File: /General/MLAB-Text/Papers/sarea/sarea.tex

Computing Surface Area Using MLAB

Gary D. Knott, Ph.D.
Civilized Software, Inc.
12109 Heritage Park Circle
Silver Spring, MD 20906 USA

Tel. (301) 962-3711
Email: csi@civilized.com
Given a function $f(x, y)$ and a rectangular region $A=[x \min , x \max] \times$ [ymin, ymax], we wish to compute the surface area of $f(x, y)$ over A. A standard formula for computing the surface area of a function $f(x, y)$ is:

$$
\begin{aligned}
\text { Area } & =\int_{A} \sqrt{1+f_{x}^{2}+f_{y}^{2}} d x d y \\
& =\int_{x \min }^{x \max } \int_{y \min }^{y \max } \sqrt{1+f_{x}^{2}+f_{y}^{2}} d x d y
\end{aligned}
$$

Where, f_{x} and f_{y} denotes the partial derivatives of f with respect to x and y. Thus, to compute the surface area of $f(x, y)$ over A, we just need to write the above formula in $M L A B$. Here is an example which shows the symbolic differentiation and numerical integration abilitiies of MLAB.

```
fct f(x,y) = x^2 + y^2 /* surface function */
xmin = 0; xmax = 1; ymin = 0; ymax = 1/* region boundaries */
fct g(x,y) = sqrt(1 + (f'x(x,y))^2 + (f'y(x,y))^2)
fct q(x) = integral(y, ymin,ymax, g(x,y))
fct a() = integral(x, xmin, xmax, q(x))
type a() /* function value */
    = 1.86156384
```

Here is the graph of the surface whose area is computed.

```
m = points(f, cross((xmin:xmax!15), (ymin:ymax!15)))
draw m lt net
view
```


Note that the above area function a() can also be written in one step without using $\mathrm{q}(\mathrm{x})$. i.e.

```
fct a() = integral(x, xmin, xmax, integral(y, ymin,ymax, g(x,y)))
```

One can also do non-rectangular region surface computation by writing out the lower and upper bound of the double integral in explicit functional format.

