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Abstract: Several cases of the Forced damped pendulum are numerically
demonstrated using the mathematical modeling package MLAB. A Poincaré
return map for the chaotic case is also given.

An ideal pendulum (i.e. with no friction) will swing back and forth (or loop in
a full circle) forever if there is no outside force other than gravity acting upon
it. Moreover, a pendulum with friction will come to rest if there is no other
outside force besides gravity acting upon it. A more general forced damped
pendulum with a periodic driving force pushing it shows more interesting
asymptotic behavior than these two trivial cases. The angular position in
radians as a function of time θ(t) of a forced damped pendulum is described
by the following second order differential equation.
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where d2θ
dt2

represents the iner-
tia, ν dθ

dt
represents friction at the

pivot, sin(θ) represents gravity, and
ρsin(2πft) represents a sinusoidal
frequency f driving torque applied
at the pivot. θ0 is the initial angular
position and s is the initial angular
velocity of the pendulum.
Numerical solutions show that both
chaotic and periodic solutions of the
forced damped pendulum equation
are possible depending on the par-
ticular choice of system parameters
ν, ρ and f .
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If we want to see how the pendulum is actually moving, we can solve the
differential equation and plot the angle variable θ against time t. We will
use the facilities of the mathematical modeling system MLAB to solve this
differential equation and display the solution. The following is an MLAB

dofile(script) that solves the forced damped pendulum equation.

“pendulum.do — Solve the ODE for a forced pendulum”

“the differential equation for the forced damped pendulum”
fct theta”t(t) = rho*sin(t) - c1*theta’t - sin(theta)
“rho*sin(t) is the driving force, c1*theta’t is friction, sin(theta) is gravity”

“Read-in parameter values”
type “input the friction coefficient c1”; c1 = kread();
type “input the driven force amplitude” rho = kread();
type “input n: number of units of time to solve for”; n = kread();

“Read-in the initial conditions”
type “Specify the initial conditions”
type “input theta(0)”; theta0 = kread(); initial theta(0) = theta0
type “input theta’(0)”; thetap0 = kread(); initial theta’t(0) = thetap0

“Specify the time values where we want the solution”
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data = 0:n:.1; “get an array from 0 to n at every .05”

/* Now, integrate the differential equation. This is done implicitly
inside the operator ’points’, the result matrix is put in the array m.
The first column of m is the data array generated above, the second
column is the theta value at the time corresponding to the time value in
the first column, the third column is the theta’t value at the time
corresponding to the time value in the first column. */
m = points(theta, theta’t,data)

“draw the trajectory (angular position vs. time)”
draw m col 1;2, color red
top title “Regular”
left title “Cumulative Angular Position”;
bottom title “Time”
view; “view the picture”

The following pictures are generated by variations of thisMLAB dofile. They
are plots of time against the angular position. The left picture is the trivial
regular case with a periodic orbit where c1 = 0 and rho = 0. The right
picture shows a chaotic orbit where c1 = 0.3 and rho = 2.5. In all cases,
the initial point corresponds to the initial conditions denoted by theta0 and
theta1 in the dofile.

Pendulum with no friction, no exterior
force. c1 = 0, rho = 0. initial point
(1.0,0)

Chaotic orbit, no regular pattern observed,
c1 = 0.3, rho = 2.5. initial point (0.5,
2.0)

Here are another pair of pictures that are generated by the same dofile. The
left picture shows a transient chaotic behavior which settles down to a peri-
odic orbit after awhile. The parameter values are c1 = 0.1, rho = 1.5. The
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right picture shows another kind of behavior. It is not periodic, since the
angle keeps increasing, it is not chaotic either since the the angle is increas-
ing in a regular pattern, thus the Lyapunov exponent is not positive. The
parameter values are c1 = 0.2, rho = 2.5.

Transient, started chaotic and settles
down to periodic. c1 = 0.1, rho = 1.5,
initial point (0.5, 2.0)

Not periodic, not chaotic, angle keeps in-
creasing. c1 = 0.2, rho = 2.5, initial point
(0.5, 0.9)

To see a trajectory of a point in the phase-space (t, θ(t), θ′(t)) for the forced
damped pendulum, we will construct an object called the Poincaré map
which is often used to reduce a continuous time system (or “flow”) to a
discrete time map with one less dimension. The basic idea of a Poincaré map
is to choose some appropriate hypersurface in the phase space and observe
the intersection of the orbit in the phase-space with the surface. Since the
solution of the system is unique with a given initial point, when we neglect
numerical round-off error, each intersection point will uniquely determine the
successive point. Thus, a continuous flow is reduced to a discrete map with
one less dimension.
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Poincaré return map for the pendulum, the section plane is
t = 0, c1 = 0.3, rho = 2.5. n = 10000. initial point (0.5, 2.0)

The picture above is the Poincaré map of the trajectory corresponding to
the initial point (0.5, 2.0) in the (θ(t), θ′(t)) reduced-dimension phase space
for our forced damped pendulum system with the parameter rho = 2.5 and
c1 = 0.3 which is the same as the chaos picture above. We used n = 10000. It
is the Poincaré return map with the section surface t = 0, which is equivalent
to t = 2kπ for any integer k since the variable t only appears in sin(t), and for
any integer value of k, sin(2kπ) will have the same value 0, i.e. our reduced-
dimension phase space is a cylinder, which is displayed in an “unwrapped”
form above.

To compute the above Poincaré map, we used almost the same MLAB dofile

with only a few minor changes. We only want the solution at every time
when t = 2kπ (a multiple of 2π), Thus, we need to substitute the line for
computing the time-list data in the above MLAB dofile with the following
line:
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data = 0:(pi2*n):pi2; “get an array from 0 to pi2*n at every pi2”

Also, we need to plot different columns of the solution matrix m, thus, we
must substitute the draw statement lines with the following lines

/* The variable theta is the angle of the arm of the pendulum. The angle
can range from 0 to pi2, any angle that is outside this region has a
corresponding angle in this region. We define a function to map all
the angles into 0:pi2 */
fct ft(theta) = mod(theta, pi2)
m col 2 = ft on (m col 2); “map col 2 into the region 0 to pi2”
“draw a dot at each phase plane at each point (theta,theta’t)”
draw m col 2:3, color red, lt none, pt dotpt
top title “Forced Damped Pendulum”
left title “Angular Velocity”; bottom title “Angle”
view; “view the picture”

One can easily generate further pictures with other parameter values. More
information about MLAB is available from Civilized Software Inc. at the
address given above.
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