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Introduction

Consider the following experiment: a 1 cubic centimeter sample of water
at room temperature is placed between the pole faces of a 10,000 Gauss (1
Tesla) electromagnet. Crudely, the protons in the water molecules will align
with the applied magnetic field. As the system reaches equilibrium, a small
magnetic dipole of magnitude 3.4E-6 Gauss is induced in the sample parallel
to the applied field (i.e., the aligned protons jointly act as a small magnet).

Designate the axis passing from the south pole to the north pole of the
electromagnet as the z-axis with the origin at the center of the sample, mid-
way between the electromagnet’s pole faces. The water sample is surrounded
by two large thin wire coils such that the axes of the coils are perpendicular
to each other and to the z-axis. The axes passing through the center of the
coils are designated the x and y axes.

A brief 42 megahertz alternating current pulse (i.e., a brief time-duration)
is applied to the x-axis coil. If the pulse is of the appropriate amplitude and
duration, it causes the induced magnetic dipole to tilt away from the z-axis.
The magnetic dipole then precesses around the z-axis, gradually returning
to its equilibrium position parallel to the z-axis. Remember the “magnetic
dipole” is the sum of all the tiny dipoles of the individual protons. The
component of the magnetic dipole which rotates in the xy-plane induces 42
megahertz oscillating currents—90 degrees out of phase with each other in
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the two perpendicular coils surrounding the water sample which die away in
time as the magnetic dipole precession goes to zero.

The associated voltages across the terminals of the two coils can be mea-
sured. These signals are termed free induction decay signals and they are
the basic physical effect which underlies modern day magnetic resonance
imaging (MRI) and nuclear magnetic resonance (NMR) experiments. Free
induction decay can be described by a model developed by Felix Bloch in
the paper “Nuclear Induction” Phys. Rev. 70 (1946) 460. The mathemat-
ical formulation of the model is called Bloch’s equations and consists of 3
ordinary differential equations:

dMx

dt
= γ(MyHz −MzHy)−

Mx

T2

(1)

dMy

dt
= γ(MzHx −MxHz)−

My

T2

(2)

dMz

dt
= γ(MxHy −MyHx) +

(M0 −Mz)

T1

(3)

These equations predict the evolution of the induced magnetic dipole,M(t) =
(Mx(t),My(t),Mz(t)), in the presence of a uniform magnetic field H =
(Hx, Hy, Hz). The magnetic dipole at time t is a vector M(t) in the direction
of the dipole magnetic field and whose magnitude is taken as the strength
of the dipole magnetic field. We take M0 = |M(0−)| to be the magnitude of
the induced magnetic dipole at equilibrium before the imposed 42Mz pulse.

The parameter γ is the gyromagnetic ratio for protons. Crudely, this is
the angular momentum of the spin of a proton.

The parameter T1 is the spin-lattice relaxation constant; this is the time
required for the z-component of the magnetic dipole vector to relax 1/e of
the way towards equilibrium.

The parameter T2 is the spin-spin relaxation constant; this is the time re-
quired for x and y-components of the magnetic dipole vector to relax 1/e
of the way towards equilibrium; for Mx and My the equilbrium values are 0.

The free induction decay signals observed on the x-axis coil and y-axis coil
are proportional to the components Mx(t) and My(t), respectively.
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This paper will demonstrate how the MLAB mathematical modeling sys-
tem can be used to solve Bloch’s equations to predict free induction decay
signals in single and double pulse experiments.

A Single π
4
Pulse Experiment

In what follows, MLAB instructions will be typed in bold face on lines
beginning with the prompt symbol * and comments will be delimited by /*

and */. Although it is not shown, the <Enter> key should be struck at
the end of each line. This computation can equally-well be “scripted” by
preparing an MLAB do-file and executing it.

We begin by simulating a single pulse experiment which rotates the mag-
netic dipole of the sample by π

4
radians about the x-axis. First define Bloch’s

equations by typing:

* function mx’t(t) = g*(my*hz(t)-mz*hy(t))-mx/t2

* function my’t(t) = g*(mz*hx(t)-mx*hz(t))-my/t2

* function mz’t(t) = g*(mx*hy(t)-my*hx(t))+(m0-mz)/t1

The function statement allows the user to define any algebraic or differen-
tial equation model desired. The apostrophe, ’, denotes the differentiation
operation with respect to the following symbol.

Next assign values to the constants appearing in the function statements
by typing

* g = 2.66E4 /* gyromagnetic ratio for protons */

* m0 = 3.4E-6 /* equilibrium magnitude of magnetic dipole in Gauss */

* t1 = 1.E-6 /* spin-lattice relaxation time in seconds */

* t2 = 1.E-6 /* spin-spin relaxation time in seconds */

* beta1 = pi/4 /* rotation angle for first pulse in radians */

* h0 = 10000 /* magnitude of external magnetic field in Gauss */

* fct hx(t) = 0 /* x-component of external magnetic field in Gauss */

* fct hy(t) = 0 /* y-component of external magnetic field in Gauss */

* fct hz(t) = h0/* z-component of external magnetic field in Gauss */

The magnetic field is defined as having only a z-component of 10000 Gauss.
For a normal water sample, T1 is roughly 1 second and T2 is roughly a mil-
lisecond. Values for the spin-lattice and spin-spin relaxation constants have
been selected here in convenient units so that the effect of relaxation can
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be observed in the time scale of several precessions of the induced magnetic
dipole. If the unit of microseconds was used, several thousand such time
periods would need to observed.

The magnetic dipole vector will precess about the z-axis at the Larmor
frequency, ω = γH0

2π
= 42 megahertz. We will solve Bloch’s equations for ten

precessions sampled at 300 time points. Define a vector t with components
equal to the times of observation.

* nsteps = 300

* tau = 10*2*pi/(g*h0)

* t = 0:tau!nsteps

The 0:tau!nsteps construct in the last statement instructs MLAB to make
t a row vector with components 0 to tau in 299 steps yielding 300 values
i.e., with the step-size of tau/299. We can now simulate the single pulse
experiment by defining a so-called macro which initializes the components
of the magnetic dipole vector at time 0 after the pulse and then integrates
the differential equation model.

* pulse1 = "initial mx(0) = 0;\

initial my(0) = sin(beta1)*m0;\

initial mz(0) = cos(beta1)*m0;\

m = points(mx,my,mz,t);"

Here the initial statements provide the initial conditions for the differen-
tial equations—the equilibrium dipole moment is rotated by an angle beta1
about the x-axis. The points operator solves the differential equations for
mx, my, and mz at the times listed in the vector (i.e., the one-column matrix)
t. The points operator returns a 4 column array with time in column 1,
and the x, y, and z components of the magnetic dipole vector in columns 2,
3, and 4, respectively. The macro is executed as follows:

* do pulse1

We can generate a 3 dimensional perspective figure of the time evolution of
the magnetic dipole vector by defining another macro:

* mdip = "delete m col 1;\

m = (0^^’3)&m;\

draw m lt sequence;"
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This macro instructs MLAB to throw away the time information in column
1 of the matrix m, add the origin (0, 0, 0) to the list of magnetic dipole vector
components, and draw the resulting sequence of points. We define a “macro”
because we can reuse it as desired. We execute the macro followed by some
3 dimensional perspective positioning commands as follows:

* do mdip

* cmd3d("raise 1") /* raises the point of view */

* cmd3d("truck 1") /* moves the point of view to the right */

* cmd3d("track") /* points the direction of view to the center */

* cmd3d("dolly 1") /* moves the point of view toward the subject */

* cmd3d("twist -20")

* cmd3d("axes") /* draws coordinate axes */

* view

The following picture showing the path of the “tip” of the magnetic dipole
vector over the time-period [0, tau] then appears on the display:

Note that the magnetic dipole at time 0 is drawn as a line segment at a
45 degree angle in the yz plane. As time progresses, the head of the mag-
netic dipole vector precesses around the z-axis. As the vector precesses, the
magnitude of the component in the xy plane (the transverse component) de-
creases in time at a rate determined by T2, while the component along the z
axis (the longitudinal component) increases in time at a rate determined by
T1. If the MLAB calculation of the magnetic dipole’s time evolution were
continued to longer times, the transverse component of the magnetic dipole
would completely vanish and the magnetic dipole would fully recover along
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the z-axis.

The transverse component of the magnetic dipole can be decomposed into
x and y components. It is the variations of the components of the magnetic
dipole along the x and y axes which give rise to the free induction decay
signals. These can be drawn by defining and executing another macro.

* unview /* remove the 3d picture */

* delete w3

* btitle = "time (in seconds)"

* ltitle = "magnetic dipole"

* emfs = "delete m row 1;\

draw t &’ m col 1 lt dashed;\

draw t &’ m col 2;\

bottom title btitle;\

left title ltitle;"

* do emfs

* view

The macro emfs draws a graph of the x-component of the magnetic dipole
versus time with a dashed line and the y-component of the magnetic dipole
versus time with a solid line. It also places titles on the bottom and left
axes. The following picture is then seen on the display:

The reduction in amplitude of the oscillations is characteristic of the spin-
spin relaxation time, T2.
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With the macros pulse1, mdip, and emfs defined above, it is a simple mat-
ter to change the relaxation constants, the pulse’s angle of rotation, the
strength and direction of the external magnetic field, or the gyromagnetic
ratio and run the single pulse experiment again. For example, suppose the
spin-spin relaxation constant, T2, is smaller by a factor of 10. The follow-
ing commands generate the 3 dimensional perspective picture and the 2
dimensional time plot of the components of the magnetic dipole vector:

* unview /* remove the previous picture */

* delete w

* t2 = 1.E-7 /* re-define the spin-spin relaxation constant */

* do pulse1 /* run the experiment */

* do mdip /* draw the 3d picture */

* cmd3d("raise 1")

* cmd3d("truck 1")

* cmd3d("track")

* cmd3d("dolly 1")

* cmd3d("twist -20")

* cmd3d("axes")

* view

* unview /* remove the previous picture */

* delete w3

* do emfs /* draw the time-dependent magnetic dipole components */

* view
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* unview /* remove the previous picture */

* delete w

As expected, the smaller value of the spin-spin relaxation time, T2 causes the
free induction decay signal to die away faster than in the previous example.

A Double Pulse Experiment

If the external magnetic field is not homogeneous, double pulse experiments
can be performed which give rise to resurgences of amplitude in the free in-
duction decay signals. This effect was described by E.L. Hahn in the article
“Spin Echoes” Phys. Rev. 80 (1950) 580. Here we simulate a double pulse
experiment consisting of a pulse sequence in which the first pulse rotates the
magnetic dipole by π

2
radians about the x-axis and the second pulse—τ units

of time later—rotates the magnetic dipole by π radians about the x-axis.
Owing to the inhomogeneities in the external magnetic field, the resurgence
of amplitude in the free induction decay signal is observed τ units of time
after the second pulse.

The inhomogeneity of the external magnetic field is simulated by running the
pulse sequence on 10 magnetic dipoles, each subject to a different constant,
external magnetic field. The Larmor frequency of precession is different for
each magnetic dipole. The spin echo is then observed in the net magnetic
dipole obtained by summing the time dependent free induction decay signals
from each of the magnetic dipoles.

First we show the free induction decay resulting from the pulse sequence
applied to a magnetic dipole in a homogeneous magnetic field. The macro
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pulse1 from the previous section can be used to generate the time evolution
of the magnetic dipole from the moment of the first pulse to the moment
before the second pulse. We define a vector of times tt which holds times
for the rest of the experiment.

* tt = tau:(2.5*tau)!(1.5*nsteps)

This statement assigns tt the values tau to 2.5*tau in 450 steps. Then
we define a new macro, pulse2, which determines the effect of the second
pulse.

* pulse2 = "initial mx(tau) = m[nsteps,2];\

initial my(tau) = m[nsteps,3]*cos(beta2)+m[nsteps,4]*sin(beta2);\

initial mz(tau) = -m[nsteps,3]*sin(beta2)+m[nsteps,4]*cos(beta2);\

m = m&points(mx,my,mz,tt);"

The initial statements in this macro find the components of the magnetic
dipole at time tau after the second pulse has rotated the magnetic dipole
about the x axis by an angle beta2. The points operator in the fourth
statement solves Bloch’s equations for the times in the vector tt and the
ampersand operator concatenates the four column solution matrix from the
points operator to the existing matrix m where the time evolution of the
magnetic dipole from 0 to tau has been stored.

The following MLAB commands perform the complete double pulse se-
quence on a magnetic dipole in a 10000 Gauss homogeneous magnetic field:

* beta1 = pi/2

* beta2 = pi

* t2 = 5.E-7

* do pulse1

* do pulse2

To see the time evolution of the magnetic dipole in a 3 dimensional perspec-
tive, type:

* do mdip

* cmd3d("raise 1")

* cmd3d("truck 1")

* cmd3d("track")

* cmd3d("dolly 1")
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* cmd3d("twist -20")

* cmd3d("axes")

* view

This figure shows the evolution of the magnetic dipole in a homogeneous
magnetic field through the double pulse sequence. The magnetic dipole af-
ter the first π

2
pulse is seen as a line segment along the positive y-axis. As

time progresses, the magnetic dipole precesses around the z-axis until the
moment of the second pulse at time τ . When the second pulse is applied at
time tau, the y and z components of the magnetic dipole are reversed. The
magnetic dipole then continues to precess about the z axis, returning to its
equilibrium configuration. Throughout the entire process, the magnitude of
the transverse component of the magnetic dipole is seen to decrease at a
rate proportional to the spin-spin relaxation constant, T2.

The x and y components of the magnetic dipole, which are proportional
to the free induction decay signals, are shown by the commands

* unview

* delete w3

* ttt = t

* t = t & tt

* do emfs

* view
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This figure shows that in the homogeneous magnetic field, the x and y
components of the magnetic dipole and, therefore, the free induction decay
signals, simply die off with a characteristic time constant of T2. There is
a change in phase of the signal when the second pulse occurs at t equals
2.36E-7 seconds.

* unview

* delete w

* t = ttt

To demonstrate the spin echo effect, we determine the time evolution of
the average of 10 distinct magnetic dipoles—each evolving in a different
magnetic field. This is accomplished with the following commands:

* h00 = 9600:10400!10 /* the different magnetic fields */

* netp = shape(750,3,0^^2250);

* for i = 1:10 do {

> h0 = h00[i]

> do pulse1

> do pulse2

> delete m col 1

> netp = netp+m

> }

First we set h00 to be a vector of magnetic field strengths ranging in value
from 9600 Gauss to 10400 Gauss in 10 steps. Actual inhomogeneities in the
external magnetic field are on the order of .01 Gauss. Here, the inhomo-
geneity in the 10000 Gauss external magnetic field is greatly exaggerated so
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that the spin echo effect can be demonstrated in a short time interval.

The shape operator is then used to initialize the 750 row by 3 column
matrix netp to zero. The for...do loop runs the double pulse experiment
ten times. Each time, the magnetic field is different and the time evolution
of the magnetic dipole computed in m is accumulated in the array netp.

The 3 dimensional perspective view of the evolution of the net magnetic
dipole is shown by the following commands:

* netp = (0^^’3)&netp

* draw netp lt sequence

* cmd3d("raise 1")

* cmd3d("truck 1")

* cmd3d("track")

* cmd3d("dolly 1")

* cmd3d("twist -20")

* cmd3d("axes")

* view

This figure shows that the net magnetic dipole lies along the y-axis at time
0 after the first π

2
pulse. The net magnetic dipole then precesses around

the z-axis. The transverse component of the net magnetic dipole is seen
to decrease faster than the magnetic dipole in the homogeneous magnetic
field experiment, owing to destructive interference between the constituent
magnetic dipoles precessing at different Larmor frequencies. Immediately
after the second pulse, the y and z components of the net magnetic dipole
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are reversed. As the net magnetic dipole precesses about the z axis during
subsequent evolution, there is a temporary increase in the amplitude of the
transverse component of the net magnetic dipole. This is the spin echo. It is
more readily seen in graphs of the x and y components of the net magnetic
dipole.

* unview

* delete w3

* delete netp row 1

* draw (t & tt) &’ netp col 1 lt dashed

* draw (t & tt) &’ netp col 2

* bottom title btitle

* left title ltitle

* view

* unview

* delete w

This paper has demonstrated how MLAB can be used to explore a specific
differential equation model: Bloch’s equations for a magnetic dipole in an
external magnetic field. MLAB contains a large collection of functions, in-
cluding Fourier transforms, non-linear optimization, curve fitting, statistical
distribution functions and their inverses, and orthogonal polynomials.
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