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A flexible springy wire of length h lying in the xy-plane pinned at the
end-points (a1, a2) and (b1, b2) with or without specified directions at these
end-points is physically determined to have one of several stable shapes, each
corresponding to a locally-minimal energy value. We may seek these minimal
energy shapes; such a curve will be called a (planar) physical spline curve.
Although a cubic spline segment may be a good approximation to a physical
spline, this is often not the case, and moreover the length constraint applied
to a cubic spline segment is difficult to honor. It is important in various
architectural and engineering applications (e.g. building, ship, airplane and
automobile design) to be able to compute the exact physical spline curve of
a given length that satisfies given boundary conditions.
Our first step is to compute the energy in a thin circular-cross-section

physical spline bent in the shape of an arc-length parametrized space curve
x of length h. We will model the spline by a sequence of n segments bent
in circular arcs and adjoined end-to-end to approximate the curve x. Each
segment is of length L = h/n. A segment is modeled by a bundle of elastic
length-L fibers arranged to form a cylinder of length L. Each fiber behaves
as a spring that is compressed or extended in length with a force proportional
to the change in its length according to Hooke’s law.
As each cylindrical segment of fibers is bent into a circular arc, the length

of the central fiber is unchanged in length, the fibers closer to the inside of
the arc are compressed, and the fibers on the outside of the arc are extended.
The potential energy stored in all these compressed and extended fibers is
the energy of the segment, and the sum of the energies of the n segments
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approximates the energy in the spline bent to follow the curve x. When we
consider the limiting case where n → ∞, we obtain the desired energy of
the physical spline; this will also be defined to be the energy of the curve x.
The potential energy e in a length-L spring fiber compressed or extended

to the length L+∆ is the work done to change the length from the 0-energy
length L to the length L+∆. This work is the quantity

∫ L+∆
L F (x) dx where

F (x) is the force needed to compress or extend the spring to length x. By
Hooke’s law F (x) ≈ ε(x − L)/L when x is not too different from L, where
ε is the modulus of elasticity of the spring material. Thus the energy e is
ε
2L
∆2.
Now let us consider the length-L cylindrical segment of fibers bent in

a circular arc of a circle of radius r as shown below. The origin is shown
placed at the center of the cylindrical segment.
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The central fiber of length L is shown. A coordinate axis is established
by which we may measure the distance y above or below the central fiber.
A representative non-central fiber of length L+ θy is also shown.
The values r, L, and θ are related by rθ = L. The curvature of the

central fiber is 1/r. In general, the length of a fiber offset vertically by the
distance y is (r+y)θ. The energy of the fiber offset vertically by the distance
y is thus ε(yθ)2/(2L).
Let A denote the circular disk of diameter d centered at (0, 0) in the

xy-plane. The total energy stored in the entire cylindrical segment is now
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obtained as the integral

∫

A
ε(yθ)2/(2L) dxdy =

ε

2L
θ2

∫

A
y2 dxdy.

But
∫

A y
2 dxdy is a constant which we call I; in fact I is the so-called moment

of inertia of the diskA about the x-axis. Thus the energy in our bent segment
is εI
2L
θ2 = εI

2
· L
r2
. Since 1/r is the curvature of the central fiber, we may write

the energy of the segment as εI
2
· Lk2, where k = 1/r denotes the curvature

of the segment.
Now define the arc-length parameter value si := (i−1)L+L/2. Let K(s)

denote the curvature |x′′(s)| of our given arc-length parametrized curve x
at s.
Place n length-L cylindrical segments along the curve x with the ith

segment centered at x(si). The ith segment is taken to be bent in a circular
arc whose curvature matches the curvature value K(si). When n is large,
the circular end-faces of the adjacent segments will approximately join.
The total potential energy E in all n segments is then

∑

1≤i≤n

εI

2
(K(si))

2L.

Now, if we let n → ∞, then L → 0 such that nL remains equal to the
curve length h, and the summation expression for E is seen to be a Riemann
sum which converges to the integral εI

2

∫ h
0
K(s)2 ds.

Thus the energy in a diameter-d circular cross-section physical spline
bent to follow the curve x is εI

2

∫ h
0
K(s)2 ds. We see that a physical spline

with an infinitesimal cross-section diameter has an infinitesimal energy; how-
ever we shall depart from physical reality and assign the value

∫ h
0
K(s)2 ds

to be the mathematical energy of the length h curve x.
Note that a ruled-surface composed of a rectangle of stiffly-flexible ma-

terial which admits a family of parallel rule-lines bent according to uniform
constant boundary conditions along two opposing edges formed by rule-lines
assumes the same shape in any individual cross-section curve and that shape
is the shape of a planar physical spline curve determined by the distance be-
tween the two opposing edges and the boundary conditions at those edges.
Now we may consider the problem of computing the shape of the minimum-

energy physical spline of length h which connects the two given points
a = (a1, a2) and b = (b1, b2). We may optionally impose tangent vector
direction constraints at one or both of these points. The desired curve x can
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be defined as that curve which has minimal energy, subject to the required
constraints. Thus, x is to be chosen so that the functional

E(x) :=

∫ h

0

|x′′(s)|2 ds

is minimal, subject to the constraints: x(0) = a, x(h) = b, and
∫ v
0
|x′(s)| ds =

v for 0 ≤ v ≤ h, or equivalently, |x′(s)| = 1 for 0 ≤ s ≤ h. This latter set
of constraints forces x to be an arc-length parameterized curve of overall
length h for which the curvature K(s) = |x′′(s)|. If tangent vector con-
straints of the form x′(0) = y/|y| and/or x′(h) = z/|z| are to be imposed,
then they must be added to the primary set of constraints just given.
Each curve x corresponding to a local minimum of E is a stable shape for

the length-h physical spline connecting the points a and b. Every initially-
selected curve in a small-enough neighborhood of x as defined by the func-
tional E will relax to the shape x for which E is locally-minimal with an
accompanying loss of energy.
There are several approaches to computing the planar physical spline

curve x that minimizes E(x). One approach, due to Mehlum, and studied
by Mehlum, Kallay, and Jou ([Meh74], [Kal86], [Jou95]), is to define x by
its curvature function, and then to obtain the Euler differential equations
that define the curve x that minimizes the associated energy via the cal-
culus of variations. These differential equations have associated boundary
conditions as well as several unknown parameters which must be computed
via minimization. The reason we restrict ourselves here to the planar case is
that this approach is more cumbersome for a general space curve (however
see [Kno98] for the general space-curve result.)
Now, to compute the functions x1 and x2 that define the minimal energy

length-h physical spline connecting a and b, we may proceed as follows.
Let θ(s) denote the direction-angle of the tangent-vector of the arc-length-
parameterized planar curve x at s. Then the curvature of x, K, is |θ′|, so
the corresponding energy is E =

∫ h
0
(θ′(s))2 ds.

Note x′1(s) = cos(θ(s)) and x
′
2(s) = sin(θ(s)). Thus

∫ h

0

x′1(s)ds = x1(h)− x1(0) =

∫ h

0

cos(θ(s))ds, and

∫ h

0

x′2(s)ds = x2(h)− x2(0) =

∫ h

0

sin(θ(s))ds.

We wish to find the function θ that minimizes E subject to the directional
constraints: θ(0) = c and θ(h) = d for given vectors c and d, together
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with the constraints:
∫ h
0
cos(θ(s))ds = b1 − a1 and

∫ h
0
sin(θ(s))ds = b2 − a2.

Given the function θ, we can then compute the curve x as the solution
to the differential equations x′1(s) = cos(θ(s)) and x′2(s) = sin(θ(s)), with
x1(0) = a1 and x2(0) = a2.
Kallay [Kal86] and Jou [Jou95] have computed the Euler equation that

defines θ to be
θ′′ +m1 sin(θ)−m2 cos(θ) = 0,

with the boundary conditions θ(0) = c and θ(h) = d, where m1 and m2 are
unknown Lagrange multipliers to be determined.
This differential equation arises in a specialized form in describing the

shape of a bent beam in structural engineering. There we have a beam of
length h with one end fixed at the origin with slope 0, and with a load or force
f applied at the other end of the beam. Then the angle of the tangent along
the beam, θ, satisfies the differential equation θ′′ = −f2

εI
cos(θ) − f1

εI
sin(θ)

with θ(0) = θ′(0) = 0. The value ε is the modulus of elasticity of the beam
material and I is the moment of inertia of the cross-section of the beam
about its horizontal axis. Solutions of this differential equation have been
obtained in terms of incomplete elliptic integrals [Jou95].
The MLAB mathematical and statistical modeling software is well-suited

to studying differential equation models, especially when parameter-estimation
is required (see www.civilized.com). Below we show the MLAB commands
for computing and drawing a planar physical spline curve that connects two
given points with given tangent vector directions at those points. This
is done by specifying the appropriate differential equations and using the
MLAB curve-fitting facility to compute the parameter-values which fit the
model functions defined by these differential equations to the given points
and directions.
We are given the vectors a and b, and the scalars c and d, and we are

to compute the values θ(0), θ′(0), x1(0), x2(0), m1, and m2 which yield the
desired curve x. Of course, x1(0) = a1, x2(0) = a2 and θ(0) = c. The
remaining values θ′(0), m1 and m2 can be determined by curve-fitting x1 to
(h, b1) and x2 to (h, b2) and θ to (h, d) in MLAB. Jou [Jou95] gives a survey
of planar physical splines and groups them corresponding to the values of
m1 and m2; this provides a strategy for obtaining initial guesses for m1 and
m2.

* fct t’’s(s)=m1*x1’s(s) + m2*x2’s(s)

* fct x1’s(s) = cos(t)

* fct x2’s(s) = sin(t)
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* init x1(0)=a1

* init x2(0)=a2

* init t(0)=c

* init t’s(0)=v

* a1=0; a2=0

* b1=1; b2=0

* c=pi; d=0

* h=2.5

* tolsos=.0001

* errfac=.00001

* m1=3.7; m2=-1.04; v=-1.25

* fit(m1,m2,v), t to h&’d, x1 to h&’b1, x2 to h&’b2

final parameter values

value error dependency parameter

3.6905090629 4.065013222e-05 0.8832055969 M1

-1.0704404889 7.016612564e-05 0.9513330028 M2

-1.2518649953 6.139471472e-05 0.8554696171 V

6 iterations

CONVERGED

best weighted sum of squares = 2.717760e-10

weighted root mean square error = 1.648563e-05

weighted deviation fraction = 6.297892e-06

R squared = 1.000000e+00

* draw a1&’a2 pt circle

* draw b1&’b2 pt square

* z=integrate(x1’s,x2’s,0:h!120)

* draw z col (2,4)

* view

Here is the computed length 2.5 physical spline that goes from (0, 0) with
the exit-angle π to the point (1, 0) with the entry-angle 0.
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Below we show the five length 2.5 physical splines that connect (0, 0)
to the point (1, 0) with the entry-angle 0, where the exit-angle ranges over
{π, 3π

4
, π
2
, π
4
, 0}.
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