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This example shows how to solve a statistical simulation and display
problem. Imagine that telephone calls arrive at a bank of n ports and each
call is assigned to the first open port found by scanning, in order, ports 1,
2, . . . . We assume n is large enough so that no call will be denied a port.
Suppose that the length of the ith call, li, follows a lognormal distribution,
so that, for all i, the length, li, of the ith call has the probability density
function

f(x) = exp(− log(x/m)2/(2σ2))/(xσ(2π)1/2),

and

P (li ≤ h) =

∫ h

0
f(x) dx.

The average length of a call is then m · exp(σ2/2), and we will choose
m = 10 and σ = .5. The call lengths l1, l2, . . . are all independent. Also,
suppose calls arrive at varying times with exponentially-distributed inter-
arrival times. Let A0j be the time between the arrivals of the jth and
(j + 1)st calls. Then we assume that the probability that there are s or
fewer minutes between the arrival of the jth call and the arrival of the
(j + 1)st call is P (A0j ≤ s) = 1− e−as, where a is, say, 1 minute.

It is of interest to simulate this process and to graph the simulated use
of the various ports as follows. In the graph below, the time of arrival of
calls are marked on the t-axis, and each use of port i is shown by a solid line,
starting at the indicated time and extending for the duration of the call.

A graph of this form is determined by a list of triples, one for each
arriving call; so that for call i, we have (ti, li, pi) where ti is the time at
which call i arrives, li is the length of call i, and pi is the port to which call i
is assigned. Then we need only draw the line segments (ti, pi) to (ti + li, pi)
for i = 1, 2, . . ., and, of course, mark the t-axis at the points (ti, 0) to indicate
the times at which the calls arrive.

Given data of this form, we can, for example, easily estimate the per-
centage of time port i is busy, or estimate the number of ports needed to
service 95% of the incoming calls.

Let Aij denote the interarrival time, Aij , between the jth and (j + 1)st
calls assigned to port i; Aij is a random variable. An analysis of interest is to
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state the distribution of Aij in terms of i, j, and the distribution functions
of the length and interarrival time of incoming calls. It often suffices to
determine the limiting form for the distribution of Aij as j →∞.

In the case where the times of arrival of incoming calls forms a Poisson
process as assumed above, we can explicitly state the desired distributions.

Let Dij be the non-busy waiting time between the end of the jth call on
port i and the arrival of the next call assigned to port i. Let L ∼ l1, so L is
lognormally-distributed, as is l1. Note the inter-arrival time Aij ∼ L +Dij

for i ≥ 1, and also D1j ∼ A0j .

Let Di = limj→∞Dij . Indeed Dij ∼ Di for j > 1. Then, in the limit,
port i is busy the fraction fi of the time, where fi = E(L/(L+Di)).

Now, when port i is free, an arriving call will be assigned to port i
when ports 1, 2, . . . , i − 1 are all busy. So if a call arrives during an
interval of time which satisfies this condition, it will be assigned to port i.
Thus, in the limit, Di is the waiting time until the occurrence of the event
that ports 1, 2, . . . , i − 1 are busy and a call arrives, and this can be
interpreted as the waiting time until the next event of a Poisson process
with density f1f2 · · · fi−1/a, where 1/a is the density of incoming calls. Thus
Di is exponentially-distributed with mean a/(f1f2 · · · fi−1), for i > 1, and
D1 ∼ A0j .

Moreover, in the limit, the number of busy ports, N , at a fixed time is
a Poisson random variable with mean u = E(L)/a; that is P (N = k) =
uke−u/k!.

Note this model is of interest where “calls” are sessions with a time-
sharing computer, people arriving for service at a system of queues which are
scanned linearly, and other isomorphic situations. Let the vector (V1, V2, . . . , Vn)
denote the state of the n ports at the current time, t, so that Vi = 0 if port
i is not busy, and Vi =the length of time remaining for the call using port
i otherwise. Now, given that the next new call of length l arrives in s
minutes from the current time t, we can update the state vector V to be
valid at time t + s − ε, where ε is very small, by changing each Vi so that
Vi ← max(Vi− s, 0). Then the state vector V is updated to be valid at time
t+ s+ ε by setting Vj to l, where j = X(V ), and X(V ) is the least index in
{1, 2, . . . , n} such that VX(V ) = 0. Let us denote the updating process used
to make V the current state vector for time t+ s− ε, so that we may write
V ← us(V ) to denote updating V to time t+ s− ε.

Now our simulation can be programmed as follows. Note a total of d
calls are simulated.

begin
t0 ← 0; j ← 1; V ← 0; α : tj ← random−exponential + tj − 1;
lj ← random−lognormal;
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V ← utj−tj−1
(V ); pj ← X(V ); Vpj

← lj ; j ← j + 1; if j ≤ d then goto α;
end.

Upon completion, we have the three vectors, t, l, and p needed to draw the
required graph.

We may use the computer program MLAB to carry out the simula-
tion sketched above and then draw the generated graph of port-usage over
time. The MLAB system was originally developed at the National Insti-
tutes of Health and includes curve-fitting, differential equations, statistics
and graphics as some of its major capabilities. MLAB is a tool for re-
searchers in science and engineering. MLAB is a tool for solving continuous
simulation and parameter-estimation problems such as chemical kinetics and
compartmental models as well as discrete simulation problems such as we
are considering here. A general do-file (script) to do the simulation and
draw the graph of port-usage is given below, together with a sample graph
generated by using it.

"calls.do"

type "enter n: the number of calls";

n = kread();

type "enter a random number seed";

r = kread(); r = ran(r);

type "enter np: number of telephone ports";

np = kread();

v = 0^^np; "(np ports. Port i is busy for v[i] minutes)";

"generate t vector in order: partial sums of samples of an exponential

distribution with mean 1";

t = -(log on (ran on 0^^n));

t = 0 & psum(t);

"generate l vector: lognormal with mean 10*exp(-(1/8)).";

l = normran on 0^^n; l = 10*(exp on .5*L);

"compute the p vector";

function pv(i) = if i > np then np else if v[i] = 0 then i else pv(i+1);

function u(w) = if w > s then w-s else 0;

p[n] = 0;

for j = 1:n do \

{i = minrow(v); if v[i] not= 0 then {np=np+1; i=np;};

p[j] = i; v[i] = l[j];

s = (if j = n then 0 else t[j+1])-t[j];
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v = u on v}

"given t, l, and p, draw the graph.";

m1 = t&’p; m2 = (t+l)&’p;

draw m1 line none pointtype vbar color red in w1

draw mesh(m1,m2) line alternate color green in w1

draw t&’0 line none pointtype vbar in w1

draw 0&’(1:np) line none label 1:np offset (-.02,-.01) color yellow in w1

no imagebox in w1

view

Here is a graph of a simulation run with 100 calls produced by the above
do-file.

This simulation can be run in a variety of forms. For example, we may
assume that the mean of the exponential distribution for the inter-arrival
times of incoming calls varies smoothly with the time of day, thus mimicking
a heavier load during working hours, with peaks at, say, 10am and 3pm.
This can be done by assuming the mean inter-arrival time, E(A0j), is an
appropriate doubly-peaked function of time.
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