert, the student, and all those whose special expertise is
not applied mathematics. This chapter will introduce the basic syntax of MLAB by demonstrating
a few calculations and how they may diverge from what mathematics predicts.

Subsequent chapters introduce modeling of a modest degree of complexity and the principal MLAB
functions provided to do it, as well as a few of the specialized functions. The most important
ideas of modeling, error control and system resolution, are woven into the examples. These can
be accomplished readily with MLAB by those without extensive training in mathematics and
computer science.

1.1 What You Need to Know

MLAB users should be familiar with the basics of their computer and its operating system. This
manual and its examples were created on an MS/DOS IBM-AT compatible. MLAB is also available
for Linux with X-Windows, Microsoft Windows, and Macintosh systems. The more recent systems
will be less constrained by available memory. Since MLAB is controlled by command line inputs
and does not have pull-down menus, the user needs a corresponding degree of computer literacy.

High school algebra and a little trigonometry are the mathematical minima. Some intuitive under-
standing of calculus and differential equations will make the demonstrations easier to comprehend.
There is no need for refined skills in mathematical manipulation or to review those long forgotten
theorems. The examples used in this manual do not require sophistication in statistics.

Matrices are rectangular arrays of numbers; vectors are the special case of a single column. The
properties of vectors and matrices used in the demonstrations are described in the text and com-
ment statements. Some mention is made of complex numbers.

It is easy to read the text and run the demonstrations. As you need to know more details about
MLAB, consult the MLAB Reference Manual and the MLAB 2-D Graphics Examples.
Details of syntax are spelled out in the MLAB Reference Manual. Included in Chapter 10 is
a reading program on modeling that can be completed in a few weeks rather than a few years.

1.2 Getting Started with MLAB

Before installing MLAB, locate a ruler (English or metric) that can measure the height and width
of your computer screen. This will be needed to calibrate the graphics output. Check that your
computer meets the minimum specifications for installing and running MLAB and (assuming all
is well) just follow the instructions.

But first read Section 1.3 and Section 1.4. Then install MLAB, if necessary, follow the directions
in Section 1.5, and practice the most basic operations. You will be able to use MLAB to illus-
trate the principal concepts of nonlinear dynamics and the failure of computations to agree with
mathematics.

1.3 Foundations of Mathematics

Not all scientists and engineers are enthralled with mathematics. For one thing, the subject is
presented in too formal a manner, in the guise of rigor. But mathematics, like the sciences and
technologies, has changed over the centuries and over the past few decades. In fact there are now
several schools of mathematics vying for the mainstream.

More than a few people, both experts and laymen, have observed that logic is not very logical.
The axiom that asserts either a statement or its negation must be true does not hold strictly for
the vague constructions of natural languages, such as American English. Even in your computer
memory the alternatives are “true” (1), “false” (0), and “parity error.” Reasoning that holds for
a finite, failure-free system is less than satisfactory for the complexities of the real world or even
the open-ended “infinite” constructions of pure mathematics.

For this presentation we have chosen as a formal basis the constructive analysis pioneered by the
late Errett Bishop (1928-1983). For one thing its assumptions for mathematical existence coincide
with any possible computer implementation, but are not constrained by technical feasibility. Only
finite, convergent algorithms are accepted as proof of existence. The infinite searches of vaguely

defined sets that characterize much of recent mathematical research are deemed “interesting,” but
in need of further work.

In doing computations we have to work with a depleted set of rational numbers; the so-called real
numbers are available only when we engage in the practice of mathematical analysis. There are a
number of software packages that can do “formal operations”; in MLAB this capability is limited
to differentiation of functions, illustrated in the chapter on Hamiltonian methods. The more that
can be done formally, the better off will be the modeler in every way.

Constructive analysis differs from numerical analysis in that it deals with computational errors
by establishing rigorous upper bounds; numerical analysis draws heavily on linearizations and
statistical error estimates. From a scientific standpoint, this surely is the sensible way to draw the
line between pure and applied mathematics.

1.4 Sets

Georg Cantor (1845-1918) tried to establish the notion of “belongs to” as the most basic element of
mathematics. This was only the latest skirmish in the long war between geometry and arithmetic
for dominance in mathematical thinking. Geometry, which had been dominant in Europe since
the Graeco-Roman era, had been losing ground to arithmetic and algebra since the invention of
calculus in the 17th century.

The theory of sets had a certain appeal. Numbers, as well as geometric concepts, could be expressed
in terms of various sets. There were sets of numbers for algebra and calculus, sets of open sets
for the generalized geometry called topology, and sets of functions for the abstract “spaces” of
advanced analysis. There were also sets of oranges and apples. Indeed, sets encompassed all
possible combinations of all things, abstract and material.

Such a generalized concept for sets led to many paradoxes and other logical problems which were
patched up in various ways. From a scientific viewpoint, however, there are serious objections to
making classification a part of mathematics. When an object leaves the set of chairs and enters
the set of firewood may not be crisply defined. And from a mathematical viewpoint we are faced
with an “existence” of abstractions with no computational realization possible.

L.E.J. Brouwer (1881-1966) proposed that all mathematics be based on the arithmetic of the
positive integers (1, 2, 3, 4, ...). After all, if a fundamental contradiction were ever found in so
simple and basic a concept, it would be time for mathematics and all quantitative analysis to
hold a “going out of business” sale. However, Brouwer never developed more than the most basic
needs for analysis and most of the mathematical community continued to build their work on the
foundations laid down by Cantor.

In constructive analysis a set is considered legitimate only if it describes a mathematical abstrac-

tion, specifically a finite algorithm based on the arithmetic of rational numbers (and ultimately
on the positive integers). A set may be somewhat vague, in that it specifies a class of algorithms
for constructing any of its members, not necessarily every one. Making just the right distinction
between any and every is critical for getting beyond the basics of counting to concepts based on
geometric intuition.

Infinite, or more properly “non-terminating,” constructions like real numbers have some properties
that can be determined and others that can be addressed, but never established. (What are the
statistics of the digits in the decimal expansion of 7, 3.141592653589 ... 7) Formal analysis pretends
to determine some of these properties, but only by a process that can never be implemented.

This brief introduction is meant to explain why we define a few things differently from what
may be done in your favorite math text. Books on advanced calculus, differential equations,
linear algebra, and applied mathematics almost never address questions sensitive to the differences
between constructive and formal analysis in any depth. But many students not seeking a doctorate
in pure mathematics are exposed to topology, abstract analysis, and modern algebra. We believe
constructive analysis supplies the best answers to mathematical questions of interest to scientists
and engineers, rather than leaving them to sort things out by intuition.

Above all, it helps keep clear in ones mind the distinctions among a mathematical model, its
computational realization, and the system of interest being observed. For our presentation we
have some equations, some MLAB statements, and in some examples, simulated data created by
other MLAB statements. Modeling consists of making all these things, and actual observations,
share some certain properties to a desired, attainable level of precision. Other properties of these
entities may be quite different and therein lies the source of much folly among popularizers and
sensation seekers.

1.5 Numbers, Prime, Rational, and Real

Apples and oranges may be sliced, as well as counted, so fractions were invented in prehistoric
times. The modern formalism is rational numbers, which are pairs of integers, say (m,n), or more
commonly, m/n. First it is a good idea to add zero and the negative integers to the positive whole
numbers, even though this is not how things happened historically.

The good news about rational numbers is that they have potentially limitless resolution: 1/10,
1/100, 1/1000, ..., 1/1,000,000, The bad news is that they soon become unworkable. There
are an unlimited number of prime numbers, which are those positive integers that can be divided
evenly only by 1 and themselves. The first few are 1,2,3,5,7,11,13,17, 19, 23, 29; larger examples
are 1009, 1013, 1019, and 1021. In grade school children are taught to reduce fractions, as

l_7 (1-1)

However, large integers are not readily factored, even on a computer.

Most calculations of any consequence are done with floating point numbers. What this does is
constrain denominators to a few special cases and replaces most rational numbers with a select
few that are close in magnitude. For example

X _ 63,636, 364 (1-2)
11 100,000,000

approximately. The standard notation is

7
17 = 063636364 (1-3)

Denominators in decimal arithmetic are powers of 10, so the only rational numbers represented
exactly are those whose denominators are products of 5s and 2s. On computers denominators
are usually restricted to powers of 2 (1,2,4,...,1024, ...), which really is neither worse nor better
mathematically, but makes for more reliability and efficiency. This is truncation error.

More bad news is that not everything of interest can be represented exactly with rational numbers,
no matter how many prime factors in the denominator. The square root of 2 was the first known
example, but the useful values m = 3.14159...; e = exp1 = 2.71828..., among others, share this
unhappy trait. Hence it is necessary to introduce real numbers, which really are well-defined
infinite sequences of rational numbers. Discrepancies between real numbers and floating point
approximations are another form of truncation error.

Some truncation errors can be avoided by doing formal mathematical analysis. Unfortunately, not
all mathematical operations of interest can be accomplished by formal manipulations, such as

sin?(x) 4 cos®(x) = 1 (1—4)

Square roots of sums cannot be simplified, though products are easy. Few differential equations
can be solved formally, and of those that can, only the nearly trivial cases are useful.

The arithmetic operations done in a computer only approximate the results specified by mathe-
matics. To agree with theory perfectly would require the use of ever longer representations, so
that the entire computer memory would soon be filled with one very precise number. For divisions
this can happen in a single step! So floating point arithmetic is executed with a fixed percentage
error, at least for multiplication and division. Subtraction is the most dangerous operation. If
two numbers are identical in sign and similar in magnitude, their computed difference will have a
much higher percentage error than the original operands.

Discrepancies between mathematical arithmetic and floating point arithmetic are called rounding
errors. In any computation beyond the most trivial, rounding and truncation errors interact to
play havoc with your results. Good algorithms tend to keep the total error to the minimum
possible. Computation errors are a kind of background noise. As such, they can be modeled and
controlled just like the background noise observed in engineering and scientific problems. The
functions provided in MLAB are designed to contain numerical errors, but the user should do
simulations to test modeling algorithms. Examples will be given as you progress through this
Introduction.

1.6 Try Out MLAB

A compressed file containing the MLAB application, ancillary files, and demonstration-script and
data files, can be downloaded from the Civilized Software web-site at http://www.civilized. com.
Be sure to download the correct compressed file for your computer. Different files are available
for Linux with X-Windows, Microsoft Windows, Apple Macintosh computers with Motorola mi-
croprocessors, Apple Macintosh computers with PowerPC microprocessors, and Apple Macintosh
computers with Intel microprocessors. DOS versions (640K and extended DOS) of MLAB are
available on diskettes.

On Microsoft Windows computers, downloading the MLAB package and running the MLAB setup
program will create the directory C:\MLAB, uncompress the MLAB program and its ancillary files
to that directory, and create an MLAB icon on the Desktop. To start MLAB, double-click the
MLAB icon on the desktop with the mouse.

On Apple Macintosh OS7, OS8, 0S9, and OSX systems, installing MLAB will create an MLAB
folder on the desktop and uncompress the MLAB program and its ancillary files to that folder.
To start MLAB, open the MLAB folder on the Desktop and double-click the MLAB icon with the
mouse. (You may find it convenient to open the MLAB folder, click on the MLAB program icon,
create an “Alias” for the MLAB program using the Finder’s FILE menu, and drag the resulting
MLAB Alias to the desktop. Then you can run MLAB simply by double-clicking on the desktop
MLAB Alias.)

On Linux systems with X-Windows, once you download the MLAB package from www.civilized. com,
you must log-in as administrator and issue a tar command. This will create an MLAB directory
on /usr/local/lib/mlab, unpack the required MLAB files in that directory, and create bash shell
scripts to run MLAB in the directory /usr/local/bin. You can then start MLAB by opening an
XTERM terminal window and typing the command mlab (or MLAB) after the bash shell prompt.
(Depending on the desktop environment running on your Linux system—Kubuntu, Gnome, Kde,
etc.—you can create an icon on the desktop which is a shortcut to the MLAB program. Be sure

to indicate that the shortcut is to run MLAB in a terminal window, when creating the shortcut.
Then you can run MLAB simply by clicking on the desktop icon.)

On DOS computers, MLAB is installed from diskettes. Running the install program on the first
diskette will uncompress the MLAB program and ancillary files to the directory C:\MLAB. You can
then start MLAB by going to the directory where the MLAB executable file is located——using
the cd command, and typing mlab.

Once extracted and installed, start MLAB.

In all cases, after some electronic boilerplate flashes by on the screen, you will see a menu, wel-
coming you to MLAB and offering you three choices:

1. Look at a list of MLAB demonstration do-files.
2. Go to top-level MLAB.

3. Display some tips on using MLAB.

If you are new to MLAB, you should select the first option and click the CONTINUE button or
strike the Enter/Return key. You will then be presented with a dialog window with instructions
for running various canned scripts—called DO-files—that demonstrate some of the capabilities of
MLAB. After clicking on the CONTINUE button or striking the Return/Enter key, another menu
will appear containing a list of topics. Select any topic of your choosing and acquaint yourself
with some of the many types of problems that can be solved with MLAB.

Otherwise, select the second option: Go to top-level MLAB, and click the CONTINUE button or
strike the Enter/Return key.

You will then see an asterisk (*) that is your cue to type in instructions. The question is, “What
instructions?” Start by using MLAB as a calculator. Type

3+5 <Enter>

and expect to get back = 8 and a new asterisk. In all that follows, we shall just omit the <Enter>,
but you should not, or nothing will happen. If your command is defective, MLAB will issue a
sometimes cryptic diagnostic and put you into an edit mode to correct the command. Next try
((3+5+)+7). As with most computer languages, * is multiplication and / is division; the caret is
used for exponentiation, with Y = X ~3 giving the cube of X and XRT = X ~0.5, the square root.

MLAB can be used as a high powered calculator. The number of memory registers is potentially
huge. Type X1 = 8, X2 = 3, and then DX = X1 - X2. Entering TYPE DX or DX will return the
answer. Note: for clarity we will identify MLAB keywords by using all caps in this text. The
software does not distinguish between upper and lower case.

The selection of basic built-in functions in MLAB is far more extensive than what is offered by any
calculator. These include SIGN(X), INT(X), CEILING(X), FLOOR(X), MOD(X,Y), ABS(X), SQRT(X),
EXP(X), LN(X), SIN(X), COS(X). Define X and try some of these. Experiment with trigonometric
identities and logarithms.

Note that all numerical variables in MLAB are 8-byte (64-bit) floating point. The full 10-byte, the
short 4-byte, and integer formats are not directly available. This presents no practical problems.
Rectangular arrays (vectors and matrices) are available, as will be illustrated in the demonstra-
tions. The other data type implemented is alphanumeric (ASCII), which has an unusual facility
with the DO statement.

User-defined functions are constructible, but these are limited to scalar (single number) outputs.
These must be defined by a single line of MLAB code, except for the ... IF ... THEN ...
ELSE ... construction. By using IF and functions of functions, especially recursive functions,
very elaborate functions can be defined. The necessary programming style is quite different from
the usual compiler-based implementations. Examples will be given in the demonstrations.

Rational functions are good for constructing approximations, though not so good for doing the
operations of calculus (differentiation and especially integration). Define a rational function by

typing

FCT RATFINC(X) = (X"2+2*X-7)/(X"3-2%X"2+3%X-4)
You can type RATFINC(0) and RATFINC(1) and so on to build up a table that can be plotted. Do
this now manually; later you will learn a way to compute and plot such a graph on your monitor.

Now let us consider the failure of the associative law of arithmetic. Define the functions

FCT SS1(A,B,C) = A+(B+C)
FCT SS2(A,B,C) (A+B)+C
FCT DSS(A,B,C) SS2(A,B,C) - SS1(A,B,0)

by typing in these statements as commands. In theory, the function DSS() is identically zero, but
in computational fact it may not be. Try

X1 = -1.234567E12
X2 = 55.5555555565655
X3 = 7.654321E11
DSS(X1,X2,X3)

The result will be 1.22070312E-4, which is “small,” but not zero. This is not a defect in MLAB
or your computer, but in floating point implementations. Something similar will happen with
compiler code. Exactly what happens can depend on the hardware, the operating system, and the
software. You may get a different estimate of zero, including zero itself. A little experimentation,
however, should enable you to find values that cause the associative law to fail.

There are some computations, however, that are very stable. Define the function

STEP1(z) = |z

in MLAB with
FCT STEP1(X) = SQRT(SQRT(SQRT(SQRT (SQRT(ABS(X))))))

This function has two fixed points z; such that

xy = STEP1(xy)

The value xy = 1 is stable and z;y = 0 is unstable. This also is a compressed flow, since any
interval is mapped by this function into a smaller interval.

Accelerate the compression with

FCT STEP2(X) = STEP1(STEP1(STEP1(STEP1(STEP1(X)))))

The acceleration can be increased by another level of compounding. Eventually you can get a
function that maps the entire available floating point range of your computer into the value 1,
except for x = 0. Try this.

Even a pocket calculator can compute this simple, discrete “time” dynamical system, by repeatedly
pushing the square root key. This particular example is of no great interest in itself, but it
illustrates in a simple way the concepts of stable and unstable fixed points, nonlinearity, and
compressed flow. Models of considerable utility will entail internal computations much more
complex than square roots, but MLAB will take care of that for you. And MLAB also can help
with the analysis that can find these qualitative properties of your model that often are essential
for design and calibration.

Now you can consider yourself at least a beginner in MLAB, as well as numerical analysis and
nonlinear dynamics. And it wasn’t so difficult, was it? Soon you’ll be an expert, but it will require
a little time, effort, and thought.

Chapter 2

PROGRAMMING IN MLAB

Programming is done in MLAB by creating ASCII files of MLAB statements. These files are
never compiled into *.exe files as one would if using Fortran, Pascal, or C. They are executed from
within MLAB by the command DO filename, where a file called filename.DO is available in the
current directory.

This chapter will initiate the use of *.D0 files as demonstrators. Read the text and then execute
the *.D0 file provided in the various sections of Appendix B.

Comments and pauses are included in the *.DO files, which will be written to the screen as the
program is being executed. This enables the text to be more brief than was Chapter 1 To continue
after a pause or the display of a graph just touch the Enter/Return key.

The DO statement also can be used with internally defined alphanumeric variables. The variable has
to be a valid sequence of MLLAB statements. This capability is used in many of the demonstrations.
Where similar statements are need repeatedly, this form of DO can save a lot of effort.

2.1 More Numerical Analysis vs. Analysis
Polynomials are popular functions. For one thing the basic operations of calculus, differentiation
and integration, are easy to do on polynomials.

The generalization of polynomials is the Taylor series, a sort of polynomial of infinite degree. If
the argument is “small,” the Taylor series is useful; when it is not, one must resort to more painful
methods of analysis or numerical techniques.

Polynomials and Taylor series are best studied in the realm of complex numbers. There are
always n roots of a polynomial of degree n, but some or all of these may be complex even if the

10

polynomial has only real coefficients. A function of a complex variable that is differentiable once
is differentiable any number of times, which is not necessarily true for real-valued functions of real
variables.

Differentiable (analytic) complex functions are conformal, they preserve angles in mapping one
plane into another. (Complex numbers are 2-vectors, or a case of the set R?, pairs of real numbers,
with a peculiar multiplication defined.) Later we shall look at area preserving transformations
that arise in Hamiltonian systems of differential equations. These and many other properties
of models have limited or no connection with dynamics or physical reality. A more familiar
example is continuity, which can be ascertained for mathematical functions, but never achieved in
computational algorithms, and which atomic physics assures us never occurs.

For a more dramatic demonstration of the failure of the laws of arithmetic, let us construct *.D0
files that evaluate a polynomial three different ways and then compare the results.

2.2 Legendre Polynomials

Legendre polynomials arise in the solution of Laplace’s equation and related partial differential
equations. They are used in constructing models of the gravitational field of the earth and other
nearly spherical bodies, as well as other physical problems involving spherical boundary conditions.

One definition of the Legendre polynomial is

1 dn
2!l dan

Pu(a) (2 — 1) (2-1)

This is not very informative, but from it one can derive all the properties of these functions by
much tedious algebra, which can be found in standard references.

There are (at least) two ways to evaluate any polynomial and three ways for a few special cases
like the Legendre type. First there is “brute force.” For any second-degree polynomial

p(x) = ar* + bz +c (2-2)
we can construct the MLAB functions
FCT P(X) = AxX"2 + BxX + C

The second alternative is the nested version

11

FCT PP(X) = C + X * (B + A*X)

For second-degree polynomials nesting usually makes no difference even for large absolute values
of x, but for higher-degree polynomials it can succeed where the direct approach fails.

Recursion can be used for Legendre polynomials and several other kinds of functions. The specific
formula is

Pala) = (20— DaPos(x) — (n— 1) P (a)] (2-3)

but to get started we need Py(x) =1 and P;(z) = z. In general recursions are highly accurate for
a restricted range of arguments, but where they are good, they are very good.

The do-file LEGENDRE.DO B.11 computes and displays Legendre polynomials, using the MLAB
built-in functions. SLABLF.DO B.22 uses the recursion formula in vector form to do the same
thing. This is a more efficient way to proceed if you need the Legendre polynomials for lower
orders too.

A third version is KUGEL.DO B.9, which computes and displays P, (cosy),0 < y < 90 degrees.
Trigonometric arguments actually appear in the application of Legendre functions to partial dif-
ferential equations.

Rounding errors in evaluating polynomials are computed and displayed by ROUNDOFF.DO B.21 and
by POLLY.DO B.18 using a high-order Legendre polynomial. Legendre polynomials will be used
again to illustrate ideas from linear algebra and modern analysis.

Bessel functions arise in problems using cylindrical coordinates or circular boundary values. The
first few orders are computed and displayed by BESSEL.DO B.1, using the MLAB function BESSJ.

12

Chapter 3

VECTORS AND MATRICES

One definition of vector is a quantity that has a direction associated with it, as well as a magni-
tude. For basic engineering and elementary mechanics that is intuitive and adequate. Two major
generalizations are in current use, both being useful to scientists and modelers of all disciplines.
Matrices are yet another generalization that has taken on a life of its own. MLAB has many
standard operations and functions for matrices and vectors, as well as a lot of highly useful non-
conventional ones. In what follows, scalar variables appear as italic lower case letters, e.g. a;
vector variables appear as bold face lower case letters, e.g. v; and matrices appear as bold face
upper case letters, e.g. A.

3.1 Vectors

To most users a vector is a column of real numbers, or occasionally complex numbers. To a
computer a vector is an array of sequentially stored floating point numbers. For the pure mathe-
matician a vector is a member of a “vector space,” which includes operations, as well as some set
of vectors.

Mathematics generalizes vector spaces to open-ended constructions with “infinite” dimension; this
leads to a very rigorous approximation theory called functional analysis. By looking at some
restricted abstract vector spaces, stronger theorems can be proven. In our demos we shall use
an abstract vector space, orthogonal polynomials, to control numerical error for operations in a
simple vector space of small dimension, where the vectors are columns of “real” (really floating
point) numbers.

13

3.2 DMatrices, Linear Algebra, and Modern Algebra

Matrices are rectangular arrays of real or complex numbers. One use they have is as realizations
of linear transformations using matrix-vector multiplication

y = Ax 3-1)

The vector y has the dimension equal to the number of rows of matrix A and the dimension
of vector x equals the number of columns. The study of these finite linear transformations is
called linear algebra. For certain highly restricted classes of matrices, equation (3-1) can become
a realization of abstract algebra. When A is restricted to rotation matrices, we have a group.
Groups, rings, fields and the like comprise the subject matter of modern algebra. MLAB can be
used to create computational realizations of these abstract systems. An interesting game to play
is to figure out which few of these can be implemented without the disabilities created by rounding
error.

Here is an example. Show that there are any indefinite (some would say “infinite”) number of
Pythagorean triangles. Like the 3-4-5 triangle, these are right triangles with all three sides rational.
Show that they are dense, that is, any right triangle can be approximated arbitrarily well by a
Pythagorean triangle. Finally, try to create a finite rotation group that is exact and closed under
MLAB operations (64-bit floating-point arithmetic).

Most of linear algebra is simple and direct, but things can get ugly when we try to solve (3-1) for
x, given y and A. When y has a dimension equal to x, A is square and usually has an inverse
such that

A'A=1 (3-2)

where I has 1 on its diagonal and 0 everywhere else. Then we can get

x=A"ly (3-3)

Computing the inverse matrix is not a simple task, but several good algorithms are available in
MLAB.

Matrices provide linear mappings (transformations) from the vector space with columns of n
numbers to that with m numbers. When n = m and the matrix A has an inverse, the theory
as presented in most texts on linear algebra is adequate. Non-square matrices or ones having no
inverse (“singular”) present some problems. In both cases the difficulty is caused by creating a
mapping from a vector space of one dimension into a vector space of a different dimension.

14

A non-square matrix can be made square by filling in rows or columns with zeros. This creates a
singular square matrix with the obvious property that certain dimensions are removed by collapsing
their coordinates to zero. By changing the coordinate system, perhaps with just a rotation,
the obviously singular matrix can become disguised. Numerical tests can help to identify the
singularity, but rounding errors may make the results ambiguous. Sometimes a square matrix
that theory asserts must be singular can be inverted quite nicely by a numerical algorithm.

Square matrices have eigenvalues and eigenvectors. These are found by solving the equation

ax = Ax (3—4)

What (3-4) means is that certain vectors are mapped into themselves with only a change of length
(magnitude). (The eigenvalues a are commonly denoted by Greek lower case lambda, i.e. A.) For
singular matrices some or all the eigenvalues are zero.

Finding eigenvalues can be accomplished by solving

det(A — aI) =0 (3—5)

This is equivalent to finding the roots of a polynomial, which is not an easy chore for polynomials
of degree larger than four. In fact, a good practical way to solve for the roots of a polynomial is
to create a matrix that represents that polynomial by (3-5) and apply the MLAB algorithm for
eigenvalues to get the roots.

Linear algebra can be done in a more general setting with the pseudo-inverse, where

AA*A = A (3—16)

Sometimes this A* is called the generalized inverse or Moore-Penrose inverse; a less well known
codiscoverer is the geodesist Bjerhammer. Not only linear algebra, but much of the development
of statistical adjustments, can be generalized by using the pseudo-inverse.

Presenting even a fraction of linear algebra is more than we can hope to do here, but some of
these concepts are illustrated with the do-file LALGEBRA.DO B.10. Application is global for linear
dynamical systems (Cf. LINEAR.DO B.13, DIFFEQ.DO B.4, FILTER.DO B.6, and BOUNCE.DO B.3)
and local for nonlinear ones (Cf. LIAPUNOV.DO B.12).

15

3.3 Arrays

To computer users “matrices” may be just bins for storing numbers. The more fastidious pure
mathematicians would prefer to have them called “arrays,” in that case. Common in MLAB use
is a long, narrow matrix with the independent variable (“time”) in column 1 and state vectors
(“time series”) in the rest of the columns. This is how difference and differential equation so-
lutions are tabulated; read, for example, about the MLAB functions ITERATE(), INTEGRATE(),
POINTS(), FIT() and the operator ON. These functions will be illustrated later. ON was used in
LEGENDRE.DO B.11 and KUGEL.DQO B.9.

MLAB provides numerical implementations of the usual operations of vector analysis and linear
algebra, as well as some mathematically unconventional column and row manipulations useful for
data processing. When possible, use multiple indices [typically (1:10) for 1,2,3,...,10] with the
ROW or COL operators or the ON operator rather than the FOR loop to program array manipulation.
This, together with recursive functions, defines a style for MLLAB coding that makes it possible to
implement almost any algorithm or procedure.

The do-file LALGEBRA.DO B.10 creates a square matrix of “random” numbers. Then its inverse
is computed and tested. The matrix is made singular by setting the bottom row to all zeros. A
pseudo-inverse is computed and tested. Eigenvalues for both matrices are computed and displayed
in the complex plane, along with the imaginary axis and the unit circle. These geometric divisions
of the complex plane have significant dynamical implications, to be explained in Chapter 4.

3.4 Functional Analysis

From basic geometry we know that vectors can be orthogonal, which means they lie at right angles
to each other, or more generally, that the projection of one onto the other is a single point. A
quick and easy test for this is having the “dot product” or inner product being zero

a-b=0 (3-1)

This means the sum of the products of corresponding components is zero

a1by + asbs + agbs =0 (3 — 8)

This easily extends to any number of dimensions.

The mathematical term “dimension” has many meanings, with the basic intuitive one being a sort
of lowest common denominator. The three dimensions of classical physics are clear enough, but the

16

fourth dimension of relativity theory is a bit fuzzy. Time and space are not even unambiguously
defined; they are nonholonomic.

An easy to understand example is elevation above sea level. The surfaces of equal potential energy
are not exactly parallel or concentric, so elevation is not defined uniquely unless corrected with
some formulas that take into consideration gravity variations. This has led some geodesists to
develop their theories in tensor calculus.

In mechanics, classical or otherwise, the state space includes all dependent variables, both ve-
locities and coordinates. (Sometimes this is called the phase space and state space is reserved
for coordinates. But when orbital elements are used, they are functions of both position and
velocity.) Most of the do-files have two-dimensional state spaces; but LORENZ.DO B.14 has a three-
dimensional one; VOLTERRA.DO B.24 and FITCYCLE.DO B.7, four-dimensional; and DIRKB.DO B.5
and VINTI.DO B.23, six-dimensional.

Fractals are figures that may be two-dimensional, but have another kind of “dimension” that is
not an integer value. Actually, they are sequences of figures. The fractals you may see in picture
books are of a type that can be generated very quickly. Supercomputers are required to portray
those that arise from the nonlinear equations of interest to most scientists. We return briefly to
this subject in Chapter 9.

Functions with continuous domains can be used to create function spaces with infinite dimension.
Engineers and physicists come into contact with Fourier series early in their careers and these
display the basic properties.

The dot product is readily generalized to the definite integral of the product of two functions. By
this definition sines and cosines over a full cycle are indeed orthogonal as well as being identical,
except shifted by 90 degrees!

There are many families of functions that provide a basis for some interval or area or multidimen-
sional region. The Legendre polynomials are orthogonal over [—1,+1] (Cf. LEGENDRE.DO B.11,
KUGEL.DO B.9, and ORTH02.D0) B.17. A first priority of functional analysis is to create function
spaces that are closed. The question is what properties a function must have to be “nice” (so that
it can be represented by an infinite series of sines and cosines or Legendre polynomials or what-
ever). Here is an area where constructive and classic mathematics diverge on some technicalities,
but rounding errors make the point mute for applications.

The do-file ORTHO.DO B.16 starts with an abominable nonorthogonal basis for the “nice” functions
on the interval [—1,+1], the powers 2° = 1, z, 22, 23, etc., and creates the first few functions for
an orthonormal basis by the Gram-Schmidt process. Powers are poor because they all look alike.
Taylor series give accurate representations only over minute intervals. In the do-file the domain
actually is a number of discrete points, which can be changed to get somewhat different results.
These do not need to be evenly spaced.

With ORTHO2.D0 B.17 one starts with the Legendre polynomials, orthogonal over the continuous

17

interval, and gets a similar set of functions orthogonal over the discrete subset of the domain. A
simple test of the results shows them to be many times better than those from ORTHO.DO B.16.
This is the result of starting closer to where we wanted to be, so the changes to be computed were
small and created little rounding error.

Applying Gram-Schmidt, suitably generalized, to the powers on the continuous domain will yield
the Legendre polynomials. This is a worthy exercise for those facile with analysis.

Another example of working from the continuous to the discrete is given in DIFFEQ.DO B.4, where
an equivalent difference equation is obtained by continuous analytic continuation. Sometimes this
is feasible for nonlinear systems too, but not always. The most important lesson from this is that
models and computations and observable reality are three quite distinct things. Astute modelers
work with both the discrete and the continuous, with both numerical simulations and analytic
formalisms. “He who computes much, thinks little.” With a little extra thought, you will be able
to do most anything with MLAB on a PC.

18

Chapter 4

LINEAR DYNAMIC SYSTEMS
AND MODELS

The term “linear” describes mathematical apparatus, not actual systems. If an equation has,
say, two solutions and any linear combination of these is another solution, then the equations are
linear. Note that these are general solutions; not enough information has been given to specify a
unique solution.

Specific solutions are created by adding up a number of general solutions to get one that fits the
starting values (initial conditions) for a dynamic system. Linear equations are wonderful because
solutions to many kinds of problems can be constructed by superposition (add up many general
solutions) and the mathematical theory is extensive.

Nonlinear equations, which comprise everything else, are highly individualistic and at best can be
catalogued; there is no general approach. Solutions in terms of a few common functions or even
infinite series may not exist or are computationally worthless.

Few things in the real world satisfy linearity absolutely or to a high degree of precision. This
limits the usefulness of linear models and restricted possibilities for modeling before the computer
era. However, there are a large number of “random walk” systems that have their nonlinearities
masked by noise and damping. Some will be displayed in the next chapter, but first let us look at
the simplest of linear dynamical models.

4.1 Difference Equations

Difference equations are based on functions of the integers, or sequences. What is great about them
is that you do not need to plow through calculus to understand them. A little simple arithmetic

19

will turn the trick.

For dynamical systems it is imperative to have uniform spacing in time, but it is not necessary to
use functions defined over all the integers; a small set will suffice. The simplest difference equation
must be

Tptl = ATy, (4-1)

with a constant and n starting at some integer value, not necessarily 0.

To get things started we do need an initial condition, say

zo =1 (4-2)

and a value of a.

The most important properties of linear difference equations with constant coefficients can be
derived from (4-1) almost effortlessly. The solution of (4-1) is

xn, = a"x (4-13)

So if a = 1, x,, = x¢ for all n, which means no change. For a = —1 the value of z, just oscillates
between —zg and xg. When —1 < a < 1 the value of x,, collapses to 0 as n increases. For values of
a larger than 1 in magnitude, the solutions grow rapidly in magnitude, but may oscillate in sign.

It is easy to run examples on MLAB or a pocket calculator. How do you run (4-1) backwards to
negative values of n?

These simple forms of behavior exhaust the possibilities of linear difference equations with constant
coefficients, though some subtleties do appear for systems with 2 or more variables. The same is
true of linear differential equations. Variable coefficients make life more interesting, but this is not
the most useful or common generalization. The use of “inputs” or “right-hand sides” is; but that
is saved for Chapter 5.

Generalizing (4-1) to more variables is done most easily using vector-matrix notation

Xn+1 = AXn (4 - 4)

The vectors x; are columns of numbers and the matrix A is a square array of matching size.
Execute the product by taking the sum of the products of the numbers in rows of A with the

20

entries in x,,. As an example consider the two-dimensional case x; = (u;, vi)T and ajj, is in row j
and column k; then

Up41 = Q11U + A12V, (4 — 5a)

Unt1 = A21Un + A22Un (4 —5b)

Linear difference and differential equations with constant coefficients can be solved explicitly by
matrix manipulations, with the theory being supplied by linear algebra. Some of this is discussed
and illustrated in Chapter 3. MLAB users generally need not become real experts in the subject,
but should be familiar with a few basic facts. Consult our reading program in Chapter 10.

There are functions of square matrices called eigenvalues that tell you all about the behav-
ior of (4-4). These can be computed with the MLAB function EIGEN(). Look at the do-files
LALGEBRA.DO B.10, LIAPUNOV.DO B.12, FILTER.DO B.6, BOUNCE.DO B.3, DIFFEQR.DO B.4, and
LINEAR.DO B.13 for simple examples.

The difference equation in DIFFEQ.DO B.4 is designed to provide the same results as the differential
equation in LINEAR.DO B.13, which in turn is almost identical to an example in the MLAB 2-D
Graphics Examples. However, the coordinate axes have been rotated by one of the angles in a
3-4-5 triangle, so that the variables are abstract linear combinations rather than observables.

Such manipulations are common in celestial mechanics and some other disciplines that attempt
analytic studies. They also can be useful for numerical work as done with MLAB, for example.
A simple transformation sometimes can reduce numerical computations considerably and make a
large or difficult job practical. Unfortunately, a lot of academic training and practical experience
are often needed.

4.2 Differential Equations

Calculus has been made one of the pontes asinorum (bridges of asses), that is, barriers to entry,
of the scientific and technical world. The subject is basically simple, but the textbooks and
explanations are not. Its usefulness derives from the fact that theories can be constructed which
describe the rates of change of processes with very simple functions, but the processes themselves
cannot be specified so easily.

For a mathematical function f of time ¢, the derivative or rate of change is written as Z—{ or Cbcd—(tt) or

sometimes f/(t); another notation places a dot over the f, e.g. f. The function is assumed to be
defined over a useful interval of real numbers, so f may be used as a model for some process. Time

21

and the process are assumed to be meaningful to arbitrarily small divisions (unlimited resolution)
for such continuous variable models.

No data stream has all the properties that can be ascribed to functions amenable to calculus; the
use of such functions is to serve as an intermediate step to computational manipulations. Since
the resolution of the computations is rarely identical to that of the process being modeled, using
mathematical constructs with indefinitely great resolution is a convenient modeling technique.
Numerical analysis builds the bridge between theory and computation; statistics and modeling
technique relate theory to observations.

Almost anybody should understand that if f(¢) is a linear function of time

fit)y=at+> (4—-06)
then
%:a (4-1)

Computing derivatives of most functions is easy. Going from derivatives back to functions is more
difficult. In cases where there are three or more interdependent functions, the difficulty escalates
dramatically. Results usually have to be obtained by numerical manipulations, not calculus. In
some cases even numerics can be confounded, as you will see in Chapter 9 on Chaos.

Many problems in physics require the rates of change of rates of change, or derivatives of deriva-
tives. In mechanics these are accelerations, while derivatives are velocities. And the variables may
be multiple and often are represented by vectors. For numerical work it usually is necessary to
replace derivatives of derivatives by a system with two variables. If you have an equation involving

frand frr= %, add a variable g = f7 and replace f// by g/.

Instead of (4-4) differential equations would look like
dx
7 = AT (4-38)
In all our examples, including Chapter 5, we will use matrices A of constants.

See if you can convert the damped linear system in the MLAB 2-D Graphics Examples to the
one in LINEAR.DO B.13. Use the equations for a rotation in matrix or direct form. Note that the
do-files run the equations back in time also, which is unstable.

22

4.3 Generalizations

In using MLAB you can make the entries in A functions of time; you still have a linear system.
You can add a vector term b(¢) to the right-hand side that depends explicitly on time; you're still
linear. But when you make any part of A or b depend on x, you have gone nonlinear.

Linear difference and differential equations have long been popular in engineering. Laplace trans-
forms are a favorite tool for those cases where there are “right-hand sides” or “inputs.” When the
input is “random noise” the Fourier transform and so-called times series methods are the natural
tools. In most cases of the latter the linear operator, the ODE, need never be written down when
only numerical work is being done.

What a model ODE can be used for is to do some of the typical time series analysis by formal
manipulations, involving such horrors as contour integrals in the complex plane and Bessel func-
tions of imaginary argument. This option offers alternatives to fast Fourier transforms when the
data are not uniformly spaced or are small in number. The drawback is the need for the kind of
analytic expertise shown in our reference JORDAN (1972).

The relations between linear ODEs and times series methods are developed in more depth in
Chapter 5. The first parts of the do-files FILTER.DO B.6 and BOUNCE.DO B.3 show what happens
when the input is null, so they are examples for this chapter; the final parts create simulations of
filters and “random walk” times series by integrating ODEs. The simulated time series are then
probed using Fourier methods.

MLAB will take nonlinearity in stride; in fact MLAB and most other differential equation software
packages do not “know” whether they are working on a linear or nonlinear system. Any simplifi-
cations possible due to linearity (or symmetries) must be incorporated into the MLAB statements
used. Actually, we recommend you do the opposite for complicated, nonlinear problems. Redun-
dant calculations or symmetries are best used to monitor error growth; the use of integrals (a kind
of symmetry) is illustrated in Chapter 8 on celestial mechanics. More on redundancies is in our
reading program.

Modify the do-files with some simple experiments. Add nonlinear damping. Experiment with
converting the result into a nonlinear difference equation, as done in DIFFEQ.DO B.4 for the linear
case. The technique used there is a variation of continuous analytic continuation; the solution is
found by Taylor series evaluated over steps that are short, but longer than those feasible with a
numerical integration. This process does generalize to nonlinear systems and in those cases where
higher derivatives are easy to compute, it can give high accuracy with economy.

Real cases of exponential growth (instability) are formidable forecasting problems. For one thing,
the determination of the growth rate is sensitive to noise and various errors, but the big problem
is that feedbacks cut in suddenly to control the process. The properties of these feedbacks usually
are not known in advance and they may not be very consistent either. Nonlinear feedback is
illustrated in Chapter 7.

23

The unit circle and imaginary axis are displayed on the graph of eigenvalues for the matrices.
These are boundaries for stability regions for difference equations (4-4) and differential equations
(4-8). Try to figure out which is which. [Hint: the answer for difference equations is easy to guess
from (4-1, 2, 3).] For more details, begin the reading program in Chapter 10.

24

Chapter 5

LINEAR DYNAMIC SYSTEMS
WITH INPUTS

The most useful linear dynamical models are those with “inputs” or “right-hand sides.” Nonho-
mogeneous difference or differential equations is the mathematical term. In contrast, time varying
coefficients are a less useful generalization; nonlinearity is more likely to be appropriate. Eco-
nomics uses exogenous variables, that is, ones that do change, but in a way totally independent
of the system being modeled. (Biology and celestial mechanics do too.) In cases where these are
applied as variable coefficients it is easy to incorporate such structure in an MLAB model. Here
we will restrict ourselves to the more common use as inputs.

5.1 Variation of Parameters and Filtering

Linear differential equations of the form

dx
E:Ax—kb(t) (5-1)

can be solved by variation of parameters. First solve the case for

b=0 (5—2)

Then allow the adjustable constant parameters to be functions of time. These functions can be
obtained by some tedious manipulations which usually are possible but rarely are practical. When
the input b has a single, simple periodic component, just

25

b; = asin(kt) + beos(kt) (5—13)

the output x will have this same frequency in some of the components, but with a shift in phase
and change of amplitude. In those cases where the homogeneous equation decays to the origin,
the steady state for the nonhomogeneous system will be just a sinusoid of this single frequency.

The equation (5-1) in that case will be a linear filter with input b(¢) and output z(¢). Placing
another frequency in the input adds only that frequency to the output. Each frequency will have
its own filtration characteristics, the amplitude change and phase shift.

Engineers traditionally have used Laplace transforms for such problems. These may do the trick
even when the input is not linear combinations of sines and cosines. Where analytic techniques
are feasible, it is a good idea to exploit them. It is also appropriate to do numerical solutions
to check your work. MLAB can do the numerical solutions and also adjust the parameters in an
analytic solution. Numerical simulations should always be run to test the modeling procedure.

The do-file FILTER.DO B.6 applies a single sinusoidal input to a stable differential equation with
strong damping after exhibiting the solution with no input. Then random noise is used as an
input. BOUNCE.DO B.3 does the same things with a linear system that oscillates as it decays.

5.2 Random Walks

Some of the most interesting inputs are random noise. The term “random” is generic, not precise.
There are many statistical tests for predictability or lack of it, but no single index of randomness.
Solutions of some fairly simple systems of ordinary differential equations can pass muster as
“random,” even though mathematics says that for given initial conditions, there is one and only
one solution.

You may read oxymorons like “deterministic chaos” in the literature. This is a consequence of
confusing computations with mathematics, and both of those with observational reality. A nasty
differential equation can shuffle numbers just as effectively as any of the traditional schemes for
generating “pseudo random” numbers. Such systems map simple initial configurations like a
sphere or cube into sponge-like structures. The shuffle used in random number generators is just
a difference equation version.

The most basic random walk is a running sum of a sequence of supposed random numbers. Of
course there is no such thing as a single random number, only sequences of numbers that can be
tested for various statistical properties. And there is no one test that rates “randomness” from 0
to 100 per cent.

26

Computer-generated sequences are often called “pseudo random” because they ultimately repeat
and hence are completely predictable. But the period can be made long enough to provide an imi-
tation of any natural process one might want to model. MLAB provides enough random sequence
generators for most any simulation, all based on mapping a uniform (“boxcar”) distribution into
others, such as the Gaussian.

The do-file RANDWALK .DO B.20 first generates a sequence of normally distributed numbers. Rather
than summing these, it produces a random walk by integrating over straight line segments connect-
ing the numbers. The integrand might be called a linear spline. What is produced is a smoother
curve than the original. Summation or integration is, in general, a smoothing procedure. This
observation is the basis of all random walk models; some of the mathematics used to describe this
can be arcane and almost bizarre, but implementation is easy with MLAB.

The do-files FILTER.DO B.6 and BOUNCE.DO B.3 use damped linear oscillators to convert the same
kind of random inputs into smoother functions, that is, random walks. FILTER.DO B.6 exhibits only
damping; the associated eigenvalues are both real and negative. In BOUNCE.DO B.3 the eigenvalues
are complex conjugates, so there is a frequency associated with the process. Note that the former
reduces the input sinusoid and the latter amplifies it. BIZCYCLE.DO B.2 has noise inputs for both
first-order equations and displays its results as a phase plane diagram.

5.3 Time Series and Fourier Analysis

Random walks are usually not modeled with the sort of simulations (or better, emulations) dis-
played by RANDWALK.DO B.20, FILTER.DQ B.6, and BOUNCE.DO B.3. Linear systems theory provides
the broad and extensive framework. More narrowly focused books and articles talk about time
series or linear filtering; geodesy uses the term collocation (from the theory of partial differential
equations), because Laplace’s equation is the basic linear system for gravity fields.

MLAB provides standard tools such as Fourier transforms and the cross correlation function
CROSSCORR(). Other algorithms can be implemented easily using the standard and nonstandard
matrix operations. Power spectra and autocorrelation functions for the random walks generated
in FILTER.DO B.6 and BOUNCE.DQ B.3 are computed and displayed.

Matching these (and other) statistical functions to those from data sets is the way to create
models. There is no way to fit models to data and obtain a few parameters by multiple regression
(least-squares adjustments). Interestingly enough, a linear filtering model will fit the observations
exactly — and forecast for a short time thereafter.

Times series methods assume implicitly that there is no trend. To the Fourier transform a trend
looks like a “sawtooth” wave. So trends should be removed before attempting Fourier analysis.
Possibilities for trend models include polynomials (Cf. POWER.DO B.19 and ORTHO.DO B.16), the

27

Legendre polynomials (Cf. LEGENDRE.DO B.11, SLABLF.DO B.22, and KUGEL.DO B.9), and functions
orthogonal on specified domains (Cf. ORTHO.DO B.16 and ORTH02.D0 B.17).

Sometimes it is a good idea to transform the data. For data that is always positive and is concave
upward, the logarithm often does the trick. This generalizes to

_(azbfl)
y—T

(What happens at b =0 ?)

When a trend is present in the data, it usually suggests a process that can be modeled by a more
traditional “deterministic” method. From the trend model (or models) it may be possible to create
a differential (or difference) equation model.

There has been a lot of attention paid to chaos now that “solutions” of nonlinear differential
equations can be obtained numerically by computers and displayed on their color monitors (Cf.
MITCH.DO B.15 and LORENZ.DO B.14). Identifying chaos in a data set is not so easy, especially
when there is no highly developed theory to tell you it should be there. Even when chaos is
present, a time series model may be the most effective.

Note that all our random walks have a stable equilibrium for the basic input-output system; when
there is no input, the output dies out. The cause of chaos is one or more unstable equilibria. An
unstable equilibrium scatters trajectories (solutions) all over the place. Collisions, as found in gas
molecule dynamics, billiards, and roulette wheels, are extreme cases and wonderful destroyers of
predictability.

A good indicator for chaos is transient periodicities. An interesting unstable equilibrium may have
complex conjugate eigenvalues (Liapunov exponents — see LORENZ.DO B.14). If a sharp periodicity
(a spike in the power spectrum) appears in one part of the data span, but disappears later, that
is a good clue.

“Randomness” may be caused by collisions or deeply disguised unstable equilibria. In the case of
celestial mechanics these unstable points can be located by perturbation methods. Other modeling
tools, such as discrete Markov processes, may be the best choice. The matrix operations in MLAB
are ideal for Markov processes.

Linear systems can be just as sensitive to initial conditions as nonlinear ones. Consider

x = xoexp(1000t) (5—5)

Add the equation

28

y = yo exp(—1000t) (5—16)

and you get a system that maps areas into equal areas of different shape. Start with a circle
and you get an elliptical strand of ever increasing eccentricity. What an area-preserving nonlinear
system will do is twist this strand into a blob like a ball of steel wool; sometimes the system
maps into a distinct shape, not just said blob. These shapes are of considerable interest, since
they indicate a kind of overall structural stability in spite of the unpredictability of specific state
variables. (Cf. LORENZ.DO B.14).

The popular fractals, such as the Mandelbrot “set,” are produced by mappings that rapidly
separate stable and unstable trajectories that are near neighbors. Unfortunately, most systems of
scientific interest require massive computation to produce fractal-like shapes.

In some cases the mappings decrease area (or volume, as in LORENZ.DO B.14, or hypervolume) to
a figue of lower dimension, sometimes called the attractor. A better term, more consistent with
traditional analysis, is sink. A point mass (in gravity systems) is an attractor, but definitely not
a sink.

Random walks and chaotic systems are similar in that they have limited predictability. In other
ways they are quite different. Both are intellectually stimulating because they represent peaks of
divergence among mathematics, computation, and observable reality.

29

Chapter 6

A SIMPLE NONLINEAR MODEL:
“HUBBERT’S PIMPLE”

To be useful a model need not be complex. When a simple model does not work at all, making
it larger rarely makes it better. It is always best to start with a minimal model that captures
the important qualitative features. This can be done quickly with MLAB. Even if it is necessary
later to create a special purpose compiler code for regular forecasting and parameter improvement,
MLAB can be used to develop the basic model.

Keep your MLAB development model. Additions to be made to a complex model often can be
tested more readily with a basic core rather than the whole state-of-the-art development. Always
run simulations before taking up the challenges offered by actual measurements.

6.1 The Mathematics of Resource Depletion

Exponential growth, most generally expressed by the differential equation

dx

o 1
ik (6—1)

is not quite the simplest dynamical system. Uniform rotations or translations are. The difference
equation

Tpil = ATy (6 —2)

30

has the advantage that it requires no logarithms, let alone calculus, to solve and understand.

In the real world the behavior described by (6-1) or (6-2) can persist only for a limited time. In
the case of growth, mathematical solutions grow too large for any actual process to keep pace.
Numbers can grow ever smaller, but at various points exponential decay will drop below the limits
of resolution, the size of subatomic particles, or anything else in the observable universe.

The impossibility of endless exponential growth is best illustrated by contemplation of the sequence
of doublings: 1, 2, 4, 8, 16, ..., 2147483648, the last being the result of a mere 31 doublings. With
an annual growth of only 1 per cent, a doubling takes about 70 years. So 31 doublings would
require 2170 years.

World population is today about 5 billion, so if we assume a 1 per cent doubling, Adam and Eve
must have lived only 2244 years ago, or in 253 B.C. That is not even the 4004 B.C. deduced by
one scholar’s reading of the scriptures. Perhaps we can deduce that the average annual population
growth has been only 0.37 per cent, or about 1/9 the current value. All sorts of interesting games
can be played with this compound interest arithmetic, but all it proves is that forecasting (or
historical reconstruction) is a tricky business.

Physical limitations of some sort will contain exponential growth eventually. Estimating “eventu-
ally” is both challenging and important. Engineering jargon calls these limitations “feedbacks.”
In the simplest possible case, the feedback will depend only on the magnitude of the process. So
we can try to generalize (6-1) to

d
d—f:am—be (6 —3)

The quadratic feedback is certainly simple enough, but that does not prove equation (6-3) is a
useful model.

Equation (6-3) can be solved for z(¢,tg, o) by a little bit of calculus. (Try it! Hint: the answer is
coded in the HUBBERT.DO B.8 file.) One solution is the “S-curve” that is asymptotic to z = 0 for
decreasing t and to x = ¢ for increasing ¢. This model serves rather well to reproduce the behavior
of the depletion of a nonrenewable resource, such as metal ore, coal or oil. Metals often can be
recycled, but fuels cannot, at least not as an energy source.

6.2 A Simulation

This humble special solution of (6-3) is called the continuous logistic. It has been known for
several hundred years, but often is called “Hubbert’s pimple.” The “pimple” occurs when the

time evolution of ‘é—f, the rate of production, is plotted. It goes from zero, up to a peak, and down

31

to zero again. It is indeed a “bell-shaped” curve, but it decays more slowly than the well-known
Gaussian distribution.

The geologist M. King Hubbert used this logistic to forecast the decline of U.S. domestic oil
production in the mid 1970s. So did a lot of other people, but he was successful because of
cautious calibration that observed that oil explorers were drilling more and enjoying it less. Oil
per foot drilled was declining, giving an early warning of the inevitable.

Exploration for oil or other minerals is a complex process. In this simulation we assume frequency
of discovery occurs in a Gaussian distribution. Size of discovery is set to a uniform distribution.
Oil is pumped from the wells at an exponentially decaying rate. A small population of “wells”
comprises the model. However, if we consider these entities to be oil fields, the number is not
absurdly small.

The whole history of U.S. oil production is created, including the future. A logistic is fit to the
data accumulated at different periods. Constraints that are highly simplified “geology” are applied.
What can be seen is that the solutions are rather unstable before the curve hits its inflection point,
but after that they home in quickly. Hubbert’s contribution was to stabilize the forecast as soon
as possible before reaching this critical juncture; that is not included in this simulation. What we
see is a reproduction of the work of “the other guys”: an inflated projection of future production
that soon comes crashing down to reality.

Drilling offshore and in Alaska has not boosted net domestic oil production above Hubbert’s
projections. What we see here is the familiar effect of diminishing returns from ever more advanced
(and costly) technology. Political, military, and economic machinations have caused crude oil prices
to soar and sink. When prices sink, many low production “stripper” wells in North America close
down forever, so the remaining oil is lost for future production.

Oil depletion has many factors that make it predictable. First of all, there is only so much,
and no more. And there is only so much energy per gallon, no matter how improved refining
technology becomes. Even the discovery of a really huge new field would not have postponed the
day of reckoning very long; the exponential growth that characterizes the start of the logistic curve
makes the lifetime of a nonrenewable resource relatively insensitive to the amount available. The
discovery of several huge oil fields could have caused Hubbert’s forecast to fail catastrophically,
but this improbable event did not happen.

For other “limits-to-growth” problems there are too many feedbacks and all are too uncertain.
There is plenty of natural gas and soft coal, so air and water may be more important constraints
than fossil fuels. Toxic wastes, climate change, stress factors, technological change, and many
other things effect economic and population growth. This is not to say that models should not be
constructed, just that the value of making them too big and complex is nil.

Adding a term quadratic in x to (6-2) creates the discrete logistic. Its behavior over the range of
“meaningful” parameters and starting values is as complex as the continuous case is simple. This

32

is demonstrated in Chapter 9 on Chaos. Chaos and “random walks” (Chapter 5) do not permit
traditional modeling where one just fits parameters to observations and is done. There is need
for analytic and numerical explorations, the study of critical points and statistical properties, and
other indirect techniques. These too can be done with MLAB.

33

Chapter 7

A MORE COMPLEX NONLINEAR
MODEL: VOLTERRA EQUATIONS

Nonlinear differential and difference equations display a wide variety of behaviors. Systems of two
first-order differential equations are always in some sense solvable. Since the solutions are confined
to a plane and cannot cross one another, it is possible to eliminate one of the variables and solve
for the other by quadratures (simple integrations).

Sometimes this can be done with elementary functions, but in other cases special functions like
elliptic integrals or elliptic functions (available in MLAB) are required. This is not always prac-
tical, however, since many other cases would require functions not yet studied and tabulated by
mathematicians. Numerical solutions constructed with the help of analytic investigations are the
best approach.

When you have three variables, or a single nonlinear difference equation, the game changes entirely.
Trajectories (solutions) can cross over one another and become hopelessly knotted and tangled.
They can spread out into a sponge-like structure. For some values of parameters and initial
conditions there may be stable periodic solutions embedded in a sea of other solutions that develop
into a sponge.

Both analytic and numerical work are essential for studying even the simplest nonlinear systems.
In these final chapters we will illustrate the use of MLAB to facilitate both.

7.1 Simple Assumptions

In some cases biologists and ecologists have observed periodic fluctuations in natural populations
of various species. The very simple system known as Volterra’s equations provides a qualitative

34

model of this phenomenon.

This simple ecology has only two species, a number of prey denoted by x and predators, by y.
The unchecked prey would grow at a rate a per unit time, but they are devoured by predators in
proportion to the numbers of both. So the first equation is

d
d—f:ax—bxy (7-1)

Predators increase in proportion to zy and die off at a fixed rate per unit time, ¢. So the next
equation is

d
d—zt/:—cy—i-k:;ry (7—2)

The simple model comprised of (7-1) and (7-2) has many sins of omission. For one thing it is
continuous, but the number of individuals is always a positive integer. To be applicable the model
requires large populations. The birth rate of the predators is bounded, but this is not accounted
for in (7-2). Natural deaths among the prey, however, can be included by adjustment of a. For
most species births are seasonal. And the food supply of the prey species surely is not limitless.

7.2 Mathematical Properties

For all its obvious flaws, the predator-prey model captures an important property. If you start
with all the variables (z and y) and all the parameters (a, b, ¢, and k) positive, the variables stay
positive and their change is cyclical. This can be shown by examining an integral of the system,
which is a function which is constant for all points lying on a given solution, it may be written

flz,y) = K (7-3)

The curves (7-3) are closed loops in the first quadrant. They start out as ellipses (or circles) near
the one equilibrium point, defined by

dx_@_

= = = —4
dt dt 0 (T=4)

and develop into quarter circles (or ellipses) for cases getting close to the axes. We omit the analy-
sis, which can be found in our readings, but illustrate the results in the do-file VOLTERRA.DO B.24.

35

7.3 Fitting to a Noise-driven System

The usual application of statistical adjustments assumes that the theory is perfect and that the
observations are what is flawed. Most observations have significant errors and most theories have
non-negligible omissions and unjustified implicit assumptions. The best approach is always to
start simply, with a crude model, as we have here, and a naive adjustment of parameters and
initial conditions.

Once you have captured the qualitative behavior, then you are ready to make the model bigger.
Not before. Where there is a highly developed theory for the system under consideration, the
first try can be correspondingly complicated. These are the exception rather than the rule. Early
models for artificial satellite orbits started with as few as three parameters before progressing
decades later to thousands.

Some mathematical theories assume the significant errors in models are small, but smooth, con-
tinuous effects. For a few problems in physics and astronomy, as for example artificial satellites,
this is true. In most cases it is not. Noise inputs are the principal perturbations in many cases.
As we saw with the business cycle emulator (Chapter 5), noise may be what keeps a system with
damping “alive” and it can mask nonlinearities that we “know” must exist.

One might argue that the Volterra equations need more terms, because a small continuous per-
turbation could send the solutions spiraling outward or spiraling inward, as always happens in a
homogeneous linear system with constant coefficients. Persistence of the cycle suggests to some a
limit cycle, where solutions spiral towards a single periodic loop.

Simulations can be done with MLAB to determine what level of noise will mask a limit cycle
mechanism, if one is present. Another thing to try is adding a third species, to see when the cycle
breaks down and chaos occurs. We have mentioned the food of the prey. And there are diseases;
a lot of modeling of epidemics has been done.

The complexity of models escalates rapidly with the addition of each new variable or parameter. It
is not generally easy to decide what to add and what to omit. Chapter 9 and Chapter 10 provide
some suggestions on model development.

The do-file FITCYCLE.DO B.7 adds noise terms to the Volterra equations and solves for the pa-
rameters using a noise-free model. Nonlinearities can produce biases in the resulting estimates of
parameters.

36

Chapter 8

CELESTIAL MECHANICS AND
HAMILTONIAN SYSTEMS

The motions of the planets have been studied for thousands of years by many cultures. Timekeep-
ing, calendar construction, navigation, and astrology provided applications for the science and
mathematics of the astronomers.

Modern science begins with Isaac Newton, who was able to describe the motions of the moon and
planets with a small number of equations having a minimal set of parameters. Ancient theories
of planetary motions contained large numbers of parameters and really were exercises in curve
fitting, using three-dimensional trigonometric series.

Newton’s laws of motion applied to falling apples and cannon balls, as well as celestial bodies.
And by solving a very simplified set of equations for the sun and a single planet, one can obtain
Kepler’s laws. Before Newton’s time, Kepler used the orbit of Mars to determine that planets
moved in ellipses, with the sun at one focus, and that angular momentum was conserved.

By a rather circuitous path of development it was eventually discovered by Sir William R. Hamilton
that Newton’s equations could be expressed in terms of the partial derivatives of the energy
function. Specifically,

= —1

TR (8-1)
dyi _ _F
dt N Xy

The functions F(z;,y;),i = 1,..., N, is usually the energy or some generalization of it. In some
modeling problems F' may depend explicitly on time (e.g., the satellite of a rotating, asymmetric
planet).

37

The curious symmetry of equations (8-1) has generated a vast literature and much speculation. For
MLAB users these equations are attractive because the partial derivatives can be done symbolically
by the DIFF() operator. As a specific example, consider the one-body problem, the sun and a
planet of negligible mass. Then the position and velocity are

r = (CL‘l,l‘Q,I‘g)T (8 —2)
dr T
% - (ylayQ)y?))

and the energy (Hamiltonian function) is

1. dr 1
:§(§)2—; (8—3)

with the first term being the kinetic energy and the second the potential energy per unit mass
of the tiny planet. Using a one in the potential energy specifies what are called canonical units,
which depend on the physical parameters of the objects involved and are not part of the SI or other
metric or standard systems. However these units may eliminate many superfluous multiplications
in a numerical integration. The form (8-1) often is called canonical too, but canonical (Hamilton’s)
equations may or may not use canonical units.

For our MLAB demonstration we integrate the system (8-1, 2, 3) numerically and display the
variation of the integrals I’ and angular momentum

dr
=re —4
G rdt (8)

with time.

Mathematically, it is fairly easy to show that ‘é—f =0 and ‘2—? = 0 (try it!). However, the inevitable
errors created by a numerical solution of a system of differential equations produce variations of F’
and G along the computed solution. This is illustrated by the MLLAB do-files DIRKB.DO B.5 and
VINTI.DO B.23.

Check that ERRFAC = 1.0E-5 before running DIRKB.DO B.5 or VINTI.DO B.23. This or larger
values will cause the ellipse to fail to close in the graphics. VINTI.DO B.23 reduces ERRFAC by a
factor of 100, which will cause the ellipse to close visually, but not numerically.

Some systems can be modeled by using more complex or different forms of £'. Others, such as the
atmospheric drag effects on an artificial satellite, cannot be included readily. Testing computations,
especially things as cantilevered as numerical integrations, on special cases is essential.

38

Chapter 9

NONLINEAR SYSTEMS AND
CHAOS

After being ignored for generations, the topic of nonlinear dynamics is now in vogue. Computers
have made the subject accessible to those of less than genius level ability. Even the geniuses such
as Henri Poincare and George D. Birkhoff did not make all that much progress on the subject.
The contributions of topological dynamics are difficult for nonspecialists to understand.

Mathematics has succeeded in defining these modeling tools, that is, nonlinear difference and
differential equations. What it cannot do is provide solutions. Simplifications and solutions
of mathematical problems are possible only when there are some exact symmetries to exploit.
Typical examples are energy and angular momentum, as in the Kepler problem. The integral for
the simple Volterra equations is a generalization of energy.

Numerical methods, really usable only with a computer, can construct discrete samples of approxi-
mate solutions to nonlinear dynamical modeling equations. (But there is the method of continuous
analytic continuation, illustrated and implemented with MLLAB in DIFFEQ.DO B.4.) In some cases
these can be used for modeling, parameter determination, and forecasting without any difficulty.

For some parameter values these models may exhibit chaos. Sometimes this is called “deterministic
chaos,” because a symptom is extreme sensitivity of future state values (“the solution”) to initial
conditions. (Bifurcation is extreme sensitivity to a parameter.) What should be kept in mind is
that this is divergence between the ideal results of pure mathematics and the realities of floating
point computations. The observable universe can be measured with quite limited precision, usually
much less than the numerical precision available in MLAB (about 1 part in 10'6).

Modern physics has made limited resolution part of its canon, not just an economic or technical
barrier to be hurdled by the next generation of instrumention. Where a chaotic model is deemed
appropriate, there is a physical barrier to predictability. Not much can be accomplished by re-

39

sorting to special software with greatly extended precision, though this may be of some interest
for experimental mathematics.

Even though “solutions,” as commonly understood, are not available for chaotic systems, numerical
simulations run on MLAB can be used to explore the territory, so to speak. There also are a lot of
analytic techniques that can be used to determine the properties of models; using these is greatly
facilitated with MLAB. A few examples will be illustrated in this chapter.

9.1 The Discrete Logistic

The subject of nonlinear dynamics was initially revived in the 1957-66 era to address the need
for computing orbits of artificial satellites. Heroic attempts were made by Dirk Brouwer, Boris
Garfinkel, Yoshiheda Kozai, John Vinti, Imre Iszak, and others to create a high-precision theory
for satellite orbits. After Iszak died prematurely, this effort faded away and the “number crunch-
ers” took over. Eventually the precision requirements of planetary exploration caused numerical
integrations to displace analytic theories for the ephemerides of the major planets. A centuries-old
enterprise all but ended.

Nonlinear dynamics reentered the mainstream of science in 1975, almost a decade after Izsak
departed the scene, with the work of Mitchell Feigenbaum. Computers had predated artificial
satellites by more than a decade, but they were of interest primarily to astronomy, geodesy, and
a few other disciplines with traditions of massive computation.

Using computers meant dealing with programmers, key punchers, and a whole host of “computer
professionals,” or becoming one yourself. Most scientific users had to do both. But by 1975
terminals made computers directly accessible to users and central processors and memories were
large and powerful enough to manipulate high-resolution graphics for video screens and plotters.

More physicists and a host of other scientists eagerly followed Feigenbaum into the terra incognita
of nonlinear dynamics. The subject moved from obscure niches in pure mathematics and theoret-
ical physics to a voguish centerpiece in the life sciences as well as the physical ones. Journals and
books have proliferated like mushrooms.

Feigenbaum started with an incredibly simple model, the discrete logistic difference equation

Tpy1 = axp(l — x,) 9-1)

The theory is exponential growth with a controlling feedback proportional to the square of the
magnitude. This model has many wonderful properties, not the least of which is that it requires
no calculus or advanced mathematics whatsoever. It is so simple that it can be run on a pocket

40

calculator (with the stroke of a single key on a programmable one). Analysis of much of its behavior
can be achieved with no more than solving quadratic equations and other simple algebra.

For all this simplicity, it illustrates the basic properties of nonlinear systems. By contrast, the
papers of the artificial satellite theorists are accessible only to a very few (and decreasing number
of) specialists.

The do-file MITCH.DO B.15 propagates the solution of (9-1) and draws the now classic graph, with
the horizontal axis being the value at step n and the vertical that for step n + 1. Then z, is
reflected back to the horizontal axis by the line of slope 1. The quadratic nature of (9-1) creates
a parabolic envelope for this trajectory.

Run some graphs using MITCH.DO B.15. Observe what happens as you raise a from 1 to 4. Watch
the solutions evolve from collapse to periodic to doubly periodic to chaotic.

9.2 Lorenz’s Equations

Lorenz’s system predates the discrete logistic as a paradigm for chaos by a few years. However,
it did not become widely known any sooner. The source of the equations is a model of a convec-
tion cell; partial differential equations are reduced to three ordinary differential equations by an
approximation procedure.

The general form of the Lorenz equations is a restricted system of three ODEs, one linear, and
the other two having a single quadratic term

W g

o = Tartay

d

d—?z:ba:—y—a:z (9-2)
%*—cz—i-x

at Y

a>0,0>0,c>0

The equilibrium points are easy to find (do it!), which is not true in general for nonlinear sys-
tems. Once they are found, the eigenvalues of the Jacobian matrix indicate whether the equilib-
rium is stable or unstable. The computation of eigenvalues isillustrated in a general setting in
LALGEBRA.DO B.10 and for this particular dynamical model in LTAPUNOV.DQ B.12.

Unlikely parameter values of a = 10, b = 28, and ¢ = 8/3 generate the famous “butterfly” solution
of (9-2). The numerical integration is started near the highly unstable equilibrium at the origin

41

in LORENZ.DO B.14. The two other equilibria are weakly unstable; the trajectory circles them like
a moth does a flame, first one, and then the other, back and forth, again and again.

There are no stable equilibrium points to act as sinks, so the trajectory cannot dampen out.
The trace of the Jacobian matrix is always negative, so Gauss’s theorem asserts that this is a
compressed flow. Trajectories cannot escape, so all approach some figure of zero volume, which,
however, is not a single point! Sometimes this is called an attractor, but it really is a generalization
of a sink.

Another kind of generalized sink is found in limit cycles. The best know is van der Pol’s equation.
Van der Pol and other investigators of modest nonlinear systems in the early part of the 20th
century had to use tedious graphical methods and considerable ingenuity to get some results; now
these can be obtained almost effortlessly with MLAB.

The Jacobian matrix is formed from all partial derivatives of the right-hand sides of (9-2) with
respect to z, y, and z. Most texts on advanced calculus or vector analysis will tell you all you
need to know about such things. In LIAPUNOV.DO B.12 the MLAB coding is suitable for getting
the Jacobian matrix for any three-dimensional system; use is made of the MLAB capability for
formal differentiation. This is easily generalized to more state dimensions, or to one or two.

Finding the equilibrium points of most nonlinear systems is a challenge. Use the MLAB function
ROOT () and scan regions of interest for the roots of successive time derivatives. A mix of analytic
work and numerical trial-and-error may be needed.

“Butterfly” comes from the observation that a butterfly flapping its wings in Beijing might trigger
a thunderstorm in North America, because the weather system is so sensitive to initial conditions.
This idea, of course, is silly. There is so much background noise in the real weather system and so
much error in any conceivable model, that it is meaningless to assert that any insignificant event
is the cause of something. But when you first run LORENZ.DO B.14, you will see that the figure
looks like a butterfly.

More comments on nonlinear systems may be found in Section 5.2 and Section 5.3, where they
are compared with random walks. The do-file FITCYCLE.DO B.7 generates a random walk using
a nonlinear system with cyclic solutions. Numerical integrations of things like the classic Lorenz
equations always have a significant random walk presence due to rounding errors.

42

Chapter 10

ADVANCING WITH MLAB

By reading the text, running the example *.DO0 files, and browsing through the MLAB Reference
Manual you hopefully have become familiar enough with the MLAB syntax and the basics of
modeling to strike out on your own. Start by modifying the do-files to create more complex
simulations and models. A good practice is first to copy these example *.D0 files to new names
and rename the graphics windows before making other modifications.

Next you can use fragments of the DO file coding to create new models and simulations. Soon you
will be ready to create models from scratch. There will always be some need to check the MLAB
Reference Manual, except for the fortunate few with total recall, but even we absent-minded
types will not have to look up every line we enter.

The reading program starts with a book suitable for those with almost no experience in modeling
and then moves on to both the pragmatic and theoretical. The best idea is to start reading at
a level that is easy, but not a waste of time. Implement what you learn in MLAB and move on.
Build up your own library of *.DO files. Adapt a standardized scheme for coding types of variables
so that it is easier to merge fragments into large programs. In some cases it may be necessary
to use the “global replacement” command in your word processor to edit the fragments before
merging.

10.1 Enhance the Demonstrations

Plot more of the special functions available in MLAB. Try to recreate and improve upon the
graphics you find in reference books, such as JAHNKE and EMDE (1945).

Move the Legendre functions to a nonstandard domain of definition. Try some other types of
orthogonal functions as first approximations to discrete orthogonal sets.

43

In the modeling simulations change the seed values of the random number generators. Try to find
anomalous cases where the simulation departs from what is expected. If you succeed in doing
that, try to make the simulation less responsive to unusual sequences of random numbers.

Try to orthogonalize some other functions on a discrete domain, as done in ORTHO.DO B.16 and
ORTHO2.DO B.17. Sines and cosines are another system of continuous functions orthogonal on a
certain interval; there are lots of other orthogonal functions to be found in reference books such as
ABRAMOWITZ and STEGUN (1964). The associated Legendre functions (provided in MLAB)

give rise to spherical harmonics, which are orthogonal over a sphere.

The linear system in FILTER.DO B.6 has already been generalized for you in BOUNCE.DO B.3, but
there is no end to what you can add. More variables and different kinds of noise drivers are among
the possibilities. In many cases the results could be obtained by formal analysis, but that would
require many hours of effort and considerable specialized knowledge. With MLAB you can get
easy-to-understand results in a few minutes.

When creating simulated data you may choose to add some observation errors, usually with a
Gaussian distribution. Even when the errors are in the model and not the observations, doing a
least-squares fit is the best way to start. Take FITCYCLE.DQ B.7 and display the autocorrelation
function of the residuals from the fit. (You may want to use 64 or 128 observations.) Rework the
simulation so that there is Gaussian error in the observations, but no noise in the system. Look
at the autocorrelation function (ACF) of the residuals in that case.

There are many models waiting in textbooks and journal articles for the chance to be coded and
explored in MLAB. Those in the MLAB Applications Manual are already highly developed
and ready to run.

10.2 A Reading and Practice Program

Those with little or no training in quantitative methods should start by scanning the book of
EDWARDS and HAMSON (1989). Read carefully about any concepts with which you are not
facile.

This Introduction to MLAB is based on The Art of Modeling Dynamic Systems (MOR-
RISON, 1991). The examples chosen for the *.D0 files span the Hierarchy of Dynamic Systems,
that runs from static through deterministic and chaotic to stochastic. These models, as well as
many others, and the basic mathematics needed for modeling are presented in this book in an in-
tuitive, heuristic way. A few derivations are presented to illustrate the use of symmetry in analysis
and to demonstrate symmetries that are not geometrically obvious.

One book can present only so much, so this one includes an annotated bibliography of 86 books
and 24 papers that provide mathematics at various levels of rigor, more examples, and specialized

44

methodologies. The list of books is selective rather than exhaustive. There are more than 24
journals that publish articles potentially of interest to MLAB users. A list of over 1500 citations
for MLAB is available at www.civlized.com. What is listed in the bibliography here are sources of
models that can be implemented in MLAB.

45

Appendix A

BIBLIOGRAPHY

Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions with Formu-
las, Graphs, and Mathematical Tables, (National Bureau of Standards Applied Mathe-
matics Series 55, U.S. Government Printing Office: Washington, DC, 1964). (Later printings
include corrections. Also reprinted by Dover in paperback.)

Aris, R., Mathematical Modelling Techniques, Research Notes in Mathematics 24,
(Pitman Advanced Publishing Program: Boston, 1978).

Beltrami, E., Mathematics for Dynamic Modeling, (Academic Press: Boston, 1987).

Davis, H. T, Introduction to Nonlinear Differential and Integral Equations, (Dover:
New York, 1962).

Edwards, D. and M. Hamson, Guide to Mathematical Modelling, (CRC Press: Boca
Raton, FL, 1989).

Jahnke, E. and F. Emde, Tables of Functions: with Formulae and Curves, 4th ed.,
(Dover: New York, 1945). (Found in various other editions from German and American
publishers.)

Jordan, S. K., Self-consistent statistical models for the gravity anomaly, vertical deflections,
and undulations of the geoid, J. Geophys. Res., 77, No. 20, 3660-3670, 1972.

Luenberger, D. G., Introduction to Dynamic Systems: Theory, Models and Appli-
cations, (Wiley: New York, 1979).

Mesterton-Gibbons, M., A Concrete Approach to Mathematical Modelling, (Addison-
Wesley: Redwood City, CA, 1989).

Morrison, F., The Art of Modeling Dynamic Systems: Forecasting for Chaos, Ran-
domness, and Determinism, (Wiley-Interscience: New York, 1991).

46

[11]

[12]

[13]

[14]

Morrison, F. and B. Douglas, A comparison of gravity prediction methods on actual and
simulated data, Geophysics, 49, No. 10, 1774-1780, Oct., 1984.

Peschel, M. and W. Mende, The Predator-Prey Model: Do We Live in a Volterra
World?, (Springer-Verlag: Vienna, 1986).

Rietman, E., Exploring the Geometry of Nature: Computer Modeling of Chaos,
Fractals, Cellular Automata and Neural Networks, (Windcrest Books: Blue Ridge
Summit, PA, 1989).

Thompson, J. M. T. and H. B. Stewart, Nonlinear Dynamics and Chaos: Geometrical
Methods for Engineers and Scientists, (Wiley: Chichester, UK, 1986) (with corrections,
1987).

47

Appendix B

DEMONSTRATION *.DO FILES

Each section in this appendix contains a script of MLAB commands— referred to as an MLAB
do-file, and the pictures generated by MLAB when executing the do-file. The MLAB commands
in a do-file are printed in UPPERCASE BOLD TYPEWRITER font.

You can create and execute your own copy of any do-file in this Appendix as follows.

To begin, you should view this book with a program that can display .pdf files. Such programs
include web-browsers that have appropriate plug-in programs—such as Mozilla Firefox, Macintosh
Safari, or Microsoft Internet Explorer; or stand-alone .pdf file viewer programs-such as Adobe
Acrobat, GSview, or Ghostscript.

When initially viewing this book with one of these programs, the program with which you view
this book might not allow you to select and copy text with the mouse. In that case, it will be
necessary to change some aspect of the .pdf file viewer program so that text selection and copying
with the mouse is enabled. Check the entries in the File, Edit, Options, and View menus to enable
text selection and copying with the mouse.

While you are viewing this book with the .pdf file viewer program, start the MLAB program as
another process, and a plain-text editor program as yet another process.

On Windows computers, start MLAB by double-clicking on the MLAB icon on the desktop. After
selecting Go to top-level MLAB from the startup menu and clicking the CONTINUE button,
type the command:

EDIT FILE FILENAME

where FILENAME is the name of one of the do-files in this Appendix. For example, type:

48

EDIT FILE BESSEL.DO

to create a local copy of the first do-file.

MLAB will then launch the NOTEPAD editor program. A NOTEPAD window will appear on
the screen, along with a warning dialog window with the message:

Cannot find the FILENAME file. Do you want to create a new file?
Click the YES button.

If you are viewing this Introduction to MLAB pdf-file in a web-browser window or Adobe
Acrobat program, scroll down to the section of this Appendix containing the desired do-file and
select the text in UPPERCASE BOLD TYPEWRITER font with the mouse, i.e. position
the mouse at the start of the first line of do-file text, press the mouse button, and move the mouse
to the end of the last line of do-file text. (The background of the selected text should appear in a
different color.) With the text so highlighted, click on the Edit menu at the top of the web-browser
or Adobe Acrobat window, and select Copy. This will copy the highlighted text to the Windows’
clipboard buffer.

Once the clipboard buffer contains the selected text, activate the NOTEPAD editor window by
positioning the mouse cursor on the NOTEPAD editor window’s title bar and clicking the mouse
button. Then click on the NOTEPAD editor window’s Edit menu and select the Paste option.
The contents of the Windows’ cliboard buffer will be copied to the NOTEPAD editor window.
Then click on the NOTEPAD editor window’s Flile menu, and select the Save option. This will
save the do-file to the MLAB working directory on the disk.

Finally, reactivate the MLAB command window by clicking on the MLAB command window’s
title bar, and type:

DO FILENAME

MLAB will then execute the named do-file.

On Macintosh OS7/8/and 9 systems, the same procedure as for Windows can be followed. Double-
click the MLAB application icon and go to top-level MLAB. However, when you type the command:

EDIT FILE FILENAME

MLAB will launch the TEACHTEXT on Macintosh OS7 systems, or the SIMPLETEXT editor
program on Macintosh OS8 and 9 systems, instead of the NOTEPAD editor program. When

49

the TEACHTEXT or SIMPLETEXT program window appears, the same copy, paste, and save
operations described previously for Windows, can be used to create a local copy of the desired
do-file.

On Linux with X-Windows and Macintosh OSX systems, MLAB does not support the EDIT FILE
command. However once you start MLAB, you can manually start a text editor. After you dismiss
the MLAB startup menu and get the MLAB prompt, strike Ctrl-Z (i.e. press the Ctrl key and
simultaneously strike the Z key). This will suspend the MLAB process and leave you with an
XTERM bash shell prompt (on Linux) or a Darwin bash shell prompt (on Macintosh OSX).

You can then launch a text editor, such as vi or emacs, by issuing the command:

emacs FILENAME

or

vi FILENAME

Use the same copy, paste, and save procedure described for Windows to create a local copy of the
desired do-file. Once you have created and saved the do-file, terminate the editor program. When
the bash shell prompt appears, strike fg to resume the suspended MLAB session.

If your local copy of a do-file fails to execute without error, check that you have copied all of the
MLAB commands to the do-file; partial lines or incomplete do-files will generate MLAB errors
when executed. Also note, that on Linux with X-Windows and Macintosh OSX systems, filenames
are case-sensitive. Be certain that the name of the do-file you created on disk is the same name
used in the MLAB DO command. You can delimit the filename in an MLAB DO command with
double quotes, i.e.

DO "FILENAME"

to remove all doubt as to which do-file is to be executed.

Each of the do-files in this Appendix begins with the same two MLAB commands. The first
command: ECHODO = 3, causes subsequent commands in the do-file to be printed in the MLAB
command window and in the MLAB log file.

The second command: RESET, causes all previous user-defined data objects, including scalar vari-
ables, matrices, functions, constraints, windows, etc., to be deleted. However, note that various
MLAB control variables, such as ERRFAC which controls the precision of the ordinary differential
equation solver, are unaffected by the RESET command. If an MLAB control variable is to be
restored to its default value, an explicit assignment statement must be given. For example, to
restore ERRFAC to its default value, type:

20

ERRFAC = 0.001

Comments in a do-file, i.e. lines with descriptive text to help the reader understand the intent of
subsequent commands, are ignored by the MLAB interpreter. Comments are delimited by /* and
x/, following the convention of the C-language.

The DRAW and TITLE statements cause curves and titles to be drawn in a separate MLAB graphics
window. An MLAB graphics window does not appear on the computer screen until the VIEW
command is given. An UNVIEW command will remove the MLAB graphics window from the screen.
A BLANK command causes a previously visible curve, title, or window to be invisible; an UNBLANK
command causes a blanked curve, title, or window, to reappear.

Consult the MLAB Reference Manual, MLAB Applications Manual, and MLAB Graph-
ics Examples for more complete explanations of these and other MLAB commands.

All figures generated by a do-file are deferred to the end of the section containing the do-file.

B.1 BESSEL.DO

The do-file BESSEL.DO creates a graph of the Bessel functions of order 0, 1, 2, 3, 4, 5, and 6.

/* FILE: BESSEL.DO */
ECHODO = 3
RESET

/* THIS BESSEL.DO FILE CREATES A GRAPH OF BESSEL FUNCTIONS
ORDERS 0-6 */

/* SELECT A TITLE IN GERMAN GOTHIC: */

TOP TITLE "Zylinderfunctionen" FONT 22, AT (0., 0.95)

/* CREATE THE ARGUMENTS LIST FOR THE BESSEL FUNCTIONS */
NSTEPS = 301

NULLZEHN COL 1 ROW (1:NSTEPS) = (0:10!NSTEPS)

BESSELFC COL 1 = NULLZEHN COL 1

/* GENERATE BESSEL FUNCTIONS DEGREES 0-6 IN MATRIX
BESSELFC. */

FCT BESSJF(X,Y) = BESSJ(X,Y)

FOR I = 0:6 DO \{

NULLZEHN COL 2 = I;

BESSELFC COL(I+2)

BESSJF ON NULLZEHN}

o1

/* GRAPH THE BESSEL FUNCTIONS IN DISTINCT COLORS:

DRAW
DRAW
DRAW
DRAW
DRAW
DRAW
DRAW

BESSELFC
BESSELFC
BESSELFC
BESSELFC
BESSELFC
BESSELFC
BESSELFC

BESSW = W

VIEW

BESSW

COL(1,2)
COL(1,3)
COL(1,4)
COL(1,5)
COL(1,6)
COL(1,7)
COL(1,8)

COLOR
COLOR
COLOR
COLOR
COLOR
COLOR
COLOR

GREEN
BROWN
RED
ORANGE
VIOLET
AQUA
ROSE

Window BESSW is shown in Figure B.1.

02

*/

3glindberfunctionen

10

Figure B.1: Window BESSW.

23

B.2 BIZCYCLE.DO

The do-file BIZCYCLE.DO creates a vector of uniform random numbers from the interval [-1,+1].
Then a business cycle model is created by using a linear interpolation of these numbers as input
to a damped harmonic oscillator.

/* FILE: BIZCYCLE.DO */
ECHODO = 3
RESET

/* THIS FILE CREATES A VECTOR OF UNIFORM RANDOM
NUMBERS. A BUSINESS CYCLE MODEL IS CREATED BY
USING A LINEAR INTERPOLATION OF THESE NUMBERS
AS INPUT TO A DAMPED HARMONIC OSCILLATOR.=*/

JAHRE=50; NSTEPS = 1 + 12*JAHRE

M COL 1 = 0:JAHRE!NSTEPS

START = RAN(1009,-1,1)

FCT BOXCAR(WX) = RAN(0,-1,1)

M COL 2 = BOXCAR ON M COL 1

MM COL 1 = M COL 1

MM COL 2 = BOXCAR ON MM COL 1

TOP TITLE "Uniform Random Sequence" FONT 8
IMAGE .18 TO .9, .13 TO .8 FFRACT COLOR BLACK
DRAW M COL(1,2) COLOR BROWN

GRS =W

VIEW GRS

BLANK GRS

FCT Y1'T(T) = A11xY1 + A12%Y2 + B29*LO0KUP (MM, T)
FCT Y2'T(T) = A21xY1 + A22*Y2 + B29*LOOKUP(M,T)
A11 = -9/250; A12 = 119/125

A21 = -131/125; A22 = -8/125
B29 = 6/5

INITIAL Y1(0) = 0.8

INITIAL Y2(0) = -0.6

SPIN = "N=INTEGRATE(Y1,Y2,0:JAHRE!NSTEPS)"
DO SPIN;

N1 = FLOOR(NSTEPS/3); N2 = FLOOR(2*NSTEPS/3)
DRAW N COL(2,4) ROW(1:N1) COLOR BROWN

DRAW N COL(2,4) ROW(N1:N2) COLOR GREEN

DRAW N COL(2,4) ROW(N2:NSTEPS) COLOR BLUE

o4

DRAW (0&'0O) LT NONE PT CROSSPT COLOR ORANGE
DRAW (0&'0) LT NONE PT CIRCLE COLOR ORANGE
IMAGE .23 TO 0.9, .13 TO .8 FFRACT COLOR BLACK
TOP TITLE "Business Cycle Emulation" FONT 34
BCYCLE = W

VIEW BCYCLE

BLANK BCYCLE

FCT RADD(T1,YY1,VV1,YY2,VV2)=SQRT(YY1xYY1+YY2*YY2)
TUPI=PI+PI

FCT ATAN4(YY,XX)=IF YY>0 THEN ATAN2(YY,XX) \

ELSE TUPI+ATAN2(YY,XX)

FCT ATAN4D(YY,XX)=MOD[180*ATAN4(YY,XX)/PI,360]

FCT PHASE(T1,YY1,VV1,YY2,VV2) = ATAN4D(YY2,YY1)
RR = RADD ON N

FIZZ = PHASE ON N

N COL 6 = RR
DEL RR

N COL 7 = FIZZ
DEL FIZZ

TOP TITLE "Radial Coordinate" FONT 9
DRAW N COL(1,6) COLOR BROWN

BIZRAD = W

VIEW BIZRAD

BLANK BIZRAD

TOP TITLE "Phase Angle" FONT 9
DRAW N COL(1,7) COLOR BROWN
BIZFAZ = W

VIEW BIZFAZ

Window GRS is shown in Figure B.2.

Window BCYCLE is shown in Figure B.3.
Window BIZRAD is shown in Figure B.4.
Window BIZFAZ is shown in Figure B.5.

95

Uniform Random Sequence

0.6
0.2
-0.2 “
-0.6
1o 10 20 £e %0 50
Figure B.2: Window GRS.
Business Cycle Emulation
1
0.6
0.2
0.2
0.6
B 0.6 0.2 0.2 0 1

Figure B.3: Window BCYCLE.

26

Figure B.5: Window BIZFAZ.

o7

Radial Coordinate
1.1
I
L f
.| \
0.88 M H ‘\ q
“\ il o I ‘\ | ‘\
\) I N
K AN ly I /| i
0.66 . m. A \ \
| Nk “W\ 1| (I I I
i ,\‘\ ML \M [|
||]! w\ “u\ bt WL)]
o F] 17 L i
ot I [yt W‘ \»‘ I\
\| fl W ' || \“
! i \ ‘U |
[1 H\Ul\“
0.22 F F |
' ' W ‘”V ‘H
I r I
! |
O L L L L
0 10 20 30 40 50
Figure B.4: Window BIZRAD
Phase Angle
360
\ | \ | \
\ 4 { u | |
\ Y | W \ |
| \ \ \ I |
28§ || } \ | [0
N y | \ | \ | |
oty Y]
{ | | | \ i | ‘
‘ ‘w \ \ \ A
L Vol N T
= 0 UV T
\ \ \ ¥ | | | “
W S O O A U A | \
ACT n \ \ ‘ \ ‘
VN R L]
\ ‘\‘ “ “ \ \ A 1
| \\ \ v“ \“ \\ u‘\‘.‘ | l,
\ \ w ‘ [|
IV T R L T A
“) | \ AT P
\ | \ \ Ui \ \
| { \ \ \ \
1 1 1 1
0 10 20 30 40 50

B.3 BOUNCE.DO

The do-file BOUNCE.DQ defines and solves a linear ode system with 3 distinct inputs. After the initial
impulse dampens out, the solution with a cosine input becomes a sinusoidal output of different
magnitude and shifted in phase. Linear odes act like filters, so they can provide interpretations of
noisy and complex systems.

The model here is a damped linear system (ode) having complex conjugate eigenvalues, with inputs
F=0, cosine, and noise. In economics this is the cobweb model. c¢f. BIZCYCLE.DO B.2.

/* FILE: BOUNCE.DO */
ECHODO = 3
RESET

/* THIS IS BOUNCE.DO IT IS A STABLE, LINEAR ODE WITH
3 DISTINCT INPUTS. AFTER THE INITIAL IMPULSE DAMPENS
0UT, THE SOLUTION WITH A COSINE INPUT BECOMES A
SINUSOIDAL OUTPUT OF DIFFERENT MAGNITUDE AND SHIFTED
IN PHASE. LINEAR ODES ACT LIKE FILTERS, SO THEY CAN
PROVIDE INTERPRETATIONS OF NOISY AND COMPLEX SYSTEMS.

THE MODEL HERE IS A DAMPED LINEAR SYSTEM (ODE) HAVING
COMPLEX CONJUGATE EIGENVALUES, WITH INPUTS F = 0, COS,
AND NOISE. IN ECONOMICS THIS IS THE COBWEB MODEL.

CF. BIZCYCLE.DO. */

/* FORMULATE 2ND-ORDER ODE AS TWO 1ST-ORDER ONES: */
FCT Y'T(T) = A11xY - U + F(T)
FCT U'T(T) Y

/* WE MUST HAVE Al11 < 4. x/

A1l = -0.3

FCT F1(T) = 0.72+%COS(A*T); A = 1.27
INITIAL U(0O) = 0.8

INITIAL Y(0) = -0.6

SPIN = "N=INTEGRATE(U,Y,0:50!NSTEPS)"

/* CHOOSE NSTEPS = 2°N, N AN INTEGER, FOR FFTS.x*/

NSTEPS = 279
FCT F(T) = 0
DO SPIN

TOP TITLE "Classic Cobweb" FONT 7

o8

DRAW N COL(1,2) COLOR BROWN LT DASHED
DRAW N COL(1,4) COLOR RED LT LDASH
COBWEB=W

VIEW COBWEB

BLANK COBWEB

FCT F(T) = F1(T)

DO SPIN

N COL 6 = F ON (N COL 1)

DRAW N COL(1,2) COLOR BROWN

DRAW N COL(1,6) COLOR GREEN LT DASHED
TOP TITLE "Cosine-Driven Cobweb" FONT 7
WEBCYCLE = W

VIEW WEBCYCLE

BLANK WEBCYCLE
START=NORMRAN (EXP (1))

FCT F2(ARG)=NORMRAN(O)

M COL 1 =N COL 1

FCT F(T) = LOOKUP(M,T)

M COL 2 = F2 ON (M COL 1)

DO SPIN

TOP TITLE "Noise-Driven Cobweb" FONT 7
DRAW N COL (1,2) COLOR BROWN
MARKET = W

VIEW MARKET

BLANK MARKET
AAA ROW 1 COL 1
AAA ROW 1 COL 2
AAA ROW 2 COL 1 =1
AAA ROW 2 COL 2 =
EA = EIGEN(AAA)

I
1 =
[N

—

|
o

/* HERE ARE THE EIGENVALUES FOR THE FILTER:

TYPE EA COL 1 ROW(1,2)
TYPE EA COL 2 ROW(1,2)
PAUSE

DEL AAA

/* SELECT FINAL STATES; GET FFT: x/
TS COL 1 = N COL 1

99

TS COL 2 = N COL 2
TS COL 3 = 0; DEL N
FFT = DFT(TS)

DEL TS

/* GET POWER SPECTRUM = FFT*CONJ(FFT) x*/
FFT COL 4 = (FFT COL 2)*'(FFT COL 2) + \
(FFT COL 3)*'(FFT COL 3)
DRAW FFT COL(1,4) COLOR GREEN
TOP TITLE "Power Spectrum Market Simulation" FONT 7
PSMARKT = W
VIEW PSMARKT

BLANK PSMARKT

FFT COL 5 = LN ON (FFT COL 4)

DRAW FFT COL(1,5) COLOR GREEN

TOP TITLE "LN of Market Power Spectrum " FONT 7
LNPSMARK = W

VIEW LNPSMARK

BLANK LNPSMARK

/* GET ACF FROM INVERSE FFT ON SPECTRUM: */
FFT COL 2 = FFT COL 4

DEL FFT COL(4:5)

FFT COL 3 =0

ACF=IDFT (FFT)

MAXACF=MAXV (ACF COL 2)

ACF COL 2 = (ACF COL 2)/MAXACF
LONG=FLOOR (NROWS (ACF) /2)

DRAW ACF COL (1,2) ROW(1:LONG) COLOR GREEN
AXE COL (1:2) ROW (1:2) =0

AXE COL 1 ROW 2 = 25

DRAW AXE COLOR RED

TOP TITLE "ACF for Market Simulation" FONT 7
ACFGRAPH=W

VIEW ACFGRAPH

Window COBWEB is shown in Figure B.6.
Window WEBCYCLE is shown in Figure B.7.
Window MARKET is shown in Figure B.8.
Window PSMARKT is shown in Figure B.9.
Window LNPSMARK is shown in Figure B.10.

60

Window ACFGRAPH is shown in Figure B.11.

61

Classic Cobweb

0.8
0.46 N
0.12
-0.22
-0.86 "1
_ L L L L
0.9 10 20 30 40 50
Figure B.6: Window COBWEB.
Cosine—Driven Cobweb
1.5
I A
[o
0.9 I\ || M A \ [\ A [
[|| | A [|\ I I [
AR AR AN AR AT
AR A AR AR A R
O T I O (O (R IR R
0.3 “\‘Hm\‘g\‘i\u:\;;‘\u
v S A S P A N (A (O (A P (I
| | O A L U VA A N N G K
| " | [! I [Lol
oa PR BB
VA A A
YA R YA AR A IRVA
L] L I A N N
| \ Vi | \/ \
-0.9 || | \
\“ \“‘ \ v
|/ /
1.5 H\ L L L
: 10 20 30 40 50

Figure B.7: Window WEBCYCLE.

62

Noise—Driven Cobweb

0 10 20 30 40 50
Figure B.8: Window MARKET.
Power Spectrum Market Simulation

0.03

0.02%

0.018

0.012

0.006

0 -6 —‘3.6 —‘1.2 1‘.2 3‘.6 6

Figure B.9: Window PSMARKT.

63

LN of Market Power Spectrum

-3
5.2

7.4k

-9.6

-11.8 F

g 36 2 iz 36 6

Figure B.10: Window LNPSMARK.
ACF for Market Simulation

1

0.68

0.36

o.04

-0.28

08y é 1‘0 1‘5 éo 25

Figure B.11: Window ACFGRAPH.

64

B.4 DIFFEQ.DO

The do-file DIFFEQ.DO defines and solves a linear difference equation. The solution lurches out
and lurches in according to a system matrix. The same equation is run backward by inverting the
system matrix. Start with the system matrix for an ode as in LINEAR.DO B.13 and get the system
matrix for an identical difference equation by using a Taylor series. This is a form of continuous
analytic continuation.

/* FILE: DIFFEQ.DO */
ECHODO = 3
RESET

/* THIS IS DIFFEQ.DO. IT LURCHES OUT AND LURCHES IN
ACCORDING TO A LINEAR DIFFERENCE EQUATION WITH
CONSTANT COEFFICIENTS. THE SAME EQUATION IS RUN
BACKWARD BY INVERTING THE SYSTEM MATRIX. START
WITH THE SYSTEM MATRIX FOR AN ODE AS IN LINEAR.DO
AND GET THE SYSTEM MATRIX FOR AN IDENTICAL
DIFFERENCE EQUATION BY USING A TAYLOR SERIES.

THIS IS A FORM OF CONTINUOUS ANALYTIC
CONTINUATION.*/

FCT X1'T(T) = A(1,1)*X1 + A(1,2)*X2
FCT X2'T(T) = A(2,1)*X1 + A(2,2)*X2
A(1,1) = 27/250; A(1,2) = -107/125

A(2,1) = 143/125; A(2,2) = 24/125
ASTAR = SHAPE(2,2,LIST(1,0,0,1))

IDENT = ASTAR

B = ASTAR; EVE
TYPE B;

PAUSE

1;

DELT = 1.; TOL = 1.E-11
S1= "B=(DELT/EYE)*A%B; ASTAR = ASTAR+B"
S2 = "TEST = MNORM(B,0)/MNORM(ASTAR,0)"
FOR I = 1:25 DO { \

DO S1; DO S2;

IF TEST<TOL THEN BREAK \

ELSE EYE=EYE+1 }
TYPE EYE, TEST, ASTAR;
PAUSE

65

A = ASTAR

INITIAL X1(0) = 0.8

INITIAL X2(0) -0.6

STIR = "N=ITERATE(X1 'T,X2 'T,51)"
DO STIR

ORIGIN="DRAW (0& '0O) LT NONE PT CROSSPT COLOR RED"
DO ORIGIN

DRAW N COL(2,3) COLOR BROWN

TOP TITLE "Lurch Outward" FONT 34
OUTBOUND = W

VIEW OUTBOUND

BLANK OUTBOUND

/* EIGENVALUES OF THE SYSTEM MATRIX: */
LBL="Eigenvalues of the system matrix:"
EI="EA=EIGEN(A); TYPE LBL; TYPE EA COL (1:2) ROW(1,2)"
EIER="TYPE LNL; FOR I=1:2 DO { TYPE MNORM(EA ROW (1:2) COL I) }"
LNL="ABSOLUTE VALUES ARE:"

DO EI; DO EIER;

A = INV(ASTAR);

DO STIR

DO ORIGIN

DRAW N COL(2,3) COLOR GREEN

TOP TITLE "Lurch Inward" FONT 34

INBOUND = W

VIEW INBOUND

DO EI

DO EIER
PAUSE

Window OUTBOUND is shown in Figure B.12.
Window INBOUND is shown in Figure B.13.

66

1200

560

-80

-720

-1360

-2000

Lurch Outward

-1

Il Il
300 -840 -380 80 540

1000

Figure B.12: Window OUTBOUND.

-0.04

-0.36

-0.68

Lurch Inward

I I
.6 -0.32 -0.04 0.24% 0.52

Figure B.13: Window INBOUND.

67

B.5 DIRKB.DO

The do-file DIRKB.DO defines a two-body orbit model using Hamilton’s equations. DIRKB.DO is
dedicated to the astronomer Dirk Brouwer who advocated Hamiltonian formalisms for celestial
mechanics.

/* FILE: DIRKB.DO */
ECHODO = 3
RESET

/* TWO-BODY ORBIT MODEL USING HAMILTON’S EQUATIONS
FILE DIRKB.DO IS DEDICATED TO THE ASTRONOMER
DIRK BROUWER, WHO ADVOCATED HAMILTONIAN
FORMALISMS FOR CELESTIAL MECHANICS.x/

FCT RSQX(X,Y,Z) = X"2 + Y"2 + Z°2

FCT RSQ(XDOT,YDOT,ZDOT) = XDOT"2 + YDOT"2 +ZDOT"2

FCT R(X,Y,Z) = SQRT(RSQX(X,Y,Z))

FCT H(X,Y,Z,XDOT,YDOT,ZDOT) = \
RSQ(XDOT, YDOT, ZDOT) /2-1/R(X,Y,Z)

FCT XDOT'T(T) = -H'X(X,Y,Z,XDOT,YDOT,ZDOT)

FCT YDOT'T(T) = -H'Y(X,Y,Z,XDOT,YDOT,ZDOT)

FCT ZDOT'T(T) = -H'Z(X,Y,Z,XDOT,YDOT,ZDOT)

FCT X'T(T) = H'XDOT(X,Y,Z,XDOT,YDOT,ZDOT)

FCT Y'T(T) = H'YDOT(X,Y,Z,XDOT,YDOT,ZDOT)

FCT Z'T(T) = H'ZDOT(X,Y,Z,XDOT,YDOT,ZDOT)

/* THESE ARE HAMILTON’S CANONICAL EQUATIONS OF MOTION.*/

PAUSE

S = "M = INTEGRATE(X,Y,Z,XDOT,YDOT,ZDOT,TO: TMAX!NSTEP)"
INIT X(TO) X0

INIT Y(TO) YO

INIT Z(TO) Z0

INIT XDOT(TO)
INIT YDOT(TO) YDOTO

INIT ZDOT(TO) ZDOTO

X0=0.75; Y0=0; Z0=0; TO = 0

XDOTO0=0; RDOTO0=1.290994448735806

EYE = 30.0; YDOTO = RDOTO*SIND(EYE);

ZDOTO = RDOTO*COSD(EYE)

TMAX=10; NSTEP=300

DO S

TOP TITLE "Keplerian Motion" FONT 21, AT (0, 0.90)

XDOTO

68

ORBIT="DRAW M COL(2,4) COLOR GREEN"

SUN="DRAW (0& '0O) LT NONE PT STAR COLOR ORANGE"
DO ORBIT; DO SUN;

KEPLER = W;

VIEW KEPLER;

Window KEPLER is shown in Figure B.14.

69

Weplerian Motion

I I I
-1.3 -0.88 -0.46 -0.04 0.

38

Figure B.14: Window KEPLER.

70

B.6 FILTER.DO

The do-file FILTER.DO defines a stable, linear ode with 3 distinct inputs. After the initial impulse
dampens out, the solution with a cosine input becomes a sinusoidal output of different magnitude
and shifted in phase. Linear odes act like filters, so they can provide interpretations of noisy and
complex systems.

The model here is S.K. Jordan’s 224 order Markov system,

d2
@U = f(t)

with f = 0, cos, and noise.

/* FILE: FILTER.DO */
ECHODO = 3
RESET

/* THIS IS FILTER.DO IT IS A STABLE, LINEAR ODE WITH 3
DISTINCT INPUTS. AFTER THE INITIAL IMPULSE DAMPENS
0UT, THE SOLUTION WITH A COSINE INPUT BECOMES A
SINUSOIDAL OUTPUT OF DIFFERENT MAGNITUDE AND SHIFTED
IN PHASE. LINEAR ODES ACT LIKE FILTERS, SO THEY CAN
PROVIDE INTERPRETATIONS OF NOISY AND COMPLEX SYSTEMS.
THE MODEL HERE IS S. K. JORDAN’S 2ND-ORDER MARKOV
SYSTEM: [(D/DT-B)~2]U = F(T),

WITH F = 0, COS, AND NOISE. */

/* REFORMULATE ODE AS 1ST-ORDER: */

FCT Y'T(T) = A11xY + A12xU + F(T)
FCT U'T(T) = Y

/* WE MUST HAVE B < 0.%*/
B=-0.3

A11 = 2%B; A12 = -Bx*B

FCT F1(T) = 0.72xCOS(AxT); A = 1.27
INITIAL U(O) = 0.8

INITIAL Y(0) = -0.6

SPIN = "N=INTEGRATE(U,Y,0:50!NSTEPS)"

/* CHOOSE NSTEPS = 2°N, N AN INTEGER, FOR FFTS.*/

NSTEPS = 512
FCT F(T) = 0; DO SPIN

71

TOP TITLE "Dampen Out" FONT 7

DRAW N COL(1,2) COLOR ORANGE LT DASHED
DRAW N COL(1,4) COLOR RED LT LDASH
DAMPEN=W

VIEW DAMPEN

BLANK DAMPEN

FCT F(T) = F1(T)

DO SPIN

N COL 6 = F ON (N COL 1)

DRAW N COL(1,2) COLOR ORANGE

DRAW N COL(1,6) COLOR GREEN LT LDASH
TOP TITLE "Dampen to a Cosine" FONT 7
FILTER = W

VIEW FILTER

BLANK FILTER
START=NORMRAN (EXP (1))

FCT F2(ARG)=NORMRAN(0)

M COL 1 =N COL 1

FCT F(T) = LOOKUP(M,T)

M COL 2 = F2 ON (M COL 1)

DO SPIN

TOP TITLE "2nd-Order Continuous Markov Process" FONT 7
DRAW N COL (1,2) COLOR ORANGE
STANLEY = W

VIEW STANLEY

BLANK STANLEY

AAA ROW 1 COL 1 = Al1
AAA ROW 1 COL 2 = A12
AAA ROW 2 COL 1 =
AAA ROW 2 COL 2 =
EA = EIGEN(AAA)

L
[N

/* HERE ARE THE EIGENVALUES FOR THE FILTER: */
TYPE EA COL 1 ROW(1,2)

TYPE EA COL 2 ROW(1,2)

DEL AAA

/* SELECT FINAL STATES; GET FFT: x/
TS COL 1 = N COL 1

72

TS COL 2 = N COL 2
TS COL 3 = 0; DEL N
FFT = DFT(TS); DEL TS

/* GET POWER SPECTRUM = FFT*CONJ(FFT) */

FFT COL 4 = (FFT COL 2)*'(FFT COL 2) + \
(FFT COL 3)*'(FFT COL 3)

DRAW FFT COL(1,4) COLOR GREEN

TOP TITLE "Power Spectrum Markov II" FONT 7

PSM2 = W

VIEW PSM2

BLANK PSM2

FFT COL 5 = LN ON (FFT COL 4)

DRAW FFT COL(1,5) COLOR GREEN

TOP TITLE "LN of Power Spectrum Markov II" FONT 7
LNPS2 = W

VIEW LNPS2

BLANK LNPS2

/* GET ACF FROM INVERSE FFT ON SPECTRUM: */
FFT COL 2 = FFT COL 4

DEL FFT COL(4:5)

FFT COL 3 =0

ACF=IDFT (FFT)

ACFMAX = MAXV(ACF COL 2)

ACF COL 2 = (ACF COL 2)/ACFMAX
LONG=FLOOR (NROWS (ACF) /2)

DRAW ACF COL (1,2) ROW(1:LONG) COLOR GREEN
AXE COL (1:2) ROW (1:2) =0

AXE COL 1 ROW 2 = 25

DRAW AXE COLOR RED

TOP TITLE "ACF FOR Markov II" FONT 7
ACFMARK2=W

VIEW ACFMARK2

Window DAMPEN is shown in Figure B.15.
Window FILTER is shown in Figure B.16.
Window STANLEY is shown in Figure B.17.
Window PSM2 is shown in Figure B.18.
Window LNPS2 is shown in Figure B.19.
Window ACFMARK2 is shown in Figure B.20.

73

74

-0.04

-0.32

-0.6

Dampen Out

50

Figure B.15: Window DAMPEN.

-0.16

-0.48

Dampen to a Cosine

10 20 30 40

50

Figure B.16: Window FILTER.

75

2nd—0Order Continuous Markov Process

1.5

-0.06

-0.58

0 10 20 30 40 50

Figure B.17: Window STANLEY.

Power Spectrum Markov II

Figure B.18: Window PSM2.

76

LN of Power Spectrum Markov II

-1
Ly L

-7 [

-10

13 F

e g 36 2 iz 36 6

Figure B.19: Window LNPS2.
ACF FOR Markov II

1

0.72

o.44 F

0.16

-0.12

0ty é 1‘0 1‘5 éo 25

Figure B.20: Window ACFMARK?2.

7

B.7 FITCYCLE.DO

The do-file FITCYCLE.DO demonstrates how random noise inputs affect the classic Volterra predator-
prey equations.

/* FILE: FITCYCLE.DO */
ECHODO = 3
RESET

/* PREDATOR(Y)-PREY(X) MODEL

THIS DEMO ILLUSTRATES HOW RANDOM NOISE INPUTS
AFFECT THE CLASSIC VOLTERRA PREDATOR-PREY
EQUATIONS. WHY ARE THE X AND Y FACTORS USED
IN THE MODIFED ODES?

(HINT: THINK LOGARITHMS.) x*/

R1 = "M COL 1 = TO:TF!NSTEPS"

R2 = "START = RAN(1001,-1,1)"

R3 = "M COL 2 = BOXCAR ON (M COL 1)"

R4 = "MM COL 1 = M COL 1"

R5 = "MM COL 2 = BOXCAR ON (MM COL 1)"
FCT BOXCAR(W) = RAN(0,-1,1)
S="SVECTR=INTEGRATE(X,Y,TO:TF!NSTEPS)"
FCT Y'T(T) = K*X*Y - C*Y + Y*LOOKUP(M,T)
FCT X'T(T) = A*X - B*XxY + X*LOOKUP (MM, T)
TO=0; TF = 8; NSTEPS = 576

INIT X(0)=X0; INIT Y(0)=Y0; YO=1; X0=.8
K=1;C=1;A=1;B=1

/* STORE THE RANDOM NUMBER MATRICES. x/
DO R1; DO R2; DO R3; DO R4; DO Rb5

/* INTEGERATE THESE COUPLED, NONLINEAR,
NOISE-DRIVEN ODES.x*/

DO S

FCT CAPK(X,Y)=B*X-A*LN(B*X/A)+K*Y-C*LN(K*Y/C)

/* PLOT A TIME SERIES GRAPH OF BOTH
VARIABLES:...*/

TOP TITLE "Predator-Prey with Noise" FONT 11

DRAW SVECTR COL (1,2) COLOR RED

DRAW SVECTR COL (1,4) COLOR GREEN

78

PPNZ1 = W
VIEW PPNZ1

BLANK PPNZ1

/* EVALUATE THE INTEGRAL ON THE NUMERICAL
SOLUTION:...x*/

SVXY COL 1 SVECTR COL 2

SVXY COL 2 SVECTR COL 4

KAPP = CAPK ON SVXY

SVXY COL 2 = KAPP

SVXY COL 1 = SVECTR COL 1

REFF(1,1)=T0; REFF(2,1)=TF

REFF(1,2)=CAPK(X0,Y0); REFF(2,2)=REFF(1,2)

DEL KAPP

/* FIDGET WITH THE GRAPH:... */

DRAW SVXY COL(1,2) COLOR BROWN

DRAW REFF LT DOTTED COLOR RED

YAXIS FORMAT(-3,7,0,0,4,0) OFFSET(-0.15,-0.01) IN W
TOP TITLE "Volterra Integral Fluctuation" FONT 11
PPNZ2 = W

VIEW PPNZ2

BLANK PPNZ2

/* PLOT THE PHASE PLANE DIAGRAM ...

WHICH SHOULD BE A CONTOUR OF THE INTEGRAL:... */
DRAW SVECTR COL (2,4) COLOR BROWN

TOP TITLE "Phase Plane with Noise" FONT 11

PPNZ3 = W

VIEW PPNZ3

BLANK PPNZ3

/* REDEFINE ODES FOR NOISE-FREE MODEL: */
FCT Y'T(T)=K*XxY-CxY

FCT X'T(T)=A*X-B*Xx*Y

/% SELECT DATA FROM NOISE-DRIVEN SIMULATION.x/
NZ1 = SVECTR COL(1:2) ROW (7:NSTEPS:20)

NZ2 = SVECTR COL(1,4) ROW (7:NSTEPS:20)
CONSTRAINTS BIOLOGY= {X0>0,Y0>0,A>0,C>0,K>0,B>0 }

FIT(X0,Y0,A,B,C,K), X TO NZ1, Y TO Nz2, \
CONSTRAINTS BIOLOGY

79

SVECTR = POINTS(X,Y,TO:TF!NSTEPS)

TOP TITLE "Fit to Noise-Driven System" FONT 11
DRAW SVECTR COL 2:3 COLOR BROWN

DRAW (NZ1 COL 2)& '(NZ2 COL 2) LT NONE \

PT CIRCLE COLOR GREEN

PPNZ4 = W

VIEW PPNZ4

Window PPNZ1 is shown in Figure B.21.
Window PPNZ2 is shown in Figure B.22.
Window PPNZ3 is shown in Figure B.23.
Window PPNZ4 is shown in Figure B.24.

80

Predator—Prey with Noise
1.7
1.46 /s“
,/" K\\
f \
[\
. / \
1.22 / \
! \
J \
/ \
0.98 | \
I \
o \
X \
N \
0.74% \
\
‘ ‘ ‘ ‘\/J) N
0.5 0 1.6 3.2 4.8 6.4

Figure B.21: Window PPNZ1

Volterra Integral Fluctuation
2.2
2.162
2.124
2.086
2.048 “
o

Figure B.22: Window PPNZ2..

81

Phase Plane with Noise

1-6 / ™~
—~ o =
/ N\
1.38 ¥ \
f L
{ N
1.16) \
N
!
0.9% [\
\]
/“ T
0.72 " —a_ o
L s
0.5 Il Il Il
5 0.74% 0.98 1.22 1.46
Figure B.23: Window PPNZ3.
Fit to Noise—Driven System
1.6 —
L | / N
/ \
1.16
0.94
0.72 '
0.5 1 1 1 1

Figure B.24: Window PPNZ4.

82

B.8 HUBBERT.DO

The do-file HUBBERT.DO creates a model of the depletion of a nonrenewable resource and then fits
the continuous logistic curve to it. This is the exceptional model where a differential equation can
be solved in closed form. Even though this is one of the most trivial of solvable systems, it has
proven adequate for its task. The late M. King Hubbert used it with a bit of insight to forecast
the decline of U.S. domestic oil production in the mid-1970s. This program provides a simplified
simulation of that history.

/* FILE: HUBBERT.DO */
ECHODO = 3
RESET

/* HUBBERT.DO CREATES A MODEL OF THE DEPLETION

OF A NONRENEWABLE RESOURCE AND THEN FITS THE
CONTINUOUS LOGISTIC CURVE TO IT.

THIS IS THE EXCEPTIONAL MODEL WHERE A

DIFFERENTIAL EQUATION CAN BE SOLVED IN CLOSED FORM.
EVEN THOUGH THIS IS ONE OF THE MOST TRIVIAL OF SOLVABLE
SYSTEMS, IT HAS PROVEN ADEQUATE FOR ITS TASK. THE LATE
M. KING HUBBERT USED IT WITH A BIT OF INSIGHT TO
FORECAST THE DECLINE OF U.S. DOMESTIC OIL PRODUCTION
IN THE MID 1970S. THIS PROGRAM PROVIDES A SIMPLIFIED
SIMULATION OF THAT HISTORY.x*/

/* FIRST CREATE A MODEL OF THE OIL: */
PEAK = 1952; VARP = 32°2; RRATE = 1./10.
WELL COL 1 ROW 1 = NORMRAN(1013,PEAK,VARP)
NWELLS=50

/* DATE WELL OPENS: %/
FOR I=1:NWELLS DO { WELL ROW I COL 1

NORMRAN (0,PEAK,VARP) }

/* TOTAL RECOVERABLE CONTENTS: */
WELL COL 2 ROW 1 = RAN(1009,25,100)
FOR I=1:NWELLS DO { WELL ROW I COL 2
ALLOFIT=ROWSUM(WELL COL 2)

TYPE ALLOFIT

RAN(0,25,100); }

/* EXPONENTIAL DRAINING: =/
FCT EXXON(TAU,QUANT,TEE)=QUANT* (1.0-EXP [RRATE*(TAU-TEE)])
FCT PUMP(TAU,QUANT,TEE)=IF TEE>TAU THEN EXXON(TAU,QUANT,TEE) \

83

ELSE O

TYME ="WELL ROW (1:NWELLS) COL 3 = DATE"

BURN ="USED ROW(1:NWELLS) = PUMP ON WELL"
COUNT="GONE=ROWSUM (USED) "

GRR = "GRAF COL 1 ROW K = DATE; GRAF COL 2 ROW K = GONE"
REPORT="DO TYME; DO BURN; DO COUNT; DO GRR"

FOR K=1:10 DO { DATE = 1860+20%*K; DO REPORT; }

GRAF COL 2 = 100.*(GRAF COL 2)/ALLOFIT(1)

DRAW GRAF COL(1,2) LT NONE PT CIRCLE COLOR BROWN

DRAW GRAF COL(1,2) COLOR GREEN

/* REVIEW THE SIMULATION:...*/
TOP TITLE "Total MKING1=W
VIEW MKING1

BLANK MKING1

/* DEFINE THE CONTINUQOUS LOGISTIC:...x*/

FCT DENO(A,C,X0,T,T0)=1.+(C/X0-1.)*EXP[-A*(T-T0)]
FCT LOGISTIC(A,C,X0,T,T0)=C/DENO(A,C,X0,T,TO)
C=100; T0=1890; X0=5; A= 0.042

/* DEFINE THE MODEL FOR THE FIT STATEMENT:...x*/

CONSTRAINTS GEOLOGY = (C<500, C>20,A>0)

FCT LGFIT(T) = LOGISTIC(A,C,X0,T,TO)

FLOG="FIT (A,C,X0), LGFIT TO (GRAF ROW(1:J)) CONSTRAINTS GEOLOGY"
DPCT="DRAW GRAF COL(1,2) ROW(1:J) LT NONE PT CIRCLE COLOR BROWN"
A4CAST COL 1 = GRAF COL 1

FCST="A4CAST COL 2 = LGFIT ON (A4CAST cOL 1)"

DPCT2="DRAW A4CAST COL (1,2) COLOR RED"

TOP TITLE "0il Use Forecast 1" FONT 8

J=3; DO FLOG; DO DPCT; DO FCST; DO DPCT2;

MKING2 = W

VIEW MKING2

BLANK MKING2

J=4; DO FLOG; DO DPCT; DO FCST; DO DPCT2
TOP TITLE "0il Use Forecast 2" FONT 8
MKING3 = W

VIEW MKING3

BLANK MKING3
J=5; DO FLOG; DO DPCT; DO FCST; DO DPCT2

84

TOP TITLE "0il Use Forecast 3" FONT 8
MKING4 = W
VIEW MKING4

BLANK MKING4

J=10; DO FLOG; DO DPCT; DO FCST; DO DPCT2

TOP TITLE "0il Use History" FONT 8
MKINGS = W
VIEW MKINGS5

Window MKING1 is shown in Figure B.25.
Window MKING2 is shown in Figure B.26.
Window MKING3 is shown in Figure B.27.
Window MKING4 is shown in Figure B.28.
Window MKING5 is shown in Figure B.29.

85

Total % USA Qil Consumed

100 -
o
80 r
%)
60 r 2!
40 r &
20 r %)
o
L L L L
0 1870 1908 1946 1984 2022 2060
Figure B.25: Window MKING1.
Oil Use Forecast 1
70
-
56.2 S
42,4
28.6
14.8)
P
cd
L L L L
1 1870 1908 1946 1984 2022 2060

Figure B.26: Window MKING2.

86

400

320

240

160

80

Oil Use Forecast 2

Il Il
1946 1984 2022

2060

Figure B.27: Window MKING3.

160

128

96

64

32

Oil Use Forecast 3

I I I
1870 1908 1946 1984 2022

2060

Figure B.28: Window MKING4.

87

105

84

63

42

21

Oil Use History

1870

I
1908

I
1946

I
1984

I
2022

2060

Figure B.29: Window MKINGS5.

88

B.9 KUGEL.DO

The do-file KUGEL.DO creates a graph of the Legendre polyomials of degrees 0, 1, 2, 3, 4, 5, 6, and
7.

/* FILE: KUGEL.DO =/
ECHODO = 3
RESET

/* THIS KUGEL.DO FILE CREATES A GRAPH OF LEGENDRE
POLYNOMIALS OF DEGREES O - 7 WITH GERMAN LABELS.
CF. LEGENDRE.DO. */

/* SELECT A GERMAN TITLE IN GERMAN GOTHIC.x*/
TOP TITLE "Die Kugelfunktionen Ordnung O - 7" FONT 22
TOP TITLE AT (0, 0.97)

/* DEFINE THE LIMITS OF THE WINDOW WHICH WILL HOLD
THE GRAPH:x*/
WINDOW 0. TO 90., -1. TO 1.1

/* CREATE THE ARGUMENTS LIST FOR THE LEGENDRE
POLYNOMIALS */

NSTEPS = 301

LEGFC COL 1 = (0:90!NSTEPS)

ARGGS COL 1 = COSD ON (LEGFC COL 1)

/* GENERATE LEGENDRE POLYNOMIALS DEGREES 0-7 IN
MATRIX LLX USING THE COSINE AS ARGUMENT. */
FOR I = 0:7 DO { \

ARGGS COL 2 = I;

LEGFC COL(I+2) = LEG ON ARGGS

}

/* GRAPH THE LEGENDRE POLYNOMIALS IN DISTINCT COLORS:*/
DRAW LEGFC COL(1,2) COLOR GREEN

DRAW LEGFC COL(1,3) COLOR BROWN

DRAW LEGFC COL(1,4) COLOR RED

DRAW LEGFC COL(1,5) COLOR ORANGE

DRAW LEGFC COL(1,6) COLOR VIOLET

DRAW LEGFC COL(1,7) COLOR AQUA

DRAW LEGFC COL(1,8) COLOR ROSE

89

DRAW LEGFC COL(1,9) COLOR TURQUOISE
/* CF. JAHNKE & EMDE, TABLES OF FUNCTIONS (DOVER),
P. 121.%/

KUGEL=W
VIEW KUGEL

Window KUGEL is shown in Figure B.30.

90

-0.16

-0.58

Die Kugelfunftionen Ordbnung 0 — 7

18 36 54 72

90

Figure B.30: Window KUGEL.

91

B.10 LALGEBRA.DO

The do-file LALGEBRA . DO illustrates a few properties of matrices that are important in dynamics.
The eigenvalues of a square matrix of random numbers will usually imply instability, where it is
the so-called system matrix of an ode or difference equation. This is useful for nonlinear systems,
as well as linear ones; the demonstration is repeated for one such in LORENZ.DO B.14.

/* FILE: LALGEBRA.DO */
ECHODO = 3
RESET

PRAYER = "THESE NUMBERS SHOULD BE EQUAL!"
PRAYER2="THESE NUMBERS SHOULD BE SMALL IN MAGNITUDE!"

/* LALGEBRA.DO ILLUSTRATES A FEW PROPERTIES OF MATRICES
THAT ARE IMPORTANT IN DYNAMICS. THE EIGENVALUES OF

A SQUARE MATRIX OF RANDOM NUMBERS WILL USUALLY IMPLY
INSTABILITY, WHERE IT IS THE SO-CALLED SYSTEM MATRIX
OF AN ODE OR DIFFERENCE EQUATION. THIS IS USEFUL FOR
NONLINEAR SYSTEMS, AS WELL AS LINEAR ONES; THE
DEMONSTRATION IS REPEATED FOR ONE SUCH IN LORENZ.DO.*/

START=NORMRAN (SIN(1))
FCT RUN(X) = NORMRAN(O)
EIS = 7; KALT = EIS"2
A COL 1 = 1:KALT

TYPE " THIS VECTOR HAS LENGTH:"

NROWS (A)

A = RUN ON A

RMS = MNORM(A)/EIS;

MVL = ROWSUM(A) /KALT;

MEANVAL=MVL(1,1)

TYPE " THE MEAN & SIGMA SHOULD BE O & 1, BUT ARE:"
TYPE MEANVAL, RMS

/% REFORM INTO A SQUARE MATRIX:*/
A=SHAPE (EIS,EIS,A)

/% WITH DETERMINANT: */

DETA = DET(A); TYPE DETA;

PAUSE

92

/* NOW TEST THE INVERSE OF THE MATRIX:*/
AINV=A"-1

EYE=A*xAINV

TYPE PRAYER; TYPE EIS; TYPE TRACE(EYE);
PAUSE

FOR I = 1:EIS DO { EYE(I,I) = EYE(I,I)-1; }
TYPE PRAYER2; MAXV(EYE); MINV(EYE);
PAUSE

/* GET THE EIGENVALUES AND PLOT IN THE COMPLEX
PLANE: */

EAGER=EIGEN(A); EASY = EAGER'

TOP TITLE "Eigenvalues of a Matrix" FONT 20
DRAW EASY COL(1,2) LT NONE PT CIRCLE COLOR BROWN
IMAGE .24 TO .9, .15 TO .87 COLOR BLACK

DEL EASY COL(3:NCOLS(EASY))

SIDE1 = MAXV(EASY); SIDE2 = MINV(EASY)
EXTENT = MAX[ABS(SIDE1),ABS(SIDE2)]

DARK ROW (1:2) COL 1 = -EXTENT

DARK ROW (3:4) COL 1 = EXTENT

DARK ROW (1:3:2) COL 2 = EXTENT

DARK ROW (2:4:2) COL 2 = -EXTENT

DRAW DARK LT NONE PT DOTPT COLOR RED

THETA COL 1=0:(2%PI)!501

VROOM COL 1 = COS ON THETA

VROOM COL 2 = SIN ON THETA

DRAW VROOM LT DOTTED COLOR ORANGE

WAX COL 1 ROW(1:2)=0

WAX COL 2 =-EXTENT:EXTENT!2

DRAW WAX LT DASHED COLOR GREEN

LALG = W

VIEW LALG

BLANK LALG

/* SET UP A SINGULAR MATRIX:*/

ARNE = A; ARNE ROW(EIS)=0

BJ=ARNE"-1

ARNEBJ=BJ*ARNE

RTRIP=ARNE*ARNEBJ

LOSS=RTRIP-ARNE

TYPE PRAYER2, MAXV(LOSS), MINV(LOSS), DET(ARNE)

93

PAUSE

ZIGGY=EIGEN (ARNE)

SIGGY=ZIGGY'

TOP TITLE "Eigenvalues of Matrices" FONT 20

BOTTOM TITLE "... Singular & Nonsingular" FONT 20
DRAW SIGGY COL(1:2) LT NONE PT SQUARE COLOR AQUA
SAME = W

VIEW SAME

Window LALG is shown in Figure B.31.
Window SAME is shown in Figure B.32.

94

2.1 .
1.26
o.42 ‘\J
0.4z O
“1.26 \J
2.1 720.1 —‘1.26 —‘0.42 0‘42 1‘.26

Figure B.31: Window W.
Bigomvalucs. of Malrices

2.1

1.26

0.42

-0.42

-1.26

2l 22 56 0.9 o.28 0.36

. Somgadar & Nomsingudar

Figure B.32: Window SAME.

95

B.11 LEGENDRE.DO

The do-file LEGENDRE.DO creates a graph of Legendre polynomials of degrees 0,1,2,3,4,5, and 6.

/* FILE: LEGENDRE.DO */
ECHODO = 3
RESET

/* THIS LEGENDRE.DO FILE CREATES A GRAPH OF LEGENDRE
POLYNOMIALS DEGREES 0 - 6.*/

/* SELECT A TITLE IN OLD ENGLISH: */
TOP TITLE "Legendre Polynomials Degrees O - 6" FONT 21
TOP TITLE AT (0, 0.97)

/* DEFINE THE LIMITS OF THE WINDOW WHICH WILL HOLD THE
GRAPH: */
WINDOW -1. TO 1., -1. TO 1.1

/* CREATE THE ARGUMENTS LIST FOR THE LEGENDRE
POLYNOMIALS */

NSTEPS = 301

LEGFC COL 1 = (-1:1!NSTEPS); LLX COL 1 = LEGFC COL 1

/* GENERATE LEGENDRE POLYNOMIALS DEGREES 0-6 IN
MATRIX LLX */

FOR I = 0:6 DO { \

LEGFC COL 2 = I;

LLX COL(I+2) = LEG ON LEGFC

}

/* GRAPH THE LEGENDRE POLYNOMIALS IN DISTINCT COLORS: */
DRAW LLX COL(1,2) COLOR GREEN

DRAW LLX COL(1,3) COLOR BROWN

DRAW LLX COL(1,4) COLOR RED

DRAW LLX COL(1,5) COLOR ORANGE

DRAW LLX COL(1,6) COLOR VIOLET

DRAW LLX COL(1,7) COLOR AQUA

DRAW LLX COL(1,8) COLOR ROSE

LEGGS=W
VIEW LEGGS

96

Window LEGGS is shown in Figure B.33.

97

WMegendre Polynomials Begrees 0 — 6

.68 il
|

0.26 |

-0.16

-0.58

Figure B.33: Window LEGGS.

98

B.12 LIAPUNOV.DO

The do-file LTAPUNOV.DO investigates the famous Lorenz system by looking at a linearization at
the equilibrium points. It can be said truly that if you have a dynamical model and do not know
where its equilibrium points are, you do not know what you are doing. But this often is the case
in much that is presented and published. In the case of Lorenz, it is easy to find where %%}, %%%,

and 923 all are 0, but in general, this will be difficult.

/* FILE: LIAPUNOV.DQ */
ECHODO = 3
RESET

/* LIAPUNOV.DO INVESTIGATES THE FAMOUS LORENZ SYSTEM
BY LOOKING AT A LINEARIZATION AT THE EQUILIBRIUM
POINTS. IT CAN BE SAID TRULY THAT IF YOU HAVE A
DYNAMICAL MODEL AND DO NOT KNOW WHERE ITS EQUILIBRIUM
POINTS ARE, YOU DO NOT KNOW WHAT YOU ARE DOING. BUT
THIS OFTEN IS THE CASE IN MUCH THAT IS PRESENTED
AND PUBLISHED. IN THE CASE OF LORENZ, IT IS EASY TO
FIND WHERE X1'T, X2'T, AND X3'T
ALL ARE 0, BUT IN GENERAL THIS WILL BE DIFFICULT. */

/* THESE NONLINEAR ODES RESULT FROM THE SIMPLIFICATION
OF A PDE.x*/

FCT F1(X1,X2,X3) = A*(-X1+X2)

FCT F2(X1,X2,X3) = (B-X3)*X1 - X2

FCT F3(X1,X2,X3) = -C*X3 + X1%X2

"FCT X1'T(T) = F1(X1,X2,X3)"
"FCT X2'T(T) = F2(X1,X2,X3)"
"FCT X3'T(T) = F3(X1,X2,X3)"

/* THE CLASSIC PARAMETER SET IS: */
A=10; B = 28; C=8./3.

/* FORMULAS FOR COMPONENTS OF THE JACOBIAN
MATRIX. THESE MAY BE APPLIED FOR ANY GIVEN
F1, F2, F3.x*/

FCT F11(X1,X2,X3)

FCT F12(X1,X2,X3)

FCT F13(X1,X2,X3)

FCT F21(X1,X2,X3)

FCT F22(X1,X2,X3)

F1'X1(X1,X2,X3)
F1'X2(X1,X2,X3)
F1'X3(X1,X2,X3)
F2'X1(X1,X2,X3)
F2'X2(X1,X2,X3)

99

FCT F23(X1,X2,X3)
FCT F31(X1,X2,X3) = F3'X1(X1,X2,X3)
FCT F32(X1,X2,X3) = F3'X2(X1,X2,X3)
FCT F33(X1,X2,X3) = F3'X3(X1,X2,X3)

F2'X3(X1,X2,X3)

/* TO FILL THE MATRIX:*/
S11 = "JACOBI(1,1) F11(X1,X2,X3)"
S12 = "JACOBI(1,2) = F12(X1,X2,X3)"
S13 = "JACOBI(1,3) = F13(X1,X2,X3)"
521 = "JACOBI(2,1) = F21(X1,X2,X3)"
S22 = "JACOBI(2,2) = F22(X1,X2,X3)"
S23 = "JACOBI(2,3) = F23(X1,X2,X3)"
S31 = "JACOBI(3,1) = F31(X1,X2,X3)"
S32 = "JACOBI(3,2) = F32(X1,X2,X3)"
533 = "JACOBI(3,3) = F33(X1,X2,X3)"
S1 = "DO S11; DO S12; DO S13"

S2 = "DO S21; DO S22; DO S23"

S3 = "DO S31; DO S32; DO S33"

S = "DO S81; DO S2; DO S3"

/* FROM X1'T=0 WE GET X1=X2, SO THE EQ. PTS.
ARE EASY TO FIND AS: */

ROOTS COL 1 ROW(1:3) =0

BB1 = B-1

CBB1 = CxBB1

KAY = IF CBB1>=0 THEN 3 ELSE 1

/*. . WHY?...x/

RTCB = SQRT[ABS(CBB1)]

ROOTS COL 2 ROW(1:2) = RTCB
ROOTS COL 3 ROW(1:2) -RTCB
ROOTS COL(2:3) ROW 3 = BB1

/* THIS PART IS PROBLEM-DEPENDENT; FINDING THE
EQ. PTS. IN SOME CASES MAY REQUIRE CONSIDERABLE
EFFORT WITH FORMAL ANALYSIS AND MLAB COMPUTING.*/
LPV1="EG=EIGEN(JACOBI); EG=EG'; DEL EG COL(3:NCOLS(EG))"
PA = "SIDE1 = MAXV(EG); SIDE2 = MINV(EG)"
PB = "EXTENT = MAX[ABS(SIDE1),ABS(SIDE2)]"
PC = "DARK ROW (1:2) COL 1 = -EXTENT"
PD = "DARK ROW (3:4) COL 1 = EXTENT"
PE "DARK ROW (1:3:2) COL 2 = EXTENT"

100

PF "DARK ROW (2:4:2) COL 2 = -EXTENT"

PG "DRAW DARK LT NONE PT DOTPT COLOR RED"

PH = "WAX COL 1 ROW(1:2) = 0; WAX COL 2 = -EXTENT:EXTENT!2"
PJ = "DRAW WAX LT DASHED COLOR GREEN"

PZ = "DO PA;DO PB;DO PC;DO PD;D0O PE;DO PF;DO PG;DO PH;DO PJ"
LPV2 = "DO PZ;"

LIAEX = "L|PYNOV EXPONENTS"

TT = "TOP TITLE LIAEX FONT 24"

DRX = "DRAW EG COL(1,2) LT NONE PT CIRCLE COLOR BROWN"

LPV3 = "DO TT; DO DRX; VIEW W"

LPV4 = "LXSAVE = LXSAVE & 'EG"

LPV = "DO LPV1; DO LPV2; DO LPV3; DO LPV4"

LOAD = "X1 = ROOTS(1,J); X2 = ROOTS(2,J); X3 = ROOTS(3,J)"

GRAF1 = "W"; GRAF2= "=W"; G1="I"
AUGMNT = "GRAF1=GRAF1+G1"
GRAFOUT ="DO AUGMNT; GRAFX = GRAF1+GRAF2; DO GRAFX"

LXSAVE COL(1:2) ROW(1:3) =0
FOR J=1:KAY DO { DO LOAD; DO S; DO LPV; DO GRAFOUT; }

TYPE" HERE ARE THE NUMBERS [IN LXSAVE COL(3:2%K+2):"
TYPE LXSAVE COL [3:(2xKAY+2)];
TYPE WINDOWS

Window WI is shown in Figure B.34.
Window WII is shown in Figure B.35.
Window WIIT is shown in Figure B.36.

101

25

15

-15

-25

JIallYHOB EXIIOHEHTC

-25

-15 -5 5 15

25

Figure B.34: Window WI.

15

-15

JIallYHOB EXIIOHEHTC

-15

15

Figure B.35: Window WII.

102

15

-15

JIallYHOB EXIIOHEHTC

-15 -9 -3 3

15

Figure B.36: Window WIII.

103

B.13 LINEAR.DO

The do-file LINEAR.DO finds a solution of a linear system of odes which spirals out and spirals in
according to the defining constant coefficients. The same equation is integrated, but modified so
that going forward in time is like going backward.

/* FILE: LINEAR.DO =/
ECHODO = 3
RESET

/* THIS IS LINEAR.DO. IT SPIRALS OUT AND SPIRALS
IN ACCORDING TO A LINEAR ODE WITH CONSTANT
COEFFICIENTS. THE SAME EQUATION IS INTEGRATED,
BUT MODIFED SO THAT GOING FORWARD IN TIME IS
LIKE GOING BACKWARD.x/

/* LINEAR ODES, CONSTANT COEFFICIENTS;*/
FCT X1'T(T) = A(1,1)*X1 + A(1,2)*X2

FCT X2'T(T) = A(2,1)*X1 + A(2,2)*X2
A(1,1) = 27/250; A(1,2) = -107/125
A(2,1) = 143/125; A(2,2) = 24/125
INITIAL X1(0) = 0.8

INITIAL X2(0) = -0.6

SPIN = "N=INTEGRATE(X1,X2,0:50:0.1)"

DO SPIN

ORIGIN="DRAW (0& '0) LT NONE PT CROSSPT COLOR RED"
DO ORIGIN

DRAW N COL(2,4) COLOR BROWN

TOP TITLE "Spiral Outward" FONT 34

OUTWARD = W

VIEW OUTWARD

BLANK OUTWARD

LBL="EIGENVALUES OF THE SYSTEM MATRIX:"

EI="EA = EIGEN(A); TYPE LBL; TYPE EA COL (1:2) ROW(1,2)"
DO EI

A= -A

DO SPIN

DO ORIGIN

DRAW N COL(2,4) COLOR GREEN

TOP TITLE "Spiral Inward" FONT 34

104

INWARD = W
VIEW INWARD

The eigenvalues of the system matrix are:

LBL = EIGENVALUES OF THE SYSTEM MATRIX:
:a 2 by 2 matrix

1: -0.15 -0.15
2: .988685997 -.988685997

Window OUTWARD is shown in Figure B.37.
Window INWARD is shown in Figure B.38.

105

Spiral Outward

1200 —
560 // -
// \\
/ ‘/' \‘
-80 \ %
“ \\\ o
-720 O\ —
N
~1360 -
_ L L L - L
2090 1300 -880 -460 -40 380 800
Figure B.37: Window OUTWARD.
Spiral Inward
0.6
0.28
—0.0% ®
-0.36
-0.68
1 L L L L
-0.7 0.4 0.1 0.2 0.5 0.8

Figure B.38: Window INWARD.

106

B.14 LORENZ.DO

The do-file LORENZ.DO integrates and displays the famous Lorenz system. The three parameters,
A,B, and C, chosen are the ones that generate the notrious butterfly. By using other parameters
you display a variety of behaviors. .

/* FILE: LORENZ.DO =/
ECHODO = 3
RESET

/* LORENZ.DO INTEGRATES AND DISPLAYS THE FAMOUS LORENZ
SYSTEM. THE 3 PARAMETERS A, B, & C CHOSEN ARE THE

ONES THAT GENERATE THE NOTORIOUS BUTTERYFLY. BY USING
OTHER PARAMETERS YOU DISPLAY A VARIETY OF BEHAVIORS.=*/

/* THESE NONLINEAR ODES RESULT FROM THE SIMPLIFICATION
OF A PDE.x/

FCT F1(X1,X2,X3) Ax (-X1+X2)

FCT F2(X1,X2,X3) = (B-X3)*X1 - X2

FCT F3(X1,X2,X3) -C*X3 + X1x*X2

FCT X1'T(T) = F1(X1,X2,X3)
FCT X2'T(T) = F2(X1,X2,X3)
FCT X3'T(T) = F3(X1,X2,X3)

S = "M2 = POINTS(X1,X2,X3,M)"
INIT X1(TO) = X10
INIT X2(TO) X20
INIT X3(TO0) X30

X10 = .01; X20 = .01; X30 = .01; TO = 0
TMAX = 35; NSTEP = 2000

A =10; B =28; C = 8./3.

M COL 1 = TO:TMAX!NSTEP

DO S

SPAN = TMAX - TO

MX = SQRT(0.5)

M2 COL 1 = MX*(M2 COL 2 + M2 COL 3)

M2 COL 2 = M2 COL 4

/* DELETE M COL(3:7) */

TOP TITLE "The Lorenz Butterfly" FONT 8
DRAW M2 COL(1,2) COLOR GREEN

DRAW (0& '0O) LT NONE PT CIRCLE

107

DRAW (12& '27) LT NONE PT CIRCLE
DRAW (-12& '27) LT NONE PT CIRCLE
BIGED = W
VIEW BIGED

Window BIGED is shown in Figure B.39.

108

The Lorenz Butterfly

50

40

30

20

10

35

22

-30

Figure B.39: Window BIGED.

109

B.15 MITCH.DO

The do-file MITCH.DO displays graphically the solutions to the discrete logistic equation. Unlike
the continuous logistic—often called Hubbert’s Pimple—the discrete logistic displays some of the
very complex behavior typical of nonlinear systems. This equation was used by Prof. Mitchell
Feigenbaum to launch the present era of interest in nonlinear dynamics, starting in 1975. Enter
values of the parameter A from 0 to 4, and a number of steps (X0), when requested.

/* FILE: MITCH.DO */
ECHODO = 3
RESET

/* MITCH.DO DISPLAYS GRAPHICALLY THE SOLUTIONS TO THE
DISCRETE LOGISTIC EQUATION. UNLIKE THE CONTINUQUS
LOGISTIC -- OFTEN CALLED HUBBERT’S PIMPLE -- THE
DISCRETE LOGISTIC DISPLAYS SOME OF THE VERY COMPLEX
BEHAVIOR TYPICAL OF NONLINEAR SYSTEMS. THIS
EQUATION WAS USED BY PROF. MITCHELL FEIGENBAUM TO
LAUNCH THE PRESENT ERA OF INTEREST IN NONLINEAR
DYNAMICS, STARTING IN 1975. ENTER VALUES OF THE
PARAMETER A FROM O TO 4 AND A NUMBER OF STEPS,

WHEN REQUESTED. */
A = 2.0; NSTOP=25; X0 = 0.5
TYPE " ENTER PARAMETER O <= A <= 4."

A = KREAD()
TYPE " ENTER INITIAL VALUE O <= X0 <= 1."
X0 = KREADQ)

/* CONFINE A AND XO TO SAFE VALUES. WHY?77 =x/
A =1IF A >= 0 THEN A ELSE O

A = TF A <= 4 THEN A ELSE 4

X0 = IF X0 >= 0 THEN XO ELSE O

X0 = IF X0 <= 1 THEN XO ELSE 1

/* MAKE LONGER RUNS LARGER A. WHY?77? x*/
NSTOP = 5 + FLOOR(1.5%Ax*A)

/* DEFINE AND SOLVE THE DISCRETE LOGISTIC: */
FCT X 'N(N) = AxXx(1.0 - X)

INIT X(0)=X0

FBAUM=ITERATE(X 'N,NSTOP+1)

110

/* WHAT IS THIS PARABOLA? x/
FCT Y(X)=A*X*(1.0 - X)

/* WHAT IS THIS LINE? */
FCT IDENT(X) = X

/* PLOT THE SOLUTION, THE PARABOLA AND THE LINE. */
ENVELOP COL 1 = 0:1!'250

ENVELOP COL 2 = Y ON ENVELOP COL 1

DRAW ENVELOP COL (1,2) COLOR RED

PEAK = Y(0.5)

NPLOTZ = IF PEAK < 0.5 THEN FLOOR(250%PEAK + 5) \

ELSE 250

LYNE COL 1 ROW 1:NPLOTZ = ENVELOP COL 1 ROW 1:NPLOTZ
LYNE COL 2 = IDENT ON LYNE COL 1

DRAW LYNE COL (1,2) COLOR GREEN

FCT FROW(I) = FLOOR(0.51 +I/2)

NST2 = 2*NSTOP + 2

FOR I=1:NST2 DO { FB COL 1 ROW I=FBAUM COL 2 ROW FROW(I); }
FOR I=3:NST2 DO { FB COL 2 ROW(I-1) = FB COL 1 ROW I; }
FB ROW 1 COL 2 =0

FB COL 2 ROW NST2 = FB COL 1 ROW NST2

DRAW FB COL (1,2) COLOR BROWN

TOP TITLE "Discrete Logistic" FONT 16

IMAGE 0.2 TO 0.95, 0.14 TO 0.9 FFRACT
DEL ENVELOP; DEL LYNE; DEL FBAUM; DEL FB
WMITCH = W

VIEW WMITCH

TYPE " RENAME AND SAVE WMITCH TO PRESERVE "
TYPE " YOUR GRAPH. DELETE WMITCH, IF NOT "

TYPE " RENAMED, AND RERUN MITCH.DO TO SEE "
TYPE " MORE EXAMPLES.";

With A = 2 and X0 = .2 the resulting window WMITCH is shown in Figure B.40.

111

Discrete Logistic

Figure B.40: Window WMITCH.

112

B.16 ORTHO.DO

The do-file ORTHO.DO does a Gram-Schmidt orthogonalization on the discretized interval [-1,+1]
to illustrate:

1. orthogonality depends on domain definition.

2. Gram-Schmidt is sensitive to rounding error.

/* FILE: ORTHO.DO */
ECHODO = 3
RESET

/* FILE ORTHO.DO DOES GRAM-SCHMIDT ORTHOGONALIZATION
ON THE DISCRETIZED INTERVAL [-1,+1] TO ILLUSTRATE
1. ORTHOGONALITY DEPENDS ON DOMAIN DEFINITION.

2. G-S IS SENSITIVE TO ROUNDING ERROR.*/

/* CREATE THE DISCRETE DOMAIN: */
NSTEPS = 41

/* CREATE O AND 1ST POWER COLUMNS.x*/
X COL 1 ROW (1:NSTEPS) = 1
X COL 2 = (-1:+1!NSTEPS)

/* CREATE 2°N POWERS OF ARGUMENTS: */
FOR I = 1:3 D0 { I1 = 2°I; I2 = I1/2; I1 = I1+1; I2 = I2+1;
X COL I1 = (X COL I2)*'(X COL I2); }

/* FILL IN THE REST:*/

X COL 4 = (X COL 2)*'(X COL 3)
X COL 6 = (X COL 5)*'(X COL 2)
X COL 7 = (X COL 5)*'(X COL 3)
X COL 8 = (X COL 5)*'(X COL 4)
X COL 10 = (X COL 9)*'(X COL 2)
X COL 11 = (X COL 9)*'(X COL 3)
IQ = 11

/* DO THE GRAM-SCHMIDT PROCEDURE:*/
DOTDOT="DD=[DOT(X COL I,XX COL J)]/[DOT(XX COL J,XX COL J)]"
GS1 = "XX COL I = XX COL I - DD*XX COL J"

113

GSS = "DO DOTDOT; DO GS1"
GSPROCESS = "XX=X; FOR I=2:IQ DO { FOR J=1:(I-1) DO { DO GSS; }; }"
DO GSPROCESS

IQQ = IQ+1;XX COL(IQQ) = X COL 2; DEL X

/* MAKE A MATRIX OF ALL INNER PRODUCTS:=*/

DOTTY = "MXX(I,J) = DOT(XX COL I, XX COL J); MXX(J,I) = MXX(I,n)"
DOTPROCESS = "FOR I=1:IQ DO { FOR J=I:IQ DO { DO DOTTY; } }"

DO DOTPROCESS

TYPE TRACE (MXX)

PAUSE

/* NORMALIZE THE COLUMNS OF MATRIX XX:*/

NPROCESS = "FOR I=1:IQ DO { NXX=SQRT(MXX[I,I]);XX COL I=(XX COL I)/NXX }"
DO NPROCESS

DO DOTPROCESS

TYPE TRACE (MXX)

PAUSE

/* GET RMS OF MXX-I:x*/

FOR I = 1:IQ DO { MXX(I,I)=MXX(I,I)-1; }

GOODNESS = MNORM(MXX,0)/IQ; TYPE GOODNESS

TYPE " SAVE THIS VALUE TO COMPARE WITH ORTHO2.DO."
PAUSE

TOP TITLE "Orthogonality on a Discrete Set" FONT 7
BOTTOM TITLE "... from powers" FONT 7

DRAW XX COL (IQQ,1) COLOR RED LT DASHED

DRAW XX COL (IQQ,2) COLOR ORANGE LT DASHED

DRAW XX COL (IQQ,3) COLOR BROWN LT DASHED

DRAW XX COL (IQQ,4) COLOR GREEN LT DASHED

DRAW XX COL (IQQ,5) COLOR BLUE LT DASHED

DRAW XX COL (IQQ,6) COLOR PURPLE LT DASHED

DRAW XX COL (IQQ,7) COLOR RED

DRAW XX COL (IQQ,8) COLOR ORANGE

DRAW XX COL (IQQ,9) COLOR BROWN

DRAW XX COL (IQQ,10) COLOR GREEN

DRAW XX COL (IQQ,11) COLOR BLUE

SAM = MINV[XX COL(1:IQ)]

XX COL (IQQ+1) = 0.98%SAM

DRAW XX COL (IQQ,IQQ+1) COLOR ORANGE LT NONE PT UTICK
GSCHMIDT = W

114

VIEW GSCHMIDT

Window GSCHMIDT is shown in Figure B.41.

115

-0.08

-0.24

Orthogonality on a Discrete Set

I I I
-1 -0.6 -0.2 0.2 0.6 1

from powers

Figure B.41: Window GSCHMIDT.

116

B.17 ORTHO2.DO

The do-file ORTHO2.DO does the Gram-Schmidt orthogonalization on the discretized interval [-1,+1]
to illustrate:

1. orthogonality depends on domain definition.

2. Gram-Schmidt is sensitive to rounding error.

By starting with Legendre polynomials, not powers, this computation attempts to reduce rounding
errors. CF. The value of goodness with that from ORTHO.DO B.16.

/* FILE: ORTH02.DO */
ECHODO = 3
RESET

/* FILE ORTHO2.DO DOES GRAM-SCHMIDT ORTHOGONALIZATION ON
THE DISCRETIZED INTERVAL [-1, +1] TO ILLUSTRATE

1. ORTHOGONALITY DEPENDS ON DOMAIN DEFINITION.

2. G-S IS SENSITIVE TO ROUNDING ERROR.

BY STARTING WITH LEGENDRE POLYNOMIALS, NOT POWERS, THIS
COMPUTATION ATTEMPTS TO REDUCE ROUNDING ERRORS. CF. THE
VALUE OF GOODNESS WITH THAT FROM ORTHO.DO.x*/

/* CREATE THE DISCRETE DOMAIN:*/
NSTEPS = 41

/* CREATE O AND 1ST POWER COLUMNS.x*/
DOMAIN COL 1 = (-1:+1!NSTEPS)

/* CREATE TABLE OF LEGENDRE POLYNOMIALS:*/
IQ = 11
FOR I=1:IQ DO { DOMAIN COL 2=(I-1); X COL I=LEG ON DOMAIN; }

/* DO THE GRAM-SCHMIDT PROCEDURE: */

DOTDOT = "DD=[DOT(X COL I,XX COL J)]/[DOT(XX COL J,XX COL J)]"

GS1 = "XX COL I = XX COL I - DD*XX COL J"

GSS = "DO DOTDOT; DO GS1"

GSPROCESS = "XX=X; FOR I=2:IQ DO { FOR J=1:(I-1) DO { DO GSS; } ; }"
DO GSPROCESS

IQQ = IQ+1

117

XX COL(IQQ) = DOMAIN COL 1
DEL X

/* MAKE A MATRIX OF ALL INNER PRODUCTS: */
DOTTY="MXX(I,J)=DOT(XX COL I, XX COL J); MXX(J,I)=MXX(I,J)"
DOTPROCESS = "FOR I=1:IQ DO { FOR J=I:IQ DO { DO DOTTY; } }"
DO DOTPROCESS

TYPE TRACE (MXX)

PAUSE

/* NORMALIZE THE COLUMNS OF MATRIX XX:*/

NPROCESS="FOR I=1:IQ DO { NXX=SQRT[MXX(I,I)];XX COL I=(XX COL I)/NXX; }"
DO NPROCESS

DO DOTPROCESS

TYPE TRACE (MXX)

PAUSE

/* GET RMS OF MXX-I: =*/
FOR I = 1:IQ DO { MXX(I,I)=MXX(I,I)-1; }
GOODNESS = MNORM(MXX,0)/IQ;TYPE GOODNESS

TYPE " SAVE THIS VALUE TO COMPARE WITH ORTHO.DO."

TOP TITLE "Orthogonality on a Discrete Set" FONT 7
BOTTOM TITLE "... from Legendre Polynomials" FONT 7
DRAW XX COL (IQQ,1) COLOR RED LT DASHED

DRAW XX COL (IQQ,2) COLOR ORANGE LT DASHED

DRAW XX COL (IQQ,3) COLOR BROWN LT DASHED

DRAW XX COL (IQQ,4) COLOR GREEN LT DASHED

DRAW XX COL (IQQ,5) COLOR BLUE LT DASHED

DRAW XX COL (IQQ,6) COLOR PURPLE LT DASHED

DRAW XX COL (IQQ,7) COLOR RED

DRAW XX COL (IQQ,8) COLOR ORANGE

DRAW XX COL (IQQ,9) COLOR BROWN

DRAW XX COL (IQQ,10) COLOR GREEN

DRAW XX COL (IQQ,11) COLOR BLUE

SAM = MINV[XX COL(1:IQ)]

XX COL (IQQ+1) = 0.98*SAM

DRAW XX COL (IQQ,IQQ+1) COLOR ORANGE LT NONE PT UTICK
LEGDISCR = W

VIEW LEGDISCR

118

Window LEGDISCR is shown in Figure B.42.

119

-0.08

-0.24

Orthogonality on a Discrete Set

1 1 1 1
-1 -0.6 -0.2 0.2 0.6 1
from Legendre Polynomials

Figure B.42: Window LEGDISCR.

120

B.1

The

8 POLLY.DO

do-file POLLY.DO computes Legendre polynomials on the domain [-1,+1] using the built-in

MLAB function LEG and direct polynomial evaluation. The results are then compared and the

differences plotted. After doing the 5t order you can generate any other by typing in that order;
enter 0 to stop.

/* F
ECHO
RESE

/* P
DOM
AND
ARE
AFT
O0TH
NSTE

SQUE
TORX
TRIM
FCT
FCT
FCT
FCT
FCT
FCT
TYPE
TYPE
TYPE
PAUS

FCT

/* C
Y CO
S1
S2
S3 =
sS4 =
DO S
SS5

ILE: POLLY.DO */

DO = 3
T
OLLY.DO COMPUTES LEGENDRE POLYNOMIALS ON THE

AIN [-1,+1] USING THE INTERNAL FUNCTION LEGQ)
DIRECT POLYNOMIALS EVALUATION. THE RESULTS

THEN COMPARED AND THE DIFFERENCES PLOTTED.

ER DOING THE 5TH ORDER YOU CAN GENERATE ANY

ER BY TYPING IN THAT ORDER; ENTER A O TO STOP.*/
PS = 301

EZE="YAXIS FORMAT(-3,4,0,0,4,0) OFFSET(-.14,-.01) IN W"
= " Rounding Errors Legendre Polynomial"

= "TOP TITLE TORX FONT 9"
ALFA(N) = IF N <= 1 THEN 1 ELSE ((N+N-1)/N)*ALFA(N-1)
FAX(N,M) = -[(M+1)*(M+2)]/ [(N-M)* (N+M+1)]
VETA(N,M) = IF M>=(N-1) THEN 1 ELSE FAX(N,M)*VETA(N,M+2)
LGFC(N,M) = ALFA(N)*VETA(N,M)
PWR(XX,N,I)=IF ABS(XX)>0 THEN XX~ (N-2%I) ELSE 0O
LP(XX,N) = SUM[I,0,FLOOR(N/2),LGFC(N,N-2*I)*PWR(XX,N,I)]
" THESE TWO NUMBERS SHOULD BE EQUAL:"

LP(.5,5)

LEG(.5,5)
E

RNDERR (XX,N) = LP(XX,N)-LEG(XX,N)
REATE A ROW OF VALUES -1 TO +1 FOR X */
L 1= (-1:1!NSTEPS); Y COL 2 = 5
"ROUNDER = RNDERR ON Y"
"Y COL 2 = ROUNDER"
"DRAW Y COL(1,2) COLOR BROWN; DO TRIM"
"ERROR = W; VIEW ERROR"
1; DO S2; DO S3; DO SQUEEZE; DO S4
= "TYPE IN AN INTEGER OR O TO STOP:"

121

S5 = "TYPE SS5; NERD=KREAD()"
S6 = "NN= FLOOR(ABS(NERD))"
S8 = "Y COL 2 = NN"
FOR I = 1:33 DO { \

DO S5; DO S6;

IF NN<1 OR NN=MAXPOS THEN BREAK;

DO S8; DO S1; DO S2;

DEL ERROR; DO S3;

DO SQUEEZE; DO S4; }

TYPE "YOUR LAST GRAPH IS IN:"; TYPE WINDOWS;

Window ERROR, resulting from the first iteration of polly.do, is shown in Figure B.43.

122

Rounding Errors Legendre Polynomial

1.332E-15
|
B.66E-16 [
|
3.997E-16 - ~ ‘ A
| N i
' ' \ \ \‘1 ‘
it s ‘ N ‘w“‘ m‘\‘w TV YV | ‘Mw\ﬂhﬁ w ﬂ
Iﬁ \\ ' W
—5.329&16“ ‘ v W
|
I
9. 9928167 JO.G Jo.z 5.2 5.6 1

Figure B.43: Window ERROR.

123

B.19 POWER.DO

The do-file POWER.DO plots some positive integral powers on the domain [-1,4-1]. This is an easy
exercise and illustrates how poor polynomials are for representing functions; they are too much
alike except for powers 0, 1, 2, and 3. Legendre polynomials, which are orthogonal on this domain
are much more effective. Taylor and Laurent series are useful in formal analysis, where rounding
errors are not a factor; for numerical work these power series are useful only on very restricted
domains.

/* FILE: POWER.DO */
ECHODO = 3
RESET

/* POWER.DO PLOTS SOME POSITIVE INTEGRAL POWERS ON
THE DOMAIN [-1,+1]. THIS IS AN EASY EXERCISE AND
ILLUSTRATES HOW POOR POLYNOMIALS ARE FOR REPRESENTING
FUNCTIONS; THEY ARE TOO MUCH ALIKE EXCEPT FOR POWERS
0,1,2, AND 3. LEGENDRE POLYNOMIALS, WHICH ARE
ORTHOGONAL ON THIS DOMAIN ARE MUCH MORE EFFECTIVE.
TAYLOR AND LAURENT SERIES ARE USEFUL IN FORMAL
ANALYSIS, WHERE ROUNDING ERRORS ARE NOT A FACTOR;
FOR NUMERICAL WORK THESE POWER SERIES ARE USEFUL
ONLY ON VERY RESTRICTED DOMAINS.*/

NSTEPS = 301

/* CREATE A COLUMN OF 1S FOR X~0: */
X COL 1 ROW(1:NSTEPS) = 1

/* CREATE A ROW OF VALUES -1 TO +1 FOR X */
X COL 2 = (-1:1!NSTEPS)

/* CREATE X°N */
FOR I=3:10 DO { X COL I = (X COL 2)*'(X COL (I-1)); }
BOTTOM TITLE "Graph of Powers 2-9" FONT 9

DRAW X COL (2,3)

DRAW X COL (2,4) COLOR BROWN

DRAW X COL (2,5) COLOR ROSE

DRAW X COL (2,6) COLOR GREEN

DRAW X COL (2,7) COLOR RED

DRAW X COL (2,8) COLOR AQUA

DRAW X COL (2,9) COLOR ROSE LT DASHED
DRAW X COL (2,10) COLOR BROWN LT DASHED

124

POTENZEN = W
VIEW POTENZEN

Window POTENZEN is shown in Figure B.44.

125

-0.2

o8 o2 0.2 0.6
Graph of Powers 2—9

Figure B.44: Window POTENZEN.

126

B.20 RANDWALK.DO

The do-file RANDWALK . DO creates a vector of Gaussian random numbers. A random walk is created
by doing a quadrature of a linear interpolation of these numbers.

/* FILE: RANDWALK.DO */
ECHODO = 3
RESET

/* RANDWALK.DO CREATES A VECTOR OF GAUSSIAN RANDOM
NUMBERS. A RANDOM WALK IS CREATED BY DOING A
QUADRATURE OF A LINEAR INTERPOLATION OF THESE
NUMBERS . */

M COL 1 = 1:100:1

START = NORMRAN(343,0,1)

FCT GO(X)=NORMRAN(0,0,1)

M COL 2 = GO ON M COL 1

DRAW M COLOR BROWN

BOTTOM TITLE "Gaussian Random Sequence" FONT 16
KARLF = W

VIEW KARLF

BLANK KARLF

/* DEFINE A LINEAR INTERPOLATION OF THE PINK NOISE.
WHY IS THE NOISE CALLED PINK? */

FCT WALK'T(T) = LOOKUP(M,T)

INITIAL WALK(0)=0

N COL 1 =1:100:0.25

NN = POINTS(WALK,N)

DRAW NN COLOR ORANGE

BOTTOM TITLE "Classic Random Walk" FONT 16
THEWALK = W

VIEW THEWALK

BLANK THEWALK

DRAW NN COLOR ORANGE

DRAW M COLOR BROWN

BOTTOM TITLE "Random Sequence & Walk" FONT 16
KOMBO=W

VIEW KOMBO

127

Window KARLF is shown in Figure B.45.
Window THEWALK is shown in Figure B.46.
Window KOMBO is shown in Figure B.47.

128

L
.l
\ (i “ \
A 1
[l I
I AR
0.5 I \U\W\M“\‘
N ‘”\H‘\“H\ I
1N ‘Hv || /1
IARTAYA AT Al
-0.5 L LY
IR(RIRERARI
I \‘ | ||
1\ “' i
| I
1.5 o ”‘
! |
_ L L L L
25 g 20 40 €0 80 100
Gaussian Random Sequence
Figure B.45: Window KARLF.
8
6.1
4.2+
2.3
0.4
L L L L
15 20 40 60 80 100

Classic Random Walk

Figure B.46: Window THEWALK.

129

1 1
20 40 60 8O 100
Random Sequence & Walk

Figure B.47: Window KOMBO.

130

B.21 ROUNDOFF.DO

The do-file ROUNDOFF .DO compares nested and directly evaluated polynomials.

/* FILE: ROUNDOFF.DO */
ECHODO = 3
RESET

/* ROUNDOFF.DO COMPARES NESTED AND DIRECTLY EVALUATED
POLYNOMIALS.*/

/* CREATE SOME POLYNOMIAL COEFFICIENTS:*/
CCOL 1= (5:1)

/* DEFINE DIRECT POLYNOMIAL EVALUATIONS:

SUM UP OR DOWN, DEPENDING ON THE SIZE OF

THE ARGUMENT.*/
FCT P(N,C,X)=IF ABS(X)>=1 THEN SUM(I,O,N,C(I+1)*X"I) \

ELSE Q(N,C,X)
FCT Q(N,C,X)=IF ABS(X)>0 THEN SUM(I,O,N,C(N-I+1)*X"(N-I)) \
ELSE C(1)

/* THE FOLLOWING SHOULD BE EQUAL.*/
PRAYER = " THESE SHOULD BE EQUAL.";
TYPE PRAYER

P(4,C,1)

1+2+3+4+5

PAUSE

/* DRAW A POLYNOMIAL:x*/

NSTEPS = 301

X COL 1 = (-1:1!NSTEPS)

FCT POLY4(X) = P(4,C,X)

X COL 2 = POLY4 ON X COL 1

LBOX = 0.20

SQUEEZE = "YAXIS FORMAT(-3,4,0,0,4,0) OFFSET(-.17,-.01) IN W"
WEISS = "FRAME COLOR WHITE; XAXIS COLOR BLUE; YAXIS COLOR BLUE"
BLAU = "IMAGEBOX COLOR BLUE"

SCHWARZ = "BOTTOM TITLE COLOR BLACK FONT 21"

DRAW X COL (1,2) COLOR BROWN

DO WEISS; DO SCHWARZ; DO BLAU

BOTTOM TITLE "This is a polynomial"

131

P1 =W
VIEW P1

BLANK P1
/* DEFINE NESTED POLYNOMIALS RECURSIVELY:x*/

FCT NR(N,M,C,X)=IF M>1 THEN X*NR(N,M-1,C,X)+C(N-M+1) \
ELSE X*C(N+1)+C(N)

FCT NEST(N,C,X) = IF N <= 0 THEN C(1) ELSE NR(N,N,C,X)
TYPE PRAYER

NEST(4,C,1); P(4,C,1);

TYPE PRAYER;

NEST(4,C,0); P(4,C,0);

PAUSE

/* THIS FUNCTION SHOULD BE IDENTICALLY O.x*/
FCT DIFF4(XXX) = P(4,C,XXX) - NEST(4,C,XXX)
X COL 3 = DIFF4 ON X COL 1

/* DIFFERENCE NESTED AND DIRECT POLYNOMIALS
ON [-1,+1].%/

LBOX = 0.24;

DRAW X COL (1,3) COLOR ORANGE

DO SQUEEZE; DO WEISS; DO SCHWARZ; DO BLAU

BOTTOM TITLE "Nested vs. Direct Polynomial"

P2 =W

VIEW P2

BLANK P2

X10 COL 1 = 10*(X COL 1)

X10 COL 2 = DIFF4 ON X10 COL 1

DRAW X10 COL(1,2) COLOR ORANGE
DO SQUEEZE; DO WEISS; DO SCHWARZ; DO BLAU
BOTTOM TITLE "Polynomial Discrepancies on Wider Range"
/* DIFFERENCE NESTED AND DIRECT POLYNOMIALS
ON [-10,+10].%/
P3 =W
VIEW P3

Window P1 is shown in Figure B.48.
Window P2 is shown in Figure B.49.
Window P3 is shown in Figure B.50.

132

15

12.4

-0.6 -0.2 0.2
This is a polynomial

Figure B.48: Window P1.

1.776E-15

1.066E-15

3.553E-16

-3.553E-16

-1.066E-15

-1.776E-15

-0.6 -0.2 0.2
Nested vs. Birert Polynomial

Figure B.49: Window P2.

133

1.B18E-12

7.276E-13

-3.63BE-13

-1.455E-12

-2.547E-12

-3.63BE-12

-10 -6 -2 2 6
Polynomial Biscrepancies on Wider Range

10

Figure B.50: Window P3.

134

B.22 SLABLF.DO

The do-file SLABLF.DO creates a graph of Legendre polynomials. The recurrence formula is applied
to matrix columns, so this is more efficient than using the MLAB operator with a function, if you
need the lower-order polynomials, too.

/* FILE: SLABLF.DO =/
ECHODO = 3
RESET

/* THIS SLABLF.DO FILE CREATES A GRAPH OF
LEGENDRE POLYNOMIALS. THE RECURRENCE
FORMULA IS APPLIED TO MATRIX COLUMNS, SO
THIS IS MORE EFFICIENT THAN USING THE MLAB
ON OPERATOR WITH A FUNCTION, IF YOU NEED
THE LOWER-ORDER POLYNOMIALS TOQ.*/

/* SELECT A TITLE IN CELTIC STYLE:x*/
TOP TITLE "Legendre Polynomials Degree O - 6" FONT 23
TOP TITLE AT (O, 0.97)

/* DEFINE THE LIMITS OF THE WINDOW WHICH WILL HOLD
THE GRAPH:*/
WINDOW -1. TO 1., -1. TO 1.1

/* CREATE THE ARGUMENTS LIST FOR THE LEGENDRE
POLYNOMIALS:*/

NSTEPS = 301

LEGPOL COL 1 ROW(1:NSTEPS) = 1

LEGPOL COL 2 = (-1:1!NSTEPS)

/* GENERATE LEGENDRE POLYNOMIALS DEGREES 0-6
IN LEGPOL:*/
FCT N2(M) = (M+M-1)/M; FCT N1(M) = (M-1)/M
FOR I = 3:7 DO { CF2 = N2(I-1); CF1 = N1(I-1);
LEGPOL COL I = CF2%(LEGPOL COL 2)*'(LEGPOL COL (I-1));
LEGPOL COL I = LEGPOL COL I - CF1xLEGPOL COL (I-2); }

/* GRAPH THE LEGENDRE POLYNOMIALS IN DISTINCT
COLORS: */

DRAW LEGPOL COL(2,1) COLOR GREEN

DRAW LEGPOL COL(2,2) COLOR BROWN

135

DRAW LEGPOL COL(2,3) COLOR RED
DRAW LEGPOL COL(2,4) COLOR ORANGE
DRAW LEGPOL COL(2,5) COLOR VIOLET
DRAW LEGPOL COL(2,6) COLOR AQUA
DRAW LEGPOL COL(2,7) COLOR ROSE
SLABGRAF=W

VIEW SLABGRAF

Window SLABGRAF is shown in Figure B.51.

136

.68

.26

-0.16

-0.58

Liegendre Rolynomials Degree 0 — &

e g
e /
S / |
| . TN // / ;ﬁ
N /)\ /)
\ X /
\ / \ /
\ / / \. /
L1\ \ /
\ / /
Y
\v/ // ~_ P A
- e
v
//
/
L L L L
-0.6 -0.2 0.2 0.6

Figure B.51: Window SLABGRAF.

137

B.23 VINTI.DO

The do-file VINTI.DO demonstrates the need for a tight error tolerance for orbital mechanics. It
first runs DIRKB.DO B.5 to test for orbit closure and then cuts the error control ERRFAC by a factor
of 100. Plots are made of the energy and angular momentum, which should be constants.

The physicist John P. Vinti solved the artificial satellite problem in closed form.

/* FILE: VINTI.DO */
ECHODO = 3
RESET

/* ORBIT ANALYSIS PROGRAM VINTI.DO ILLUSTRATES
THE NEED FOR A TIGHT ERROR TOLERANCE FOR ORBITAL
MECHANICS. IT FIRST RUNS DIRKB.DO TO TEST FOR
ORBIT CLOSURE AND THEN CUTS THE ERROR CONTROL
ERRFAC BY A FACTOR OF 100. PLOTS ARE MADE OF
THE ENERGY AND ANGULAR MOMENTUM, WHICH SHOULD BE
CONSTANTS.

THE PHYSICIST JOHN P. VINTI SOLVED THE
ARTIFICIAL SATELLITE PROBLEM IN CLOSED FORM.x*/

/* INTEGRATION ERROR TOLERANCE IS: */
TYPE ERRFAC
PAUSE

DO DIRKB.DO
BLANK KEPLER
ERRFAC=ERRFAC/100

TYPE " INTEGRATION ERROR TOLERANCE NOW IS:"

TYPE ERRFAC

PAUSE

DO S

TOP TITLE "Precise Keplerian Motion" FONT 21, AT (0, .90)
DO ORBIT; DO SUN

JPVINTI=W

VIEW JPVINTI

BLANK JPVINTI
/* SELECT THE INITIAL CONDITIONS:*/

138

RR ROW (1:3) = M ROW 1 COL (2:6:2)
RDOT ROW (1:3) = M ROW 1 COL (3:7:2)

/* COMPUTE AND QUTPUT THE INITIAL ANGULAR MOMENTUM
FIRST THE VECTOR VALUE:*/
CAPG = RR # RDOT

/* GET THE EUCLIDEAN NORM, AKA THE ABSOLUTE VALUE:=*/
GEE = MNORM(CAPG,0); TYPE GEE

/* SORT OUT POSITIONS AND VELOCITIES:*/
RRR = M COL (2,4,6);

RRRDOT = M COL (3,5,7);

GG1 = LENGTH(RRR # RRRDOT)

PAUSE

/* REWORK MATRIX GG1 TO PUT TIME IN COLUMN 1
FOR GRAPHS:*/

GG1 COL 2 = GG1 COL 1

GG1 COL 1 = M COL 1

DRAW GG1 COL (1,2) COLOR BROWN

GG2(1,1) M(1,1); GG2(2,1) = M(NROWS(M),1)
GG2(1,2) GG1(1,2); GG2(2,2) = GG2(1,2)
DRAW GG2 COL (1,2) LT DASHED COLOR ORANGE

YAXIS FORMAT(-3,7,0,0,4,0) OFFSET(-0.15,-0.01) IN W
TOP TITLE "Angular Momentum" FONT 21

GGRAPH = W

VIEW GGRAPH

BLANK GGRAPH
/* DISPLAY THE HAMILTONIAN (ENERGY) FUNCTION:=*/
TYPE H

/* CONCATENATE VELOCITIES TO POSITIONS TO EVALUATE H(Q) :%/
RRR = RRR & 'RRRDOT

ENERGY = H ON RRR

/* ADD THE TIME REFERENCE */

ENERGY COL 2 = ENERGY COL 1

ENERGY COL 1 = M COL 1

GG2(1,2) = ENERGY(1,2); GG2(2,2) = GG2(1,2)

DRAW ENERGY COL(1,2) COLOR BROWN

139

YAXIS FORMAT(-3,7,0,0,4,0) OFFSET(-0.15,-0.01) IN W
DRAW GG2 COL (1,2) LT DASHED COLOR ORANGE

TOP TITLE "Energy Integral 2-Body Motion" FONT 21
VISVIVAE=W

VIEW VISVIVAE

TYPE " YOUR GRAPHICS ARE HERE:"; TYPE WINDOWS;

Window JPVINTI is shown in Figure B.52.
Window GGRAPH is shown in Figure B.53.
Window VISVIVAE is shown in Figure B.54.

140

Precise Beplerian Motion

Il Il Il
-1.3 -0.88 -0.46 -0.04 0.38 0.8

Figure B.52: Window JPVINTI.

Angular Momentum

0.968263

.9682582

. 9682535

. 9682488

. 9682441

. 9682393

Figure B.53: Window GGRAPH.

141

Energy Integral 2—Body Motion

-0.438998

-0.488386

-.4989921

-.4939981

-.5000041

-.5000102 ‘ ‘ — ‘

Figure B.54: Window VISVIVAE.

142

B.24 VOLTERRA.DO

The do-file VOLTERRA .DO illustrates the mathematical properties of the classic Volterra predator-
prey equations. They have an integral, here FCT CAPK (), which is analogous to energy in mechan-
ics. Try to recast these equations in Hamiltonian form. (Hint: Use log X and log Y as variables.)

/* FILE: VOLTERRA.DO */
ECHODO = 3
RESET

/* PREDATOR(Y)-PREY(X) MODEL
THIS DEMO ILLUSTRATES THE MATHEMATICAL PROPERTIES
OF THE CLASSIC VOLTERRA PREDATOR-PREY EQUATIONS.
THEY HAVE AN INTEGRAL, HERE FCT CAPK(), WHICH IS
ANALOGOUS TO ENERGY IN MECHANICS. TRY TO RECAST
THESE EQUATION IN HAMILTONIAN FORM. (HINT: USE
LN X AND LN Y AS VARIABLES.) */
FCT Y 'T(T)=K*X*Y-CxY
FCT X 'T(T)=A*xX-BxXx*Y
INIT X(0)=X0
INIT Y(0)=YO
YO = 1; X0 = .8
K=1; C=1; A=1; B=1
S = "SVECTR=INTEGRATE(X,Y,TO:TF!NSTEPS)"
TO = 0; TF = 8; NSTEPS = 576

/* INTEGRATE THESE COUPLED, NONLINEAR ODES:...*/
DO S
FCT CAPK(X,Y)=B*X - A*LN(B*X/A) + K*Y - C*LN(K*Y/C)

/* PLOT A TIME SERIES GRAPH OF BOTH VARIABLES:...x*/
TOP TITLE "Predator-Prey Time Series" FONT 11

DRAW SVECTR COL (1,2) COLOR RED

DRAW SVECTR COL (1,4) COLOR GREEN

PPTSER = W

VIEW PPTSER

BLANK PPTSER

/* EVALUATE THE INTEGRAL ON THE NUMERICAL SOLUTION:...x*/
SVXY COL 1 = SVECTR COL 2

SVXY COL 2 = SVECTR COL 4

143

KAPP = CAPK ON SVXY

SVXY COL 2 = KAPP

SVXY COL 1 = SVECTR COL 1
DEL KAPP

REFF COL 1 ROW 1 = TO

REFF COL 1 ROW 2 = TF

REFF COL 2 ROW 1 = CAPK(X0,YO)
REFF COL 2 ROW 2 = REFF(1,2)

DRAW REFF LT LDASH COLOR RED

/* FIDGET WITH THE GRAPH:...*/

YAXIS FORMAT(-3,7,0,0,4,0) OFFSET(-0.15,-0.01) IN W
DRAW SVXY COL(1,2) COLOR BROWN

TOP TITLE "Volterra Energy Analog" FONT 11

PPINT = W

VIEW PPINT

BLANK PPINT

/* PLOT THE PHASE PLANE DIAGRAM ...

WHICH IS A CONTOUR OF THE INTEGRAL:...*/
DRAW SVECTR COL (2,4) COLOR BROWN

TOP TITLE "Volterra Phase Plane" FONT 11
PPHASE = W

VIEW PPHASE

TYPE "SAVE THE GRAPHS (WINDOWS), IF YOU WISH."
TYPE WINDOWS

Window PPTSER is shown in Figure B.55.
Window PPINT is shown in Figure B.56.
Window PPHASE is shown in Figure B.57.

144

Predator—Prey Time Series

Figure B.55: Window PPTSER.

n

n

n

n

.02315

.02314%%

.023138

.023132

.023126

.02312

Volterra Energy Analog

Figure B.56: Window PPINT.

145

Volterra Phase Plane

1 1

0.89 0.98 1.07 1.16

.25

Figure B.57: Window PPHASE.

146

List of Figures

A list of figures generated by the DO-files in Appendix B begins on the next page. Positioning the
mouse cursor on an entry in the list and clicking the mouse button will display the corresponding

figure.

147

List of Figures

B.1 Window BESSW. o o e 53
B.2 Window GRS. e 56
B.3 Window BCYCLE. 0 i ittt et e e 56
B.4 Window BIZRAD. e 57
B.5 Window BIZFAZ. 57
B.6 Window COBWEB. ittt et e e 62
B.7 Window WEBCYCLE. i i it et e e e e e e 62
B.8 Window MARKET. it et e e 63
B.9 Window PSMARKT. e e e e 63
B.10 Window LNPSMARK. o 64
B.11 Window ACFGRAPH. e e e 64
B.12 Window OUTBOUND. vt et et et e e e e e e e 67
B.13 Window INBOUND. o i it e e e e e e e e e e e e e 67
B.14 Window KEPLER. i it e e e e e e 70
B.15 Window DAMPEN. ittt e e 75
B.16 Window FILTER. o v v it et et et et e e e e 75
B.17 Window STANLEY. ittt e e e 76
B.18 Window PSM2. L e 76

B.19 Window LNPS2. o e, 77

B.20 Window ACFMARK2. e e 77
B.21 Window PPNZ1. e 81
B.22 Window PPNZ2.. 81
B.23 Window PPNZ3. e 82
B.24 Window PPNZ4. e 82
B.25 Window MKINGL. o s 86
B.26 Window MKING2. ittt ettt e e 86
B.27 Window MKING3. ottt e e 87
B.28 Window MKING4. it e e 87
B.29 Window MKING5. e e e e 88
B.30 Window KUGEL. o o it e e e 91
B.31 Window W. e 95
B.32 Window SAME. L 95
B.33 Window LEGGS. 98
B.34 Window WI. L e 102
B.35 Window WIT. o 102
B.36 Window WITI. ittt et e e 103
B.37 Window OQUTWARD. o o ittt e e 106
B.38 Window INWARD.t o vttt et et e e 106
B.39 Window BIGED. i 109
B.40 Window WMITCH. o i ittt e e e e e e 112
B.41 Window GSCHMIDT. o i i it ettt e e e 116
B.42 Window LEGDISCR. v v i it et it e e e 120

B.43 Window ERROR. o e, 123

B.44 Window POTENZEN. ittt e e e e e e e e e 126
B.45 Window KARLF. 129
B.46 Window THEWALK. e e e e e 129
B.47 Window KOMBO. vt e e 130
B.48 Window P1. oL 133
B.49 Window P2. L 133
B.50 Window P3. L 134
B.51 Window SLABGRAF. o ot e e e 137
B.52 Window JPVINTI. o i it ittt et e e e e e 141
B.53 Window GGRAPH. e e 141
B.54 Window VISVIVAE. e e e e e e e 142
B.55 Window PPTSER. o i it e e 145
B.56 Window PPINT. o . 0t ittt et i e e 145
B.57 Window PPHASE. 146

150

Appendix C

Index

The index begins on the next page. Index entries in BOLD type are MLAB function names or
commands. Positioning the mouse cursor on a page number—appearing blue in color and following
an index entry—and clicking the mouse button will display the corresponding page.

151

	Preface
	BASIC MATHEMATICS AND ITS IMPLEMENTATION IN MLAB
	What You Need to Know
	Getting Started with MLAB
	Foundations of Mathematics
	Sets
	Numbers, Prime, Rational, and Real
	Try Out MLAB

	PROGRAMMING IN MLAB
	More Numerical Analysis vs. Analysis
	Legendre Polynomials

	VECTORS AND MATRICES
	Vectors
	Matrices, Linear Algebra, and Modern Algebra
	Arrays
	Functional Analysis

	LINEAR DYNAMIC SYSTEMS AND MODELS
	Difference Equations
	Differential Equations
	Generalizations

	LINEAR DYNAMIC SYSTEMS WITH INPUTS
	Variation of Parameters and Filtering
	Random Walks
	Time Series and Fourier Analysis

	A SIMPLE NONLINEAR MODEL: ``HUBBERT'S PIMPLE''
	The Mathematics of Resource Depletion
	A Simulation

	A MORE COMPLEX NONLINEAR MODEL: VOLTERRA EQUATIONS
	Simple Assumptions
	Mathematical Properties
	Fitting to a Noise-driven System

	CELESTIAL MECHANICS AND HAMILTONIAN SYSTEMS
	NONLINEAR SYSTEMS AND CHAOS
	The Discrete Logistic
	Lorenz's Equations

	ADVANCING WITH MLAB
	Enhance the Demonstrations
	A Reading and Practice Program

	BIBLIOGRAPHY
	DEMONSTRATION *.DO FILES
	BESSEL.DO
	BIZCYCLE.DO
	BOUNCE.DO
	DIFFEQ.DO
	DIRKB.DO
	FILTER.DO
	FITCYCLE.DO
	HUBBERT.DO
	KUGEL.DO
	LALGEBRA.DO
	LEGENDRE.DO
	LIAPUNOV.DO
	LINEAR.DO
	LORENZ.DO
	MITCH.DO
	ORTHO.DO
	ORTHO2.DO
	POLLY.DO
	POWER.DO
	RANDWALK.DO
	ROUNDOFF.DO
	SLABLF.DO
	VINTI.DO
	VOLTERRA.DO

	Index

