Filtering Signals

Gary D. Knott, Ph.D.
Civilized Software, Inc.
12109 Heritage Park Circle
Silver Spring, MD 20906 USA

Tel. (301) 962-3711
email: csi@civilized.com
URL: www.civilized.com

Fourier Series and Transforms for Non-discrete Periodic Functions

J. B. Fourier proposed that, under mild conditions, a real-valued periodic period- p function, $x(t)=x(t+p)$, can be expressed as the sum of sinusoidal oscillations of various frequencies, amplitudes, and phaseshifts, so that

$$
x(t)=\sum_{h=0}^{\infty} M(h / p) \cdot \cos (2 \pi(h / p) t+\phi(h / p)) .
$$

This series is called the real Fourier series of the period- p function x. The term $M(h / p) \cdot \cos (2 \pi(h / p) t+\phi(h / p))$ is a cosine oscillation of period p / h, frequency h / p, amplitude $M(h / p)$, and phaseshift $\phi(h / p)$. The function x determines and is determined by the amplitude function M and the phase function ϕ, which are both defined on the frequency values $\{0,1 / p, 2 / p, \ldots\}$.

It is convenient to use Euler's relation $e^{i \theta}=\cos (\theta)+i \sin (\theta)$ to develop the mathematical theory of Fourier series for complex-valued functions, rather than just real-valued functions. In this case, we can express x in terms of an associated discrete complex-valued function x^{\wedge} which contains the amplitude and phase functions combined together. The complex-valued function x^{\wedge} is defined on the discrete set $\{\ldots,-2 / p,-1 / p, 0,1 / p, 2 / p, \ldots\}$. This function x^{\wedge} is called the Fourier transform of x.

In particular, the Fourier transform of the periodic period-p function x is:

$$
x^{\wedge}(s):=(1 / p) \int_{-p / 2}^{p / 2} x(t) e^{-2 \pi i s t} d t,
$$

for $s=\ldots,-2 / p,-1 / p, 0,1 / p, 2 / p, \ldots$.
The inverse Fourier transform of x^{\wedge} is:

$$
x^{\wedge \vee}(t):=\sum_{h=-\infty}^{\infty} x^{\wedge}(h / p) e^{2 \pi i(h / p) t}=x(t) \quad \text { a.e. }
$$

This sum is the Fourier series of x; it is a sum of terms made-up of the socalled Fourier coefficients $x^{\wedge}(h / p)$ times the complex oscillations $e^{2 \pi i(h / p) t}$. The Fourier transform of x thus produces the Fourier coefficients of x.

Fourier Series and Transforms for Discrete Periodic Functions
When we have sampled a function at the times $0, T, 2 T, \ldots,(n-1) T$, for a total of n samples equally-spaced with step-size T, we may treat these samples as a discrete function x, and we may extend this function periodically so that the discrete Fourier transform discussed below may be employed.

Thus let $x(t)$ be a discrete complex-valued periodic function of period p defined at $t=\ldots,-2 T,-T, 0, T, 2 T, \ldots$, with $p=n T$. Thus either of the discrete ranges $0 \leq t \leq(n-1) T$, or $-\lfloor n / 2\rfloor T \leq t \leq(\lceil n / 2\rceil-1) T$, among others, constitutes one period. Of course, x may in fact be defined on the whole real line.

The discrete Fourier transform of the discrete period- p, step-size T function x is

$$
x^{\wedge}(s)=(T / p) \sum_{h=-\lfloor n / 2\rfloor}^{\lceil n / 2\rceil-1} x(h T) e^{-2 \pi i s h T},
$$

for $s=\ldots,-2 / p,-1 / p, 0,1 / p, 2 / p, \ldots$, and $x^{\wedge}(s)$ is defined to be 0 for s not an integral multiple of $1 / p$. The transform x^{\wedge} is a discrete periodic function of period n / p with step-size $1 / p$. The ratio of the period and the step-size is the same value n for both x and x^{\wedge}.

This sum is just a rectangular Riemann sum approximation of the integral form of the Fourier transform of an integrable function x, defined on a regular mesh of points, each of which is T units apart from the next.

Unlike the transform of a non-discrete periodic function defined on the entire real line, x^{\wedge} is also a (discrete) periodic function, and hence the inverse operator, \vee, acts on the same type of functions as the direct operator, \wedge, but, in general, with a different period and step-size. When necessary we shall write $\wedge(p ; n)$ and $\vee(p ; n)$ to denote the discrete Fourier transform and the inverse discrete Fourier transform for discrete periodic functions of period p with step-size p / n.

The inverse discrete Fourier transform of x of period p with step-size $T=p / n$ is

$$
x^{\vee(p ; n)}(r)=\sum_{h=-\lfloor n / 2\rfloor}^{\lceil n / 2\rceil-1} x(h T) e^{2 \pi i r h T},
$$

for $r=\ldots,-2 / p,-1 / p, 0,1 / p, 2 / p, \ldots$.
By convention, $x^{\wedge(p ; n)}(s)=0$ and $x^{\vee(p ; n)}(s)=0$ except possibly at \ldots, $-2 / p,-1 / p, 0,1 / p, 2 / p, \ldots$ Note that $\vee(n / p ; n)$ is the inverse operator
of $\wedge(p ; n)$, and $\vee(p ; n)$ is the inverse operator of $\wedge(n / p ; n)$. When \wedge is understood to be $\wedge(p ; n)$, \vee shall normally be understood to be $\vee(n / p ; n)$. For the particular case where x is of period $p=n T$ with step-size p / n, both $x^{\wedge(p ; n)}$ and $x^{\vee(p ; n)}$ are periodic of period $n / p=1 / T$, and are defined on a mesh of step-size $1 / p$.

For x of period $p=n T$, the inverse discrete Fourier transform of x^{\wedge} is

$$
x^{\wedge \vee}(t)=\sum_{h=-\lfloor n / 2\rfloor}^{\lceil n / 2\rceil-1} x^{\wedge}(h / p) e^{2 \pi i(h / p) t}
$$

where $x^{\wedge \vee}$ is of period p defined on a mesh of step-size $T=p / n$, and $x^{\wedge \vee}(t)=x(t)$ for $t=\ldots,-2 T,-T, 0, T, 2 T, \ldots$ This is the Fourier series of the discrete function x.

For $-\lfloor n / 2\rfloor \leq h \leq\lceil n / 2\rceil-1, x^{\wedge}(h / p)$ is the complex amplitude of the complex oscillation $e^{2 \pi i(h / p) t}$ of frequency h / p cycles per t-unit in the Fourier series $x^{\wedge \vee}$, and $x^{\wedge \vee}$ is a sum of complex oscillations of frequencies $-\lfloor n / 2\rfloor / p, \ldots, 0, \ldots,(\lceil n / 2\rceil-1) / p$. Thus $x^{\wedge \vee}$ is band-limited; that is the Fourier series $x^{\wedge \vee}$ has no terms for frequencies outside the finite interval or band $[-\lfloor n / 2\rfloor / p,(\lceil n / 2\rceil-1) / p]$.

Note $x^{\wedge \vee}(t)$ is defined for all t; it is a periodic function of period p which coincides with x at $t=\ldots,-2 T,-T, 0, T, 2 T, \ldots$ Indeed the function $x^{\wedge \vee}$ is the unique period- p periodic function in $L^{2}(Q)$ with this property which is band-limited with $x^{\wedge(p ; n) \vee(n / p ; n) \wedge(p ; n)}(s)=0$ for s outside the band $[-\lfloor n / 2\rfloor / p,(\lceil n / 2\rceil-1) / p]$. If x is real, then when n is odd, $x^{\wedge \vee}$ is real, but when n is even, $x^{\wedge \vee}$ is complex in general, even though $x^{\wedge \vee}(t)$ is real when t is a multiple of T.

Another useful form of the discrete Fourier Inversion theorem is

$$
x^{\wedge \vee}(k T)=x(k T)=\sum_{h=-\lfloor n / 2\rfloor}^{\lceil n / 2\rceil-1} x^{\wedge}(h / p) e^{2 \pi i(h / n) k} .
$$

For $n T=p$, the functions $x(h T)$ and $e^{-2 \pi i s h T}$ with s a multiple of $1 / p$ are both periodic functions of h with period n, and hence the discrete Fourier transform of x can be obtained by summing over any contiguous index set of length n, so that $x^{\wedge}(s)=(T / p) \sum_{h=a}^{n-1+a} x(h T) e^{-2 \pi i s h T}$ for $s=\ldots,-1 / p$, $0,1 / p, \ldots$ Similarly, $x^{\wedge}(h / p)$ and $e^{2 \pi i(h / p) t}$ with t a multiple of T are both periodic functions of h with period n, so $x^{\wedge \vee}(t)=\sum_{h=a}^{n-1+a} x^{\wedge}(h / p) e^{2 \pi i(h / p) t}$, for $t=\ldots,-2 T,-T, 0, T, 2 T, \ldots$.

Indeed, the periodicity insures the same values are being summed, regardless of the value of a, so the Fourier series denoted by $x^{\wedge \vee}$ is a unique
sum of complex oscillations, which, when expressed in the particular form where $a=-\lceil n / 2\rceil$, allows us, in the case where x is real, to easily combine the positive and negative frequency terms (taking $x^{\wedge}(n /(2 p))=0$ when n is even) and shows the spectral decomposition of $x^{\wedge \vee}$ to be

$$
x(t)=\sum_{h=0}^{\lfloor n / 2\rfloor} M(h / p) \cos (2 \pi(h / p) t+\phi(h / p)) .
$$

The functions $M(n /(2 p))$ and $\phi(n /(2 p))$ are defined as follows.

$$
M(h / p)=\sqrt{\left(x^{\wedge}(h / p)+x^{\wedge}(-h / p)\right)^{2}-\left(x^{\wedge}(h / p)-x^{\wedge}(-h / p)\right)^{2}} /\left(1+\delta_{h 0}\right)
$$

for $0 \leq h \leq\lceil n / 2\rceil-1$ and, when n is even, $M(n /(2 p))=\left|x^{\wedge}(-n /(2 p))\right|$, and, by definition, $M(h / p)=0$ for $h>\lfloor n / 2\rfloor$. Also

$$
\phi(h / p)=\operatorname{atan} 2\left(-i\left(x^{\wedge}(h / p)-x^{\wedge}(-h / p)\right), x^{\wedge}(h / p)+x^{\wedge}(-h / p)\right) .
$$

for $0 \leq h \leq\lceil n / 2\rceil-1$, and, when n is even, $\phi(n /(2 p))=\operatorname{atan} 2\left(0, x^{\wedge}(-n /(2 p))\right)$, and $\phi(h / p)=0$ for $h>\lfloor n / 2\rfloor$.

The discrete positive function $M(h / p)$ is the amplitude spectrum function of x, and its square, $M(h / p)^{2}$ is the power density spectrum function of x. Since $M(h / p)$ is the amplitude of the oscillation-component of x of frequency h / p, both of these functions show the relative "amounts" of each oscillationcomponent contained in x.

Filtering

The process of filtering the discrete function x consists of modifying the amplitudes of its oscillatory components, so that $M(h / p)$ is changed to $z(h / p) M(h / p)$ for some desired scale-factor $z(h / p)$. Note when $z(h / p)=0$, the oscillation-component of frequency h / p is entirely eliminated. If we reduce or eliminate the oscillation-components of x above a given "cut-off" frequency, we have applied a low-pass filter which "passes" the low-frequency components and "stops" the higher-frequency components. A high-pass filter does just the opposite, while a band-pass filter passes those components whose frequencies lie in a specified interval.

It is convenient to perform filtering in the complex domain with respect to the Fourier series of x. This is because the convolution theorem $(x * y)^{\wedge}=$ $x^{\wedge} y^{\wedge}$ (* denotes the convolution operation) can then be employed. The basic idea in this case is as follows.

1. Given the n complex sample values $x(0), x(T), \ldots, x((n-1) T)$, sampled with the step-size T, compute the n complex Fourier coefficient values
$x^{\wedge}(-\lfloor n / 2\rfloor / p), \ldots, x^{\wedge}(-1 / p), x^{\wedge}(0), x^{\wedge}(1 / p), \ldots, x^{\wedge}((\lceil n / 2\rceil-1) / p)$, where $p=n T$.
2. Choose the filter-coefficient values $z(-\lfloor n / 2\rfloor / p), \ldots, z(-1 / p), z(0), z(1 / p), \ldots, z((\lceil n / 2\rceil-$ 1) $/ p$.
3. Compute the "filtered" Fourier coefficients $f(j / p):=z(j / p) x^{\wedge}(j / p)$ for $-\lfloor n / 2\rfloor \leq j \leq\lceil n / 2\rceil-1$.
4. Compute the inverse discrete Fourier transform f^{\vee} of the discrete function f computed in step 3 . The result is the filtered form of the discrete function x.

Generally the filter-coefficients should be chosen to be symmetric about 0 ; otherwise the phase-shifts of the oscillation-components of x will be modified by the act of filtering. Note that the function z^{\vee} is the impulse-response function of a linear system that does the filtering specified by z via convolution. For a low-pass filter, we want $z(j / p)$ to be small or zero for $|j|>c$ for some cut-off index c.

In MLAB, the complex Fourier transform and inverse transform operators interpolate their inputs so that, unless n is a power-of-two, n is decreased to the next-lower power-of-two less than n. The number of samples are thus decreased, when necessary, to obtain a power-of-two number of samples. This is needed in order to be able to apply the power-of-two fast Fourier transform. Beware; such interpolation can be harmful unless the original signal was sampled sufficiently frequently to avoid aliasing problems even after being thinned by interpolation. It is safest to simply sample a power-of-two number of points initially.

Here is an example in MLAB of applying a pure low-pass filter to a discrete real signal x composed of n samples taken with step-size T. We will discard all but the k lowest-frequency components of the the $\lceil n / 2\rceil$ oscillation components contained in x. The real signal x is assumed to be given as a 2-column matrix x , where $\mathrm{x}[j, 1]=j T$ and $\mathrm{x}[j, 2]=x(j T)$.

Now the do-file given below generates an example noisy signal in the matrix x consisting of 128 samples with step-size 1 , and then the signal in the matrix x is filtered to keep only the 14 lowest-frequency oscillation components.

```
/* do-file: filter.do = example of pure low-pass filtering */
reset
echodo = 3
/generate noisy signal */
fct f(t) = (t/60)^3+3*(t/60)^2-5*(t/60)+normran(0)
```

```
x = points(f,0:127)
k = 14 /* keep only the 14 lowest-frequency components */
tx=dft(x&'0) /* A 0-column is attached for the imaginary part. */
n = nrows(x)
n1 = 2^floor(log2(n))
/* construct z = sequence of filter coefficients */
z[n1]=0
z row (n1/2-k+2):(n1/2+k)=1
z=z&'0
/* Do the filtering and construct the filtered output fx */
tx col 2:3 = cprod(tx col 2:3, z)
fx = idft(tx) col 1:2
/* Draw graphs comparing fx to x, Also draw the x amplitude-spectrum */
draw x
draw fx color green
top title "x and filtered-x"
frame 0 to 1, 0 to . }
w1=w
draw realdft(x) col 1:2
a = (13/128)&'0 /* 13/128 = the filter cut-off frequency for x */
draw a pt uband color green
top title "x-amplitude spectrum=solid, filter cutoff=vertical line" size .015
frame 0 to 1, . }5\mathrm{ to 1
view
/* end of filter.do */
```


Note the filtered signal deviates from the original signal near the start and end. This is because the periodic extension of our signal x has a large difference between the ending sample-value and the follow-on starting sample-value so that there is a "discontinuity" in the periodic extension of x. Such discontinuities are fit in the Fourier series of x by high-frequency components, which, when removed, show the underlying tendency by the low-frequency components to smooth away the discontinuity. The behavior of the Fourier series of x in the neighborhood of a discontinuity is called Gibb's phenomenon.

In order to avoid spurious high-frequency oscillation-components in the signal due to Gibb's phenomenon which arise when our signal has a large difference between the starting sample-value and the ending sample-value, if our signal is ergogic, we could insure that x is an even function (i.e., $x(t)=$ $x(-t)$) which has no periodic-extension discontinuities by constructing a matrix twice the size (less one) of the originally-provided data matrix x as
follows.

```
n = nrows(x)
x = (x row n:2)&x
k = 2*k
```

Often we will want to avoid using a pure low-pass filter as shown above, and, instead, taper the filter coefficients from 1 to 0 over a small transition region. There are a large variety of filter coefficient functions z and corresponding filter impulse-response functions z^{\vee} that can be employed.

Rather than use Fourier transforms to low-pass filter a signal via a sequence of filter coefficients, we may, instead, directly smooth the signal via a variety of methods. Such smoothing is, of course, equivalent to using associated filter-coefficient functions, but the filtering is done directly by "convolution" in the time-domain, rather than multiplication in the frequencydomain. In MLAB, the operators SMOOTH, MMEAN, and SMOOTHSPLINE are all suitable methods to directly filter a signal. These operators should generally be compared with other filtering approaches when processing experimental data.

