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An old adage regarding weather in the month of March states:

March comes in like a lion and out like a lamb, or

in like a lamb and out like a lion.

If we associate lion-like weather with lower temperatures and lamb-like weather with higher tem-
peratures, then the adage can be understood to be a statement regarding the relationship between
the temperature on the first and last days of March: the average temperature on the first day of
March and the average temperature on the last day of March are anti-correlated; meaning when
the average temperature on the first day of the month is high, the average temperature on the last
day of the month is low, or visa-versa.

In this paper, we demonstrate the use of the MLAB mathematical modeling computer program
available at http://www.civilized.com to compute various measures of correlation between the
average temperatures on the first and last day of March, and test the veracity of the adage.

The average temperatures in Fahrenheit degrees on the first day and last day of March for New
York City, New York, over the last ten years was obtained from:

http://www.wunderground.com/history/airport/KNYC

After starting the MLAB program, these numbers are stored in a three column matrix M with the
following MLAB command:
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M = SHAPE(10,3,LIST(2001, 30, 42,\

2002, 37, 54,\

2003, 36, 36,\

2004, 54, 43,\

2005, 36, 48,\

2006, 34, 60,\

2007, 40, 52,\

2008, 40, 47,\

2009, 32, 49,\

2010, 42, 51))

This example of the SHAPE operator assigns 30 numbers to the matrix with ten rows and three
columns. The first column of the matrix M contains year values; the second column contains the
average temperature on the first day of March for the given year; and the third column contains
the average temperature on the last day of March for the given year.

MLAB provides several methods for quantifying correlation between two data sets. These methods
begin with the null hypothesis that no association exists between the two data sets. Here we show
four methods: linear regression, Pearson product-moment coefficient, Spearman rank correlation
coefficient, and Kendall’s τ coefficient.

We begin by generating a scatter plot of the March temperature data with the following MLAB
commands:

DRAW M COL (2,3) LINETYPE NONE POINTTYPE TRIANGLE PTSIZE .01 FFRACT \

LABEL 2001:2010 LABELSIZE .01 FFRACT

VIEW

The DRAW command generates a graph in the plane with coordinates of points given by the second
and third columns of matix M. LINETYPE NONE specifies that no lines will be drawn to connect the
points. The phrase POINTTYPE TRIANGLE causes each point to be drawn as a triangle. By virtue
of the clause PTSIZE .01 FFRACT, the base of each triangle is drawn with a size that is 0.01 frame
fraction units–which means 0.01 times the width of the full graphics window. The expression LABEL

2001:2010 indicates the numbers 2001, 2002, 2003, ..., and 2010 are to be drawn as labels on each
successive point. The size of each label is also 0.01 times the width of the graphics window due to
the clause LABELSIZE .01 FFRACT.

Following the VIEW command, the following graph is obtained:
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If the adage is true, we would expect the scatter plot to show data points lying close to a line with
negative slope, i.e. a line extending from the upper left to the lower right of the graph.

The first measure of association we consider is linear regression. We find the best-fitting straight
line for the data in the previous graph with the following MLAB commands:

FCT F(T) = A+B*T /* define the linear function */

A = 1; B = 1; /* supply initial values of slope A and intercept B */

FIT (A,B), F TO M COL (2,3) /* find the best fitting parameter values */

Note comments delimited by /* and */ are ignored by MLAB. The FCT statement defines the linear
function. In this case, the function takes one argument, T, and has two parameters, A and B. The
asterisk symbol, *, in the function definition denotes multiplication and the plus sign, +, denotes
addition.

The second statement assigns the value 1 to the parameters, A and B. Establishing initial values
of the parameters is necessary in order to evaluate the function F during the FIT operation in the
next statement.

The third statement is the FIT command. The FIT command shown causes MLAB to find the
values of the parameters A and B in the function F which minimize the sum-of-squares:
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S =

n
∑

i=1

(F (M [i, 2]) − M [i, 3])2 =

n
∑

i=1

(A + B ∗ M [i, 2] − M [i, 3])2

with n=10. MLAB returns the following information:

final parameter values

value error dependency parameter

52.92368451 13.66498553 0.9728637491 A

-0.1239812209 0.3537612101 0.9728637491 B

2 iterations

CONVERGED

best weighted sum of squares = 4.053761e+02

weighted root mean square error = 7.118428e+00

weighted deviation fraction = 9.813054e-02

R squared = 1.512113e-02

The best-fitting line segment is added to the previous scatter plot with the following command:

DRAW POINTS(F,30:60!20)

The POINTS operator in MLAB evaluates the function specified by the first argument at the values
specified by the second argument. The second argument, 30:60!20, is a vector of twenty equally
spaced values starting with 30 and ending with 60.

Another VIEW command results in the following display:
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Although there is wide deviation by the temperature data from the best-fit line segment, the slope
of the best-fit line is, nonetheless, negative, indicating anti-correlation in the data.

The Pearson product-moment coefficient provides another measure of association in two data sets.
The coefficient is computed as:

r =

∑

n

i=1
(xi − x̄)(yi − ȳ)

√
∑

n

i=1
(xi − x̄)2

√
∑

n

i=1
(yi − ȳ)2

where all three summations are for i=1:10, and x1, x2, ...xn are samples of the first population–in
our case, the average temperatures on the first day of the month; y1, y2, ..., yn are samples from
the second population– in our case the average temperatures on the last day of the month; x̄ is
the average of the xi values; and ȳ is the average of the yi values. With some algebra, one can
show that the Pearson r product-moment coefficient ranges in value from −1 to 1. The value −1 is
obtained if there is exact linear anti-correlation, the value 1 is obtained for exact linear correlation,
and values near 0 indicate no correlation or anti-correlation.

The Pearson product-moment coefficient for the temperature data in matrix M can be computed
with the MLAB command:

CORR(M COL (2,3))
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MLAB responds:

: a 2 by 2 matrix

1: 1 -0.12296801

2: -0.12296801 1

So the correlation coefficient is equal to -0.122968.

MLAB can also compute the correlation coeffient in the context of a so-called hypothesis test, using
the hypothesis test function, PEART.

PEART(M COL 2,M COL 3)

MLAB responds as follows:

[correlation-coefficient test: is the underlying correlation

r, of which the correlation R of the input data x[1:n] and

y[1:n] is a sample, plausibly zero?]

null hypothesis H0: r = 0.

Then R*sqrt((n-2)/(1-R^2)) is approximately distributed as

Student’s t with n-2 degrees of freedom.

The sample R-value = -0.122968

The sample t-value = -0.350466

The probability P(t < -0.350466) = 0.367519

This means that a value of t smaller than -0.350466 arises

about 36.751909 percent of the time, given H0.

The probability P[t > -0.350466] = 0.632481

This means that a value of t greater than -0.350466 arises

about 63.248091 percent of the time, given H0.

The probability P[t < -0.350466 or t > 0.350466] = 0.735038

This means that a value of t more extreme than 0.350466 arises

about 73.503818 percent of the time, given H0.

: a 5 by 1 matrix

1: -0.12296801

2: -.350465869

3: .367519089

4: .632480911

5: .735038179
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The R-value of −0.122968 returned indicates weak anti-correlation.

The Spearman correlation coefficient is computed from relative ranks of the n samples. We replace
the values of March 1st temperatures with their relative ranks; 1 is the rank of the highest tem-
perature and n is the rank of the lowest temperature. The values of March 31st temperatures are
also replaced by their relative ranks.

The Spearman correlation coefficient is then computed as:

ρ = 1 −

6
∑

n

i=1
d2

i

n(n2
− 1)

where di is the difference between the ranks of the i-th pair of ranks. Like the Pearson product-
moment correlation coefficient, the Spearman correlation coefficient is -1 for exact, anti-correlation;
1 for exact, correlation; and near 0 for no correlation at all.

This expression is evaluated with MLAB as follows:

SPEART(M COL 1,M COL 2)

MLAB responds to this command with:

[Spearman rank-correlation test: is the correlation R between

the ranks of the paired data d1[] and d2[] plausibly zero?]

null hypothesis H0: R = 0

The sample R-value = 0.036810

The probability P(R < 0.036810) = 0.554188

This means that a value of R smaller than 0.036810 arises

about 55.418816 percent of the time, given H0.

The probability P[R > 0.036810] = 0.445812

This means that a value of R greater than 0.036810 arises

about 44.581184 percent of the time, given H0.

The probability P[R < -0.036810 or R > 0.036810] = 0.891624

This means that a value of R more extreme than 0.036810 arises

about 89.162368 percent of the time, given H0.

: a 4 by 1 matrix

1: .036809816

2: .554188161

3: .445811839

4: .891623677
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The Spearman correlation coefficient for the first and last days’ temperatures in March has a value
of 0.0368, indicating the data are correlated, not anti-correlated.

Another measure of correlation/anti-correlation is given by the Kendall paired-sample τ coefficient.
As with the Spearman correlation coefficient, computing the Kendall paired-sample τ coefficient
begins by ranking the observations for each population separately. One then tallies the pairs of
ranks that are equal, i.e. concordant, with the pairs of ranks that are unequal, i.e. discordant. The
measure of correlation is then computed as:

τ =
(number of concordant pairs) − (number of discordant pairs)

1

2
n(n − 1)

We can evaluate the Kendall τ coefficient for the first and last day of March temperature data with
the MLAB command:

KEN1T(M COL 2,M COL 3)

MLAB responds:

[Kendall’s tau correlation-coefficient test: is the tau correlation

of the input data x[] and y[] plausibly zero?]

null hypothesis H0: tau = 0.

The sample kappa = -1

The sample tau-value = -0.022222, variance = 123.000000

The probability P(tau < -0.022222) = 0.464077

This means that a value of tau smaller than -0.022222 arises

about 46.407727 percent of the time, given H0.

The probability P[tau > -0.022222] = 0.535923

This means that a value of tau greater than -0.022222 arises

about 53.592273 percent of the time, given H0.

The probability P[tau < -0.022222 or tau > 0.022222] = 0.928155

This means that a value of tau more extreme than 0.022222 arises

about 92.815454 percent of the time, given H0.

: a 5 by 1 matrix

1: -1

2: -2.22222222E-2

3: .464077268

4: .535922732

5: .928154537
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Kendall’s τ coefficient, like the Pearson product-moment coefficient and the Spearman correlation
coefficient, is 1 for exact linear correlation, and −1 for exact anti-linear correlation. The negative
value of −0.02222 observed here indicates a tendency toward anti-correlation.

The March average daily temperature data for New York City on the first and last days of the month
in the last decade have been seen above to be weakly anti-correlated by the linear regression, Pearson
product moment, and Kendall τ measures; but linearly correlated by the Spearman correlation
coefficient.

In order to gain some perspective on this result, we consider three further tests. First we consider
correlation between temperatures on the first and last day of every month in the calendar. The
adage regarding March weather would lead one to believe that the anti-correlation observed for
the month of March is more extreme than any other month. With additional data from the web-
site given above and commands similar to those given above, the following table of correlation
coefficients and graph are obtained:

Correlation measures for 1st and last days of month

Month Regression Pearson Spearman Kendall

Jan -0.2092 -0.2804 -0.3416 -0.2667
Feb -0.9491 -0.7142 -0.7607 -0.6000
Mar -0.1240 -0.1230 0.0368 -0.0222
Apr -0.3433 -0.5175 -0.7127 -0.3611
May -0.5704 -0.5801 -0.6228 -0.4444
Jun -0.2091 -0.4503 -0.5555 -0.3611
Jul -0.0346 -0.0283 0.0522 0.0833
Aug -0.3798 -0.3071 -0.4102 -0.1667
Sep 0.0120 0.0154 -0.1140 0.0278
Oct -0.4867 -0.3580 -0.4828 -0.3056
Nov 0.4007 0.2784 0.1610 0.1667
Dec -0.2061 -0.2622 -0.3384 -0.2222
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The numbers in the legend to the right side of the plot are the Spearman rank coefficient and
the Pearson product-moment coefficient for each month. The line segments drawn are best-fit
line-segments with colors corresponding to monthly data in the same color/symbol combination.

Note that for all months except March, July, September, and November, all four measures of
association indicate anti-correlation. The month of February exhibits the largest magnitude anti-
correlation by all four measures. Therefore the adage would appear to apply more to the month of
February, than to March.

Another test easily done with MLAB is to consider correlation in temperatures on the first and
second days of March. As weather conditions between the first and second days of a month would
likely exhibit less variation than between the first and last days of a month, we would expect
correlation–as opposed to anti-correlation, in the correlation measures for first-second day temper-
ature data.

The preceeding expectation is confirmed in the following scatter plot:
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The slope of the best-fit line segment is 1.0756–a positive value confirming the expectation of
correlation.

With commands similar to those above we find the linear regression slope, Pearson product-moment
coefficient, Spearman rank correlation coefficient, and Kendall τ coefficient for the remaining
months of the year, and generate the scatter plot for data.

Correlation measures forr 1st and 2nd days of month

Month Regression Pearson Spearman Kendall

Jan 0.6028 0.7005 0.5343 0.4667
Feb 0.3340 0.3993 0.3262 0.2667
Mar 1.0756 0.8041 0.7067 0.6222
Apr 0.2611 0.4919 0.1810 0.1667
May 1.2204 0.9603 0.9576 0.9444
Jun 0.6682 0.8140 0.9034 0.8056
Jul 0.9065 0.4874 0.1503 0.2222
Aug 0.6674 0.5267 0.3955 0.3889
Sep 0.9749 0.8172 0.7990 0.6389
Oct 0.7450 0.6229 0.5172 0.4722
Nov 0.9045 0.7059 0.3644 0.2778
Dec 0.6245 0.7548 0.8190 0.7333
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It is clear that temperatures of the first and second day of the month exhibit a magnitude of
correlation that is greater than the magnitude of anti-correlation exhibited in the temperatures of
the first and last day of the month.

Finally, we can use MLAB to develop a simple, predictive model of temperature variation with
time. We define a sinusoidal function with parameters for the amplitude A, frequency B, phase C,
and DC offset D, and use the FIT command to find least-squares estimates of the parameters:

FCT Z(T) = A*SIN(B*T+C)+D

A = 35; B = 2*PI/12; C = 4; D = 55;

FIT (A,B,C,D), F TO MD

The response from MLAB is:

final parameter values

value error dependency parameter

-20.59653183 0.4956031298 0.0004216946698 A

0.5235442569 0.0006981114834 0.7425741944 B

3.013703067 0.04763598198 0.7424864215 C

55.87355095 0.3505327307 0.000898282782 D

7 iterations
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CONVERGED

best weighted sum of squares = 2.804885e+04

weighted root mean square error = 7.676337e+00

weighted deviation fraction = 9.971410e-02

R squared = 7.840235e-01

A plot of the data and fitted function appears as follows:

For more information about MLAB, please visit http://www.civilized.com.


