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6

6

6

6

6

6
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s

0

0 0 0

s

1

s

0

0 0

.

.

. s

1

s

0

.

.
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.

s

k

s

k�1

: : : s
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3

7

7

7

7

7

7

7
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2

6

6

6

6
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a

0

a

1

.

.

.

a

k

3

7

7

7

7

5

=

2

6

6

6

6

4

a

0

a

0

.

.

.

a

0

3

7

7

7

7

5

:

The MLAB function DECONV may be used to compute the solution to this linear system.

In the continuous formulation we have the given survival function s(t) and we wish to compute

the replacement function a(t) with a(0) = a

0

given. The value a(t) is the amount of machinery to

be put into service at time t to maintain the constant level a(0).

Here we get the convolution equation a � s = a

0

(using zero-extension). Using the Fourier con-

volution theorem, we get a = ((a

0

)

^

=s

^

)

_

. Since the Fourier transform costs O(k log k) time for

k points when k is highly composite, this deconvolution method is also a method for solving the

lower-triangular system given above (when k is highly composite).
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survival curves, as above, but with embedded expressions which depend upon the various auxillary

parameters, such as age, sex, or treatment. These �ts then numerically characterize how the

auxillary parameters determine survival time.

It may be of interest to compute the expected survival time of a subject who has already survived

k time-units. This is just M(k) :=

R

1

k

tq(tjk) dt, where q(tjk) is the conditional density function,

d[P (X

1

� tjX

1

� k)]=dt. But given the survial time distribution function F and the corresponding

density function f(t) = dF (t)=dt, we can compute q(tjk) = if t < k then 0 else f(t)=a, where

a =

Z

1

k

f(s) ds = 1� F (k) = S(k):

Note q(tj0) = 0 and q(tjt) is just the hazard function f(t)=S(t).

The expected additional survival time function M(k) can be easily computed and graphed in

MLAB. One use for the function M(k) is to estimate lifetimes for subjects with censored survival

times. By thus \completing" a data set, we obtain uncensored data which is amenable to a variety

of otherwise inapplicable statistical procedures.

One interesting use of survival curve modeling is as follows. Suppose we have a survival function

s(t), possibly obtained by curve-�tting observed survival data. Let s(t) be the fraction of machines

(or components, or people, or \items") which survives at least to time t. Suppose that we wish to

replace these machines on a regular schedule so as to maintain the constant level of a

0

machines in

service. Note that each newly-introduced replacement batch of machines follows the same survival

behavior as the original machines. We wish to compute the replacement schedule function. Note

the replacement function can be used for budget projection purposes.

First we shall look at the discrete formulation of the problem. Set s

0

= 1 and in general let s

i

be

the fraction of machines which survive for at least i weeks. Let a

0

be the initial number of machines

at time 0, and let a

i

denote the number of machines placed in service at week i. The number of

machines operating starting at week k is a

0

s

k

+ a

1

s

k�1

+ � � �+ a

k

s

0

. Since we wish to maintain

the constant level of a

0

machines at each week, we equate a

0

and a

0

s

k

+a

1

s

k�1

+ � � �+a

k

s

0

. From

this we get the following recursion equation for a

k

, 0 � k.

a

k

= (a

0

�

k�1

X

j=1

a

j

s

k�j

)=s

0

with a

0

and s

0

, s

1

, : : : , s

k

given.

This represents the solution vector of the following lower-triangular Toeplitz system.
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the matrix H1 of points on the estimated survival curve obtained above. Greenwood's variance

approximation for

^

S computed by KMSURV() in H1 col 3 is used to compute appropriate weights

for the curve-�t.

*FUNCTION SW(T)=EXP(-((IF T=0 THEN .000001 ELSE T)/A)^B)

*A = 1;B = 1; H1[1,3] = 1

*FIT(A,B), SW TO H1 COL 1:2 WITH WEIGHT 1/(H1 COL 3)

final parameter values

value error dependency parameter

1.837800012 0.05250877741 0.3849266596 A

1.451240067 0.05755968774 0.3849266596 B

4 iterations

CONVERGED

best weighted sum of squares = 8.691990e+00

weighted root mean square error = 5.673848e-01

weighted deviation fraction = 1.869069e-02

R squared = 9.756895e-01

*DRAW POINTS(SW,0:4:.05)

*bottom title "Fit of Weibull distribution to Kaplan-Meier curve"

*view

Often, we wish to compare the survival curves of several dissimilar groups of patients, to determine,

for example, which of several distinct treatments is superior. This can be done by comparing

the estimated survival curves directly with an appropriate statistical test (such as the Mantel-

Haensel test, MHT) provided by MLAB. We may also want to �t explanatory models to the

5



we can produce a graph of

~

S as shown below. The tic-marks show the points where censored

observations occur.

*DELETE W

*D = Y&'E

*D = SORT(SORT(D,2,-1),1)

*H1 = KMSURV(D)

*H = STEPGRAPH(H1 COL 1:2)

*R = (0 &' 1) & H & (H[NROWS(H),1] &' 0)

*DRAW R, COLOR RED

*Y1 = COMPRESS(D,2,1) COL 1

*FCT F(X) = LOOKUP(H,X)

*H2 = POINTS(F,Y1)

*DRAW H2 LINE NONE, PT VBAR, PTSIZE .015, COLOR GREEN

*WINDOW 0 TO 4, 0 TO 1

*TOP TITLE "Kaplan-Meier curve (tick marks: censor times)"

*VIEW

We may postulate a speci�c form for the distribution of the X

i

random variables. For example, if

the survival time distribution function is a Weibull distribution with group-speci�c parameters, a

and b, then the survival curve is given by SW (t) = exp(�(t=a)

b

).

Now, we may estimate the parameters a and b using MLAB to �t the model function SW (t) to

a matrix of points lying on the Kaplan-Meier estimated survival curve. This is demonstrated for

4



3.266290 0

2.215458 1

.5546782 0

.1355474 1

.1247086 0

.9045237 1

.4080161 1

1.188316 1

1.243582 1

1.043640 1

*L = 4

*H = CDF(Y)

*FUNCTION SE(T)=IF T>=L THEN 0 ELSE (1-LOOKUP(h,t))/(1-T/L)

*DRAW POINTS(SE,0:L:.1)

*top title "Survival function estimate (1-cdf(y))/(1-G)"

*VIEW

One drawback to this estimator is the fact that it is not monotonically decreasing, as is seen

above. Alternatively, we can avoid assuming a speci�c censoring-time distribution by using the

asymptotically-unbiased Kaplan-Meier product-limit estimator function,

^

S as the estimator func-

tion for the survival function S. This can be computed in MLAB using the KMSURV function and

graphed using the STEPGRAPH function.

For example, given the data, Y , listed above, together with the associated result-code vector, E,

3



MATRIX :

1.635686 0

.3113416 0

.4963642 1

1.131409 0

2.221448 0

1.668752 1

2.785097 0

.3379156 0

.4495545 1

3.020983 1

.3994093 0

.9359379 1

.9697097 0

.6193121 0

.1234482 0

.8931070 1

.2233199 1

.8303535 0

3.926499 0

2.012626 1

.3871494 1

.9381460 1

1.210837 1

1.704919 0

1.006140 1

1.998524 1

.3763392 0

1.184550 0

.7832847 1

.9971150 0

.0452861 0

2.145687 1

.8396369 1

1.319498 0

3.288359 1

.7552886 1

1.017174 0

.8238844 1

.5893285 1

.2916714 0

2



Kaplan-Meier Survival Curve Estimation

Gary D. Knott, Ph.D.

Civilized Software Inc.

7735 Old Georgetown Road

Suite 410

Bethesda, Md. 20814

Tel: (301)652-4714

Suppose we have survival data for a group of n similar patients, with censoring present, so that

the data consists of pairs of values (y

1

; e

1

), (y

2

; e

2

), : : : , (y

n

; e

n

) where each e

i

is either 0 or 1.

When e

i

= 1, y

i

is the time until death of patient i, counting from the study starting point, and

when e

i

= 0, y

i

is the censoring time for patient i, indicating that patient i was lost to follow-up

with an unknown fate after y

i

time-units from the study starting point. The value e

i

is called the

result-code for patient i. Note survival time can be, in fact, the time until a \response" of some

kind occurs; thus survival modeling has more general application than may be apparent.

Suppose the patients in the group have survival times, X

1

, X

2

, .: : :X

n

, which are independent

identically-distributed random variables, a realization of which is, except for censoring, given by

our data. Let F (t) be the common distribution function of X

1

, : : : , X

n

. We wish to estimate the

survival function S(t) = P (X

i

> t) = 1� F (t).

Associated with eachX

i

, we postulate a censoring-time random variable, C

i

. The random variables

C

1

, : : : , C

n

are assumed to be independent and identically-distributed, with the distribution

function G(t) = P (C

i

� t). For any realization, (

~

X

i

;

~

C

i

) where

~

X

i

is a sample of X

i

and

~

C

i

is a

sample of C

i

, if

~

X

i

�

~

C

i

, we have y

i

=

~

X

i

, and e

i

= 1, while when

~

X

i

>

~

C

i

, we have y

i

=

~

C

I

and

e

i

= 0. Thus, the value y

i

is a sample of min(X

i

; C

i

).

If we assume a speci�c formula for G(t), then we can estimate S(t) by (1�H(t))=(1�G(t)) where

H(t) is the empirical cumulative distribution function of the data-values y

1

, : : : , y

n

.

For example, suppose the censoring-time distribution is uniform on the interval [0; 4]; then, given

the column vector Y listed below, where Y

i

= y

i

, we can estimate the survival function S in MLAB

with the function SE given below. The result-code vector, E, is listed below together with Y for

later reference.

*TYPE Y&'E
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