
MULTIPLE SITE BINDING: An MLAB Example

Gary D. Knott, Ph.D.

Civilized Software Inc.
12109 Heritage Park Cirlce

Silver Spring, MD 20906 USA
Tel: (301)962-3711

Email: csi@civilized.com
URL: www.civilized.com

Introduction

The study of how a ligand material, such as a hormone, binds to one
or more kinds of molecular complexes, called sites, is of fundamental im-
portance in biochemistry. Sites are often embedded in cell membranes, and
the binding serves to control the behavior of the cell itself. Typically we
are interested in the number of distinct kinds of sites and their frequency of
occurrence, and also the equilibrium constants for each ligand-site binding
reaction which indicates the absolute strength of each such binding reaction.

For example, quantitative analysis of hormone-receptor binding can be
easily performed using appropriate software such as MLAB. MLAB is a
computer program whose name is an acronym for “modeling laboratory”; it
is an interactive system for mathematical modeling, originally developed at
the National Institutes of Health. MLAB can fit multiple non-linear models
to data points obtained from standard displacement assays. Typical assays
involve measuring the competition between radiolabelled and cold ligand
in detergent-solubilized membrane preparations or on whole cells. Affin-
ity constants and limit values of binding protein concentrations for single
or multiple sites can be computed by fitting saturation curves in MLAB.
Output can include Scatchard plots obtained by a suitable transformation.

The general form of experimental data consists of data points of the
form (F0, B) where F0 is the concentration of supplied ligand material and

1



B is the concentration of ligand bound to sites, measured after equilibrium
is reached.

MLAB can be used to analyze down and up regulation in receptor num-
ber on the cell surface, where the binding capacity or receptor number in
liter/pmole is the limiting x-intercept on the Scatchard plot. The program
is also useful in determining whether changes in binding by different ligand
agonists/antagonists can be attributed to reduced binding affinity of the de-
fined site/sites (seen as changes in the affinity constant), or to the total loss
of binding ability of a class of sites (seen as changes in the binding capacity,
and changes in the fit from an n+1 to n site model). Similarly, compari-
son studies of a single ligand against different binding proteins that vary by
site-directed mutagenesis, or alternative splicing can be useful in exploring
mechanisms of ligand/receptor interaction, including amino acid and charge
requirements.

In addition, post-translational processing and folding of the nascent pro-
tein in the endoplasmic reticulum can be studied by estimating the number
of active receptor molecules that have reached the cell surface. These studies
are of current interest to biochemists, and an accurate method of quantifi-
cation is important since conclusions about the biological system, which in
turn determine the future direction of research, are based on the calculated
binding parameters.

In addition to saturation and Scatchard analyses, MLAB can be used
in many other curve fitting applications such as kinetic, Michaelis-Menten,
Lineweaver-Burke plots, and various statistical analyses. Kinetic analysis
involves fitting differential equation models, which is a unique capability of
MLAB.

The MLAB Mathematical Modeling System

MLAB has hundreds of useful functions, e.g., the discrete Fourier trans-
form function dft and the parametric spline interpolation function splinep.
One of the central components of the system is a curve fitting program which
will adjust the parameters of a model function to minimize the weighted sum
of the errors raised to a specified power. A repertoire of mathematical oper-
ators and functions, routines for solving differential equations, a collection
of routines for onscreen drawing and for hardcopy plotting, and mechanisms
for saving data between sessions provide a powerful and convenient environ-

2



ment for data manipulation, arithmetic calculations, and for building and
testing models.

The user communicates with MLAB by typing commands which are
executed at once or by providing a script to be executed. Should the user
have questions, typing HELP will put the on-line system documentation at
his disposal. The MLAB language is defined in the MLAB reference manual.

One of MLAB’s main uses is to fit models to data. Curve-fitting is a
useful analytical tool in many diverse disciplines. The basic notion is easily
described. Given data, say various points in the plane (x1, y1), (x2, y2), .. . . ,
(xn, yn), and a function y = f(x) where f involves some parameters, say a
and b, as for example f(x) = axb + 1, we may wish to calculate values for
the parameters a and b so that the function f well-predicts the observed
data, that is, so that f(xi) = yi for 1 ≤ i ≤ n. In this case, we say
we have fit the model f to the data by estimating the parameters a and
b. The end result is merely the values obtained for the initially unknown
parameters. The same principles apply in higher dimensions with arbitrarily
many parameters. MLAB can simultaneously fit multiple non-linear model
functions, some or all of which may be implicit functions, or may even be
defined by a system of differential equations.

The curve-fitting and graphics display facilities of MLABmake it an ideal
tool for the estimation of equilibrium constants from data, which typically
consist of observed amounts of ligand bound for various specified amounts
of ligand provided for binding.

The Mathematics of Multiple Site Binding

Suppose we have a ligand, F , which binds to each of N independently-

acting sites, S1, S2, . . . , SN , which are present in the various concentrations
of S10 µM, S20 µM, . . . , and SN0 µM respectively. Each reaction F+Si ⇀↽ Bi

forms a bound complex Bi, and we shall define ki to be the associated equi-
librium constant. Let F0 denote the concentration of ligand present initially,
and let F be the concentration of free ligand at equilibrium. Similarly, let
Si denote the concentration of free sites of type i at equilibrium, and let Bi

denote the concentration of bound site i complex at equilibrium. Note we
use the symbols F , Si, and Bi for the numerical quantities in µM units of
these materials, as well as for the names of the materials themselves. Then:

ki = Bi/(FSi) and Bi + Si = Si0 for 1 ≤ i ≤ N, and

3



F = F0 −B1 −B2 − . . .−BN .

Often there is a fictitious (N + 1)-st site, X, which binds F molecules,
which is introduced to describe the non-specific binding of F molecules with
weak affinity to many locations, other than the N specific sites of interest.
Let k0 be the equilibrium constant for the fictitious non-specific binding
reaction F +X ⇀↽ Y . Then we have:

ki = Bi/(FSi) and Bi + Si = Si0 for 1 ≤ i ≤ N,

k0 = Y/(FX) and Y +X = X0, and

F = F0 −B1 −B2 − . . .−BN − Y,

where Y is the concentration of non-specifically bound ligand, X0 is the con-
centration of the fictitious non-specific binding site, and X is the concentra-
tion of the free fictitious site at equilibrium. Then Bi = kiSi0F/(1 + kiF )
for 1 ≤ i ≤ N , and Y = k0X0F/(1 + k0F ).

Now, to capture the notion of non-specific binding as a weak sticking
of F molecules almost everywhere, let k0 tend to zero and let X0 tend to
infinity such that k0X0 = c, where c is a fixed constant. Then Y → cF , and
we have:

Bi = kiSi0F/(1+kiF ) for 1 ≤ i ≤ N, Y = cF, and F = F0−B1−. . .−BN−Y.

Note that the mathematical form Bi = Si0F/(1/ki + F ) is difficult to
handle when ki approaches 0, or when 1/ki + F approaches 0, so that the
form given above is more convenient.

Usually values of F and/or B1 + B2 + . . . + BN + Y are measured for
different values of F0 and we wish to use this data, which is generally of
the form (F0, F ) or (F0, B1 + . . .+BN + Y ), to estimate k1, k2, . . . , kN , c,
and, if not already known, S10, S20, . . . , SN0. When only the total bound
concentration B1 +B2 + . . .+BN +Y is measured, rather than B1, B2, . . . ,
BN and Y separately, only a few sites can be distinguished by curve-fitting.
In order to determine how many kinds of sites appear to be present, we
must try each of the 1-site, 2-site, etc. models and choose among them on
the basis of how well the data is fit. If the equilibrium constants obtained
for two species of sites are close, then there are no grounds for considering
them to be distinct species, based on this analysis alone.

4



Often people use the modelB(F ) = k1S10F/(1+k1F )+· · ·+kNSN0F/(1+
kNF ) + cF and fit it to data points of the form (F,B) where F is the free
ligand concentration at equilibrium and B is the total bound ligand con-
centration at equilibrium, with one such point for each experiment. The
difficulty with this approach is that we must compute F as F0 − B so that
there is correlated error in both the dependent and independent values used

to form the data points. Our approach uses data points of the form (F0, B),
and since F0 can be accurately determined, we avoid the aforementioned
difficulty of error in the independent variable.

For example, the general two-site model with non-specific binding can
be defined in MLAB with the following dialog. Here and hereafter, the
text shown following the MLAB prompt asterisk is an MLAB command
statement entered by the user.

* FUNCTION A(F0) = B(F(F0))

* FUNCTION B(F) = k1*S10*F/(1+k1*F) + k2*S20*F/(1+k2*F)

* FUNCTION F(F0) = ROOT(Z,0,F0,F0-B(Z)-Z*(1+c))

* FUNCTION Y(F0) = c*F(F0)

Here A(F0) = B1 + . . .+BN for N = 2.

These commands exemplify the MLAB FUNCTION statement, which
is used to define a function or differential equation. Note that arguments
of functions must be explicitly specified. Variables, such as k1 and k2,
which appear in the body of a function, but not in its argument list, are
called parameters. Parameters must be assigned values before an associated
function can be evaluated.

ROOT is an operator which is built-in in MLAB. ROOT(Z,A,B,E) is
a value between A and B which, when taken as the value of the dummy
variable, Z, makes the expression, E, which involves Z, equal to zero. Thus
ROOT(Z,A,B,E) is a solution of E(Z) = 0. The model given above, involving
a so-called implicit function, deserves careful study; it is easily extendible
to more than two sites. The amount F of free-ligand at equilibrium as a
function of F0 satisfies F0 − F = B(F ) + c · F .

An Example

5



Suppose we have measured F in µM units as a function of F0 in µM
units, as follows:

F0 F

.58668 .036
1.1734 .096
2.3467 .385
2.9334 .61
4.1068 1.15
4.6934 1.46
5.8668 2.11
7.0402 2.73

and we have S10 = S20 = 1.7121µM.

Then, we can introduce the appropriate constraints (which should always
be used for this particular model), guess k1, k2, and c and then estimate
them, as follows.

* constraints q ={k1>=0,k2>=0,c>=0,S10>=0,S20>=0}

The CONSTRAINTS statement permits the user to specify successive linear
inequalities or equations involving the parameters (or potential parameters).
Now we may specify values for the parameters, guessing when necessary.

* k1 = 10; k2 = 1; c = 0; S10 = 1.7121; S20 = S10;

Here the ASSIGNMENT statement is exemplified. In this case all the above
assignments are assigning values to scalar variables, but the ASSIGNMENT

statement is used to assign values to matrices as well. This can be seen in
the next ASSIGNMENT statement which defines a matrix, D.

* D = Kread(8,2)

.58668 .036

1.1734 .096

2.3467 .385

2.9334 .61

6



4.1068 1.15

4.6934 1.46

5.8668 2.11

7.0402 2.73

The KREAD operator takes optional array size arguments; in this case
an 8 row by 2 column matrix is specified, and reads in numbers from the
keyboard to construct an appropriately-dimensioned matrix as the result.
An analogous function is used to read numbers from a file. This matrix is
then, in this case, assigned to D. Note the entry of the numbers which follow.
Now we may examine D by “typing it out” using the TYPE statement.

* type D

D: 8 by 2 matrix

1: .58668 .36E1

2: 1.1734 .96E-1

3: 2.3467 .385

4: 2.9334 .61

5: 4.1068 1.15

6: 4.6934 1.46

7: 5.8668 2.11

8: 7.0402 2.73

We have established a model function, F , and entered data, D. We
expect that f(D[i, 1]) ≈ D[i, 2] would hold, if only the parameters k1,
k2, and c were set to their “correct” values. The following FIT state-
ment requests MLAB to estimate k1, k2, and c by assigning them val-
ues which minimize the sum-of-squares objective function S(k1,k2, c) =
∑8

i=1 (F (D[i, 1])−D[i, 2])2.

* maxiter = 30; TOLSOS = .001

* fit(k1,k2,c), F to d, constraints q

final parameter values

value error dependency parameter

13.86352736 2.331373145 0.665073064 K1

0.5321372226 0.06602915638 0.9432600296 K2

0.5874015019 0.02229743988 0.9171690302 C

5 iterations

7



CONVERGED

best sum of squares = 9.78763e-04

root mean square error = 1.39912e-02

deviation fraction = 6.82654e-03

R squared = 9.99854e-01

no active constraints

The behavior of the FIT statement depends upon the supplied constraints
q, as well as upon the MLAB control variables: maxiter, the maximum
number of iterations and tolsos, the requested convergence factor.

MLAB uses a carefully-tuned version of the Marquardt-Levenberg magnified-
diagonal algorithm which is, in turn, a form of the Gauss-Newton procedure
for minimizing a function which is in the form of a sum-of-squares. This
process estimates the value of the parameter vector b = (k1,k2, c)

′ by suc-
cessive approximations b(0), b(1), . . . , b(n), where b(0) is the vector of initial
guesses for k1, k2, and c, and b(j+1) = b(j) + β(j), where

β(j) = (X ′V −1X + εG)−1X ′V −1(y − (f(x1; b
(j)), . . . , f(x8; b

(j)))′), with

Xst = ∂f(xs; b
(j))/∂bt and

Gst = if s = t then (X ′V −1X)st else 0 and

xs = D[s, 1] for 1 ≤ s ≤ 8, and

y = (D[1, 2], . . . , D[8, 2])′,

where V is the estimated covariance matrix of the observations. In our
example, V = I, the identity matrix. In general V is determined from
weight-values supplied by the user.

An iteration consists of computing b(j+1) from b(j). Note that this re-
quires the partial derivatives of the model function with respect to the pa-
rameters evaluated at b(j), since these values form the matrix X. In MLAB,
these derivatives are automatically computed symbolically and evaluated to
form X. The convenience thus obtained is considerable and the parameter
estimation process is provided with more accurate derivative values. For
example the derivative of F with respect to k1 can be explicitly displayed
in MLAB as follows.

8



* type F diff k1

FUNCTION F DIFF K1(F0) = EVAL(Z,ROOT(Z,0,F0,(F0-B(Z))-Z*(1+c)),

-B DIFF K1(Z)/(B DIFF F(Z)-(1+c)))

Indeed derivatives are full-fledged members of the class of functions and
can be used in graphics or curve-fitting in MLAB just as can any other
user-defined function.

The material typed out above shows that the vector of parameters (k1,k2, c)
has been estimated to be (13.8633 ± 2.3315, .532151 ± .0660296, .587396 ±
.0222973), with reasonably small dependency values, and with an RMS er-
ror of about .014, which should be comparable with the experimental error
in our data, D. The sum-of-squares was reduced from an initial value of
2.64314 to .000978763 at the final parameter values.

In order to visually see how our model with its parameters set to their
best-estimated values corresponds to the data, we may draw a graph of the
data points and the model function. Although we are drawing only the sim-
plest and most direct kind of picture here, it should be noted that MLAB
provides facilities for many types of point-symbols and types of lines, axes
with arbitrarily-placed numeric labels in various formats, titles in the form
of text strings in arbitrary sizes and various fonts with subscripts and su-
perscripts, color, and a number of other special features. It is quite possible
to prepare more or less elaborate publication-quality graphs with a modest
amount of effort. Indeed this is one of MLAB’s most-used facilities. The
desired graph can be constructed as follows.

* draw D, linetype none,pointtype circle

* draw c2 = points(F,0:8:.2)

* VIEW

9



The first DRAW command above plots the data points, while the second
DRAW command constructs a curve called C2, which is a graph consisting of
solid straight-lines connecting the points which are the rows of the 2-column
matrix which is the value of the expression points(F,0:8:.2). This matrix
has the values 0 through 8 in steps of .2 in its first column and corresponding
values of the function F evaluated at 0 through 8 in steps of .2 in the second
column. The POINTS operator is very useful for graphing functions. Both
these curves are drawn in the default MLAB 2D-window called W (since
no other window is specified) which has predefined labeled axes already
present. The picture finally appears when its display is requested with a view
statement and a plot can be obtained if desired using the PLOT statement.

Often a Scatchard graph of Bound/Free vs. Bound (i.e., A(F0)/F (F0) vs.
A(F0)) is desired. Although such a formulation should not be used for curve-
fitting due to the non-normal error introduced by computing Bound/Free,
it is quite straightforward to draw the data and model Scatchard plots as
follows. Note the current picture in W is saved and restored.

* SAVE W IN GW

10



* DELETE W

* FUNCTION R(X,Y)=IF Y=0 THEN (k1*s10+k2*s20) ELSE X/Y

* MF = F ON 0:8:.2

* M = B ON MF

* M = M&’(R ON M&’MF)

* DRAW M;

* MF = D COL 2

* M = (D COL 1)-(1+C)*MF

* M = M&’(R ON M&’MF)

* DRAW M, LINETYPE NONE, POINTTYPE "o"

* TOP TITLE "Bound/Free vs. Bound"

* VIEW

* DELETE W,MF,M

* USE GW

The & óperator denotes column concatenation, while the ON operator,
as in F ON H, applies the function F to each row of the matrix H treated as
an argument list for F and returns the column vector of result values.

11



It is an enlightening exercise to fit the Scatchard model to the corre-
sponding transformed data and to then draw a graph of the original data
points and the function f using the parameter values obtained.

You can see that MLAB is an extremely flexible and general tool for
curve-fitting. Moreover, it has a broad range of other useful functions, only
a few of which have been alluded to here.

Further information about MLAB is available from Civilized Software,
Inc., 12109 Heritage Park Circle, Silver Spring, MD 20906, Tel. (301) 962–
3711, Email: csi@civilized.com.

12


