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Fourier Series and Transforms for Non-discrete Periodic Func-

tions

J. B. Fourier proposed that, under mild conditions, a real-valued periodic
period-p function, x(t) = x(t+p), can be expressed as the sum of sinusoidal
oscillations of various frequencies, amplitudes, and phaseshifts, so that

x(t) =
∞
∑

h=0

M(h/p) · cos (2π(h/p)t+ φ(h/p)) .

This series is called the real Fourier series of the period-p function x. The
term M(h/p) · cos(2π(h/p)t + φ(h/p)) is a cosine oscillation of period p/h,
frequency h/p, amplitude M(h/p), and phaseshift φ(h/p). The function x
determines and is determined by the amplitude function M and the phase
function φ, which are both defined on the frequency values {0, 1/p, 2/p, . . .}.

It is convenient to use Euler’s relation eiθ = cos(θ) + i sin(θ) to de-
velop the mathematical theory of Fourier series for complex-valued func-
tions, rather than just real-valued functions. In this case, we can express x
in terms of an associated discrete complex-valued function x∧ which contains
the amplitude and phase functions combined together. The complex-valued
function x∧ is defined on the discrete set {. . . ,−2/p,−1/p, 0, 1/p, 2/p, . . .}.
This function x∧ is called the Fourier transform of x.

In particular, the Fourier transform of the periodic period-p function x
is:

x∧(s) := (1/p)

∫ p/2

−p/2
x(t)e−2πist dt,

for s = . . ., −2/p, −1/p, 0, 1/p, 2/p, . . . .

The inverse Fourier transform of x∧ is:

x∧∨(t) :=
∞
∑

h=−∞

x∧(h/p)e2πi(h/p)t = x(t) a.e.
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This sum is the Fourier series of x; it is a sum of terms made-up of the so-
called Fourier coefficients x∧(h/p) times the complex oscillations e2πi(h/p)t.
The Fourier transform of x thus produces the Fourier coefficients of x.

Fourier Series and Transforms for Discrete Periodic Functions

When we have sampled a function at the times 0, T, 2T, . . . , (n−1)T , for
a total of n samples equally-spaced with step-size T , we may treat these sam-
ples as a discrete function x, and we may extend this function periodically
so that the discrete Fourier transform discussed below may be employed.
Thus let x(t) be a discrete complex-valued periodic function of period p

defined at t = . . ., −2T , −T , 0, T , 2T , . . . , with p = nT . Thus either of the
discrete ranges 0 ≤ t ≤ (n − 1)T , or −bn/2cT ≤ t ≤ (dn/2e − 1)T , among
others, constitutes one period. Of course, x may in fact be defined on the
whole real line.
The discrete Fourier transform of the discrete period-p, step-size T func-

tion x is

x∧(s) = (T/p)

dn/2e−1
∑

h=−bn/2c

x(hT )e−2πishT ,

for s = . . ., −2/p, −1/p, 0, 1/p, 2/p, . . . , and x∧(s) is defined to be 0 for
s not an integral multiple of 1/p. The transform x∧ is a discrete periodic
function of period n/p with step-size 1/p. The ratio of the period and the
step-size is the same value n for both x and x∧.
This sum is just a rectangular Riemann sum approximation of the inte-

gral form of the Fourier transform of an integrable function x, defined on a
regular mesh of points, each of which is T units apart from the next.
Unlike the transform of a non-discrete periodic function defined on the

entire real line, x∧ is also a (discrete) periodic function, and hence the inverse
operator, ∨, acts on the same type of functions as the direct operator, ∧, but,
in general, with a different period and step-size. When necessary we shall
write ∧(p;n) and ∨(p;n) to denote the discrete Fourier transform and the
inverse discrete Fourier transform for discrete periodic functions of period p
with step-size p/n.
The inverse discrete Fourier transform of x of period p with step-size

T = p/n is

x∨(p;n)(r) =

dn/2e−1
∑

h=−bn/2c

x(hT )e2πirhT ,

for r = . . ., −2/p, −1/p, 0, 1/p, 2/p,. . . .
By convention, x∧(p;n)(s) = 0 and x∨(p;n)(s) = 0 except possibly at . . . ,

−2/p, −1/p, 0, 1/p, 2/p, . . . . Note that ∨(n/p;n) is the inverse operator
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of ∧(p;n), and ∨(p;n) is the inverse operator of ∧(n/p;n). When ∧ is
understood to be ∧(p;n), ∨ shall normally be understood to be ∨(n/p;n).
For the particular case where x is of period p = nT with step-size p/n, both
x∧(p;n) and x∨(p;n) are periodic of period n/p = 1/T , and are defined on a
mesh of step-size 1/p.
For x of period p = nT , the inverse discrete Fourier transform of x∧ is

x∧∨(t) =

dn/2e−1
∑

h=−bn/2c

x∧(h/p)e2πi(h/p)t,

where x∧∨ is of period p defined on a mesh of step-size T = p/n, and
x∧∨(t) = x(t) for t = . . ., −2T , −T , 0, T , 2T , . . . . This is the Fourier series
of the discrete function x.
For −bn/2c ≤ h ≤ dn/2e − 1, x∧(h/p) is the complex amplitude of

the complex oscillation e2πi(h/p)t of frequency h/p cycles per t-unit in the
Fourier series x∧∨, and x∧∨ is a sum of complex oscillations of frequencies
−bn/2c/p, . . . , 0, . . . , (dn/2e − 1)/p. Thus x∧∨ is band-limited; that is the
Fourier series x∧∨ has no terms for frequencies outside the finite interval or
band [−bn/2c/p, (dn/2e − 1)/p].
Note x∧∨(t) is defined for all t; it is a periodic function of period p which

coincides with x at t = . . ., −2T , −T , 0, T , 2T , . . . . Indeed the function
x∧∨ is the unique period-p periodic function in L2(Q) with this property
which is band-limited with x∧(p;n)∨(n/p;n)∧(p;n)(s) = 0 for s outside the band
[−bn/2c/p, (dn/2e − 1)/p]. If x is real, then when n is odd, x∧∨ is real, but
when n is even, x∧∨ is complex in general, even though x∧∨(t) is real when
t is a multiple of T .
Another useful form of the discrete Fourier Inversion theorem is

x∧∨(kT ) = x(kT ) =

dn/2e−1
∑

h=−bn/2c

x∧(h/p)e2πi(h/n)k.

For nT = p, the functions x(hT ) and e−2πishT with s a multiple of 1/p
are both periodic functions of h with period n, and hence the discrete Fourier
transform of x can be obtained by summing over any contiguous index set
of length n, so that x∧(s) = (T/p)

∑n−1+a
h=a x(hT )e−2πishT for s = . . ., −1/p,

0, 1/p, . . . . Similarly, x∧(h/p) and e2πi(h/p)t with t a multiple of T are both
periodic functions of h with period n, so x∧∨(t) =

∑n−1+a
h=a x∧(h/p)e2πi(h/p)t,

for t = . . ., −2T , −T , 0, T , 2T ,. . . .
Indeed, the periodicity insures the same values are being summed, re-

gardless of the value of a, so the Fourier series denoted by x∧∨ is a unique
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sum of complex oscillations, which, when expressed in the particular form
where a = −dn/2e, allows us, in the case where x is real, to easily combine
the positive and negative frequency terms (taking x∧(n/(2p)) = 0 when n
is even) and shows the spectral decomposition of x∧∨ to be

x(t) =

bn/2c
∑

h=0

M(h/p) cos(2π(h/p)t+ φ(h/p)).

The functions M(n/(2p)) and φ(n/(2p)) are defined as follows.

M(h/p) =
√

(x∧(h/p) + x∧(−h/p))2 − (x∧(h/p)− x∧(−h/p))2/(1 + δh0)

for 0 ≤ h ≤ dn/2e − 1 and, when n is even, M(n/(2p)) = |x∧(−n/(2p))|,
and, by definition, M(h/p) = 0 for h > bn/2c. Also

φ(h/p) = atan2(−i(x∧(h/p)− x∧(−h/p)), x∧(h/p) + x∧(−h/p)).

for 0 ≤ h ≤ dn/2e−1, and, when n is even, φ(n/(2p)) = atan2(0, x∧(−n/(2p))),
and φ(h/p) = 0 for h > bn/2c.

The discrete positive functionM(h/p) is the amplitude spectrum function
of x, and its square, M(h/p)2 is the power density spectrum function of x.
SinceM(h/p) is the amplitude of the oscillation-component of x of frequency
h/p, both of these functions show the relative “amounts” of each oscillation-
component contained in x.

Filtering

The process of filtering the discrete function x consists of modifying
the amplitudes of its oscillatory components, so that M(h/p) is changed to
z(h/p)M(h/p) for some desired scale-factor z(h/p). Note when z(h/p) = 0,
the oscillation-component of frequency h/p is entirely eliminated. If we
reduce or eliminate the oscillation-components of x above a given “cut-off”
frequency, we have applied a low-pass filter which “passes” the low-frequency
components and “stops” the higher-frequency components. A high-pass filter
does just the opposite, while a band-pass filter passes those components
whose frequencies lie in a specified interval.

It is convenient to perform filtering in the complex domain with respect
to the Fourier series of x. This is because the convolution theorem (x∗y)∧ =
x∧y∧ (* denotes the convolution operation) can then be employed. The basic
idea in this case is as follows.

1. Given the n complex sample values x(0), x(T ), . . . , x((n− 1)T ), sam-
pled with the step-size T , compute the n complex Fourier coefficient values
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x∧(−bn/2c/p), . . ., x∧(−1/p), x∧(0), x∧(1/p), . . ., x∧((dn/2e−1)/p), where
p = nT .

2. Choose the filter-coefficient values z(−bn/2c/p), . . . , z(−1/p), z(0), z(1/p), . . . , z((dn/2e−
1)/p).

3. Compute the “filtered” Fourier coefficients f(j/p) := z(j/p)x∧(j/p)
for −bn/2c ≤ j ≤ dn/2e − 1.

4. Compute the inverse discrete Fourier transform f∨ of the discrete
function f computed in step 3. The result is the filtered form of the discrete
function x.

Generally the filter-coefficients should be chosen to be symmetric about
0; otherwise the phase-shifts of the oscillation-components of x will be modi-
fied by the act of filtering. Note that the function z∨ is the impulse-response
function of a linear system that does the filtering specified by z via convo-
lution. For a low-pass filter, we want z(j/p) to be small or zero for | j |> c
for some cut-off index c.

In MLAB, the complex Fourier transform and inverse transform opera-
tors interpolate their inputs so that, unless n is a power-of-two, n is decreased
to the next-lower power-of-two less than n. The number of samples are thus
decreased, when necessary, to obtain a power-of-two number of samples.
This is needed in order to be able to apply the power-of-two fast Fourier
transform. Beware; such interpolation can be harmful unless the original sig-
nal was sampled sufficiently frequently to avoid aliasing problems even after
being thinned by interpolation. It is safest to simply sample a power-of-two
number of points initially.

Here is an example in MLAB of applying a pure low-pass filter to a
discrete real signal x composed of n samples taken with step-size T . We
will discard all but the k lowest-frequency components of the the dn/2e
oscillation components contained in x. The real signal x is assumed to be
given as a 2-column matrix x, where x[j, 1] = jT and x[j, 2] = x(jT ).

Now the do-file given below generates an example noisy signal in the
matrix x consisting of 128 samples with step-size 1, and then the signal
in the matrix x is filtered to keep only the 14 lowest-frequency oscillation
components.

/* do-file: filter.do = example of pure low-pass filtering */

reset

echodo = 3

/generate noisy signal */

fct f(t) = (t/60)^3+3*(t/60)^2-5*(t/60)+normran(0)
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x = points(f,0:127)

k = 14 /* keep only the 14 lowest-frequency components */

tx=dft(x&’0) /* A 0-column is attached for the imaginary part. */

n = nrows(x)

n1 = 2^floor(log2(n))

/* construct z = sequence of filter coefficients */

z[n1]=0

z row (n1/2-k+2):(n1/2+k)=1

z=z&’0

/* Do the filtering and construct the filtered output fx */

tx col 2:3 = cprod(tx col 2:3, z)

fx = idft(tx) col 1:2

/* Draw graphs comparing fx to x, Also draw the x amplitude-spectrum */

draw x

draw fx color green

top title "x and filtered-x"

frame 0 to 1, 0 to .5

w1=w

draw realdft(x) col 1:2

a = (13/128)&’0 /* 13/128 = the filter cut-off frequency for x */

draw a pt uband color green

top title "x-amplitude spectrum=solid, filter cutoff=vertical line" size .015

frame 0 to 1, .5 to 1

view

/* end of filter.do */
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Note the filtered signal deviates from the original signal near the start
and end. This is because the periodic extension of our signal x has a
large difference between the ending sample-value and the follow-on start-
ing sample-value so that there is a “discontinuity” in the periodic extension
of x. Such discontinuities are fit in the Fourier series of x by high-frequency
components, which, when removed, show the underlying tendency by the
low-frequency components to smooth away the discontinuity. The behavior
of the Fourier series of x in the neighborhood of a discontinuity is called
Gibb’s phenomenon.
In order to avoid spurious high-frequency oscillation-components in the

signal due to Gibb’s phenomenon which arise when our signal has a large
difference between the starting sample-value and the ending sample-value, if
our signal is ergogic, we could insure that x is an even function (i.e., x(t) =
x(−t)) which has no periodic-extension discontinuities by constructing a
matrix twice the size (less one) of the originally-provided data matrix x as
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follows.

n = nrows(x)

x = (x row n:2)&x

k = 2*k

Often we will want to avoid using a pure low-pass filter as shown above,
and, instead, taper the filter coefficients from 1 to 0 over a small transi-
tion region. There are a large variety of filter coefficient functions z and
corresponding filter impulse-response functions z∨ that can be employed.
Rather than use Fourier transforms to low-pass filter a signal via a se-

quence of filter coefficients, we may, instead, directly smooth the signal via a
variety of methods. Such smoothing is, of course, equivalent to using asso-
ciated filter-coefficient functions, but the filtering is done directly by “con-
volution” in the time-domain, rather than multiplication in the frequency-
domain. In MLAB, the operators SMOOTH, MMEAN, and SMOOTH-
SPLINE are all suitable methods to directly filter a signal. These operators
should generally be compared with other filtering approaches when process-
ing experimental data.
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