File: /General/MLAB-Text/Papers/enzyme/enzyme.tex

Chemical Kinetics: Simple Enzyme Reactions

Gary D. Knott, Ph.D.
Civilized Software, Inc.
8120 Woodmont Ave. \#250
Bethesda, Md. 20814
Tel. (301) 652-4714
Fax (301) 656-1069
URL: http://www.civilized.com

Let S be a "substrate" material which is converted by the addition of an enzyme, E, into a molecular complex C which dissociates to yield a product P. We have:

$$
S+E \stackrel{K_{1}}{\stackrel{K_{2}}{\rightleftharpoons}} C \xrightarrow{K_{3}} E+P .
$$

This is, of course, an idealization of a more complex schema, since, in fact, even when S and P have the same molecular weight, energy must be used to, at least momentarily, change and restore the conformation of the enzyme E. But for many situations, our simple model will suffice.

Let $S(t), E(t), C(t)$, and $P(t)$ be the amounts of S, E, C, and P respectively at time t. Then we have:

$$
\begin{aligned}
d C / d t(t) & =K_{1} S(t) E(t)-K_{2} C(t)-K_{3} C(t), \quad C(0)=0 \\
d P / d t(t) & =K_{3} C(t), \quad P(0)=0, \\
S(t) & =S_{0}-C(t)-P(t), \quad \text { with } \quad S_{0}=S(0) \\
E(t) & =E_{0}-C(t), \quad \text { with } \quad E_{0}=E(0) .
\end{aligned}
$$

Typically the reaction $C \rightarrow P+E$ is much slower than the complex-formation reaction $S+E \rightleftharpoons C$. Thus after the initial rise of C within time t_{0}, we have $d C / d t \approx 0$, so that then

$$
\begin{aligned}
& C(t) \approx K_{1} S(t)(E 0-C(t)) /(K 2+K 3), \quad \text { or } \\
& C(t) \approx E_{0} S(t) /\left[\left(K_{2}+K_{3}\right) / K_{1}+S(t)\right], \text { for } t>t_{0} .
\end{aligned}
$$

Thus, from the equation for $d P / d t$, we have the so-called Michealis-Menten equation:

$$
d P / d t(t) \approx K_{3} E_{0} S(t) /\left(\left(K_{2}+K_{3}\right) / K_{1}+S(t)\right), \quad \text { for } \quad t>t_{0} .
$$

Now the slope $d P / d t(t)$ is measurable by fitting a straight-line to a segment of the kinetic curve for $P(t)$ with $t_{0}<t \ll t_{e}$, where t_{e} is the time such that $S\left(t_{e}\right) \approx 0$, e.g., when almost all the substrate material has been consumed. Note $S(t) \approx S_{0}$ for $t_{0}<t \ll t_{e}$ if S_{0} is large enough, so one can fit the Michealis-Menten equation to the single data point $\left(S_{0}, d P / d t\right)$ to try to obtain K_{3} and $K_{m}=\left(K_{2}+K_{3}\right) / K_{1}$, the so-called Michealis-Menten constant.

The parameter K_{3} may be independently resolved by observing that when S_{0} is very large we have $S(t) /\left(K_{m}+S(t)\right) \approx 1$ for $t_{0}<t \ll t_{e}$, so $d P / d t(t) \approx K_{3} E_{0}$. Thus the maximum rate of formation of P for a fixed E_{0} value is $K_{3} E_{0}$. Let $K_{3} E_{0}=V_{m}$. V_{m} can be determined by measuring the slope, $d P / d t(t)$, of the linear region of the kinetic curve obtained when S_{0} is very large. Now, the Michealis-Menten equation becomes:

$$
d P / d t(t) / V_{m} \approx S(t) /\left(K_{m}+S(t)\right) \quad \text { for } \quad t_{0}<t \ll t_{e}
$$

Note $d P / d t(t) / V_{m}$ is the relative rate of formation of P, i.e., the proportion of the maximum rate which is achieved. Hence, having measured V_{m}, one can then measure $d P / d t(t)$ for a relativelylarge amount of S, and then obtain K_{m} from the Michealis-Menten equation as $S_{0} V_{m} /(d P / d t(t))$ S_{0}.

The Michealis-Menten constant is the amount of substrate which will yield a product formation rate of $V_{m} / 2$. It thus is the point at which the formation of product becomes increasingly sensitive to a decreasing amount of substrate. The activity of the enzyme for a given amount of substrate is determined directly as $d P / d t(t)$ computed from the Michealis-Menten equation for a given K_{m}.

The Lineweaver-Burke form of the Michealis-Menten equation is often used because of its linear form. It is:

$$
1 /(d P / d t(t)) \approx\left(K_{m} / V_{m}\right)(1 / S(t))+\left(1 / V_{m}\right)
$$

The Eadie and Dixon form is also often used. It is:

$$
S(t) /(d P / d t(t)) \approx S(t) / V_{m}+K_{m} / V_{m}
$$

Actually, as noted above, the reaction $S+E \rightleftharpoons C \rightarrow P+E$ is a fiction. It is commonly used to approximate the situation:

$$
\begin{aligned}
& S+E \stackrel{K_{1}}{\underset{K_{2}}{\rightleftharpoons}} C \stackrel{K_{3}}{\rightleftharpoons} D \stackrel{K_{5}}{\stackrel{K_{5}}{\rightleftharpoons}} P+F \\
& U+F \rightleftharpoons B \rightleftharpoons A \rightleftharpoons V+E
\end{aligned}
$$

where C is $E S$-complex, and D is $E P$-complex and E and F are co-factors. Typically K_{4} is negligible, but as the amount of P increases, it may block an appreciable amount of enzyme if K_{6} is not nearly zero, and this can render the Michealis-Menten equation useless.

The following is an MLAB tutorial sequence for studying the Michaelis-Menten model relative to the simplified kinetic model.

First define the kinetic model by typing:

```
*FUNCTION C DIFF \(\mathrm{T}(\mathrm{T})=\mathrm{K} 1 *(\mathrm{SO}-\mathrm{C}-\mathrm{P}) *(\mathrm{E} 0-\mathrm{C})-(\mathrm{K} 2+\mathrm{K} 3) * \mathrm{C}\)
*FUNCTION P DIFF \(T(T)=K 3 * C\)
*INITIAL C (0) \(=0\)
*INITIAL \(\mathrm{P}(0)=0\)
*SO = 10; E0 = 1
*K1 = .2; K2 = .025; K3 = . 025
```

Thus we have assumed the true situation is:

$$
S+E \underset{.025}{\stackrel{.2}{\rightleftharpoons}} C \xrightarrow{.025} P+E
$$

starting with 10 moles of substrate and 1 mole of enzyme. We may look at the kinetic behavior of this system over 900 seconds by typing:

```
*Q = INTEGRATE(P DIFF T, C DIFF T, 0:900:5)
*TYPE Q ROW 1:180:10
```

The first column of Q is time, t, the second is $P(t)$, the third is $d P / d t(t)$, the fourth is $C(t)$, and the fifth is $d C / d t(t)$. We can look at the graph of P vs. t by typing:

```
*DRAW Q COL 1:2, LINETYPE dashed
*VIEW
```


Now, let us generate some "laboratory data" about our reaction. We shall use the MLAB normal random number generator to generate normally distributed random numbers. Type:

```
*M = Q COL 1:2 ROW 2:162:5
*E = (NORMRAN ON O^^NROWS(M))/4
*TYPE E
```

E is a vector of "normal" errors. Now type:

```
*M COL 2 = (M COL 2) + E
*DRAW M, POINTTYPE triangle LINETYPE none
*view
```


M is a matrix of P vs. t points "with error", as might have been measured in an actual laboratory situation. Now, let us "guess" K_{1}, K_{2}, and K_{3} and try to determine them as functions of M. Type:

```
*K1 = .3; K2 = .01; K3 = .02
*CONSTRAINTS CX={K1>K2, K2>0, K3>0}
*METHOD = GEAR; ERRFAC = .002; MAXITER = 12
*FIT(K1,K2,K3), P to M, CONSTRAINTS CX
```

The control variables METHOD and ERRFAC are set based on prior experience; this problem is stiff and runs slowly! Our curve-fit "predicts" that K_{1}, K_{2}, and K_{3} are $2.4295, .7975$, and .025296 respectively, and resets them accordingly. Note K_{1} and K_{2} are not even close to .2 and .025 , but K_{3} is approximately correct. We may observe the graph of this fit by typing:

```
*Q1 = INTEGRATE(P DIFF T, C DIFF T, 0:900:5)
*DRAW Q1 COL 1:2 color green
*VIEW
```


Q_{1} is now a matrix of "kinetic concentration and velocity curves" for our reaction as determined by curve-fitting. Let us discard our picture by typing:

```
*DELETE W
```

Now, let us analyze the same reaction using the Michaelis-Menten model. Type:

```
*K1 = .2; K2 = .025; K3 = K2
*FUNCTION MM(S)=VM*S/(KM+S)
*KM = (K2+K3)/K1; VM = K3*E0
*DRAW Q COL (1,3)
*SM = SO-(Q COL 2)-(Q COL 4)
*DRAW (Q COL 1)&'(MM ON SM), LINETYPE dashed
*view
```


Recall Q is the matrix of true curves corresponding to $K_{1}=.2, K_{2}=.025$, and $K_{3}=.025$. The matrix SM is computed as the amounts of S at time $t=0,5,10, \ldots, 900$. The curves we see are the rate of change, $d P / d t$ vs. t and its Michaelis-Menten approximation.

Now, let us generate two runs of "laboratory" data using the error vector E and obtain the two constants V_{m} and K_{m}. Type:

```
*DELETE W
*SO = 500
*Z = INTEGRATE (P DIFF T, C DIFF T, 100:300:10) COL 1:2
*DRAW Z
*Z COL 2 = (Z COL 2)+(NORMRAN ON 0^^NROWS(Z))/4
*DRAW Z, LINETYPE none, POINTTYPE crosspt
*FUNCTION Y(T)=A*T+B
*CONSTRAINTS QS = {A > 0, B > 0}
*A = 1; B = 1
*FIT(A,B), Y TO Z, CONSTRAINTS QS
*VM =A
*DRAW POINTS (Y, 50:350!2), LINETYPE dashed
*VIEW
```


We have generated a "straight-line" segment of the P vs. t curve for $S_{0}=500$, drawn it, added some "noise", shown the simulated points obtained, fit a straight line to these points, set V_{m} as the slope of this line, and drawn the straight-line fit.

Now, we proceed in the same manner to do another "experiment" to help compute K_{m}. Type:

```
*DELETE W
*SO = 10
*Z = INTEGRATE(P DIFF T, C DIFF T,100:300:10) COL 1:2
```

```
*Z COL 2 = (Z COL 2)+(NORMRAN ON O^^NROWS(Z))/4
*FIT(A,B),Y TO Z, CONSTRAINTS QS
*KM = VM*S0/A-SO\
*TYPE VM,KM
```

Now, V_{m} and K_{m} are computed. Let us look at the result. Type:

```
*DRAW Q COL (1,3)
*DRAW (Q COL 1)&'(MM ON SM) LINETYPE dotted color red
*DRAW Q1 COL (1,3) LINETYPE DASHED color green
*VIEW
```


Note the $d P / d t$ curve predicted from the kinetic differential equation model is much better than the consistent underestimate predicted by the Michaelis-Menten model.

There is another approach to estimating the Michaelis-Menten constants, V_{m} and K_{m}, based on the intersections of various linear plots. This scheme is due to R. Eisenthal and A. Cornish-Bowden (Biochemistry Journal, Vol. 139, pp. 715:730). It is robust and, at the cost of more experiments, allows a confidence region for V_{m} and K_{m} to be obtained, without the usual restrictive assumptions. Unfortunately, it often produces poor extimates of V_{m} and K_{m}.

Given observations ($S_{0 i}, H_{i}$) of substrate concentrations and corresponding product-formation velocities (obtained by linear-regression), we can construct lines defined by $V_{m} / H_{i}+K_{m} / S_{0 i}=1$, which may be plotted in K_{m}, V_{m} space. The line $\left\{\left(K_{m}, V_{m}\right) \mid V_{m} / H_{i}+K_{m} / S_{0 i}=1\right\}$ is the locus of all $\left(K_{m}, V_{m}\right)$ pairs which could produce the observation $\left(S_{0 i}, H_{i}\right)$. Each of the (K_{m}, V_{m}) points obtained by the intersections of all pairs of these lines is an estimate of the "true" K_{m}, V_{m} values. The arithmetic median of the K_{m}-estimates is the Eisenthal-Cornish-Bowden estimate of K_{m}, and the arithmetic median of the V_{m}-estimates is the Eisenthal-Cornish-Bowden estimate of V_{m}.

We shall simulate ten experiments for $S_{0}=50: 500: 50$ and compute the Michaelis-Menten velocity curve based on K_{m} and V_{m} as estimated by the Eisenthal-Cornish-Bowden procedure.

```
*FUNCTION VMF(I,J) = (SV[I]-SV[J])/(SV[I]/VV[I]-SV[J]/VV[J])
*FUNCTION KMF(I,J) = (VV[J]-VV[I])/(VV[I]/SV[I]-VV[J]/SV[J])
*FOR I = 1:10 DO \
{SO = 50*I;
        Z = INTEGRATE(P DIFF T, C DIFF T, 100:300:10) COL 1:2;
        Z COL 2 = (Z COL 2) + (NORMRAN ON 0^^NROWS(Z))/4;
        LSQRPT = 8;
        FIT(A,B),Y to Z, CONSTRAINTS QS;
        SV[I] = SO; VV[I] = A;
};
*D = 1:9^^'9
*D = COMPRESS((LIST(D)&'LIST(D'))*'LIST(D'<=D))
*D COL 1 = (D COL 1) +1
*VM = MEDIAN(VMF ON D)
*KM =MEDIAN(KMF ON D)
*TYPE VM,KM
*DELETE W
*DRAW Q COL (1,3)
*DRAW (Q COL 1)&'(MM ON SM),LINETYPE DASHED
*VIEW
```


Overall the best approach to enzyme kinetics is to try to measure enough points on the kinetic curves of several species, so that direct curve-fitting using the appropriate differential equation model can permit the association and dissociation constants to be found. The Michealis-Menten equation is used only due to the difficulty of obtaining data other than $P(t)$ for $t_{0}<t<t_{2}$. Even then, concurrent use of the kinetic model is useful. An excellent source for mathematical models in enzyme kinetics is: Enzyme Kinetics by Kent Plowman, published by McGraw-Hill. Another is Enzyme Kinetics by Irwen Segal, published by Wiley.

