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Let X1, . . . , Xk be independent positive random variables representing
the survival times of k subjects. Each subject has an associated set of n co-
variate values which serve to categorize that subject. Let xi = (xi1, . . . , xin)
be the vector of covariate values for subject i. The distribution of the sur-
vival time Xi is postulated to depend on the covariate values for subject
i.

Let F (t;x) = P [a subject with covariate values x = (x1, . . . , xn) has a
failure time ≤ t]. The function F maps Rn+1 to R.

The associated density function is f(t;x) := dF (t;x)/dt, and the as-
sociated survival function is S(t;x) := 1 − F (t;x). The associated hazard
function is h(t;x) := f(t;x)/S(t;x). Note that log(h(t;x)) = log(f(t;x)) −
log(S(t;x)).

Let C1, . . . , Ck be independent identically distributed positive random
variables. Ci represents the length of time beyond which subject i is not
observed. If Ci < Xi then subject i is lost to follow-up, that is the survival
time of subject i is unknown; we know only that subject i survived at least

Ci years. Let Yi =min(Xi, Ci), and suppose we observe values (i.e. samples)
y1, . . . , yn of Y1, . . . , Yk. When Ci < Xi, we say that the value yi is a censored

observation. We will define the indicator code zi = 0 when yi is a censored
observation and otherwise zi will be defined to be 1.

Now suppose we are given the data:

subject# covariates time censor − code
1 x11, . . . , x1n y1 z1

...
...

...
...

k xk1, . . . , xkn yk zk

Thus subject j with the covariate values xj1, . . . , xjn has the time to
failure equal to yj when zj = 1, or alternately was lost to follow-up after
time yj when zj = 0. Given this data, our goal is to construct a descriptive
model, i.e. an estimate, for the underlying distribution function F .

We may form the likelihood function for this data as follows:
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L =
∏

{i|zi=1}

f(yi;xi)×
∏

{i|zi=0}

S(yi;xi)

The corresponding log-likelihood function can be seen to be

G =
k∑

i=1

log(S(yi;xi)) + zi log(h(yi;xi)).

Now suppose that F depends upon some parameters a = (a1, a2, . . . , an)
and b = (b1, b2, . . . , bn). Then f , S and h also depend on the vectors a and
b, and the log-likelihood function G is a function of a and b alone. Thus

G(a, b) =
k∑

i=1

log(S(yi;xi; a, b)) + zi log(h(yi;xi; a, b)).

If we postulate a specific form for F (and hence for S, f , h and G), we can
estimate the parameters a1, a2, . . . , an and b1, b2, . . . , bn by choosing a and
b to maximize G(a, b). This provides a potentially-enlightening descriptive
model for our given data.

Piantadosi has proposed the model

h(t;x; a, b) =
β(x, b)

α(x, a) + S(t;x; a, b)

where

α(x, a) = exp(a1x1 + . . .+ anxn)

β(x, a) = exp(b1x1 + . . .+ bnxn).

This model defines F implicitly. In particular S satisfies the differential
equation

dS

dt
(t;x; a, b) =

−β(x, b)S(t;x; a, b)

α(x, a) + S(t;x; a, b)

with S(0;x; a, b) = 1.
Since S(t;x; a, b)·h(t;x; a, b) = dF (t;x; a, b)/dt, this differential equation

corresponds to the algebraic relationship:

α(x, a)log(S(t;x; a, b)) + S(t;x; a, b) = 1− β(x, b)t,

and since α(x, a) > 0, β(x, b) > 0, t ≥ 0, and S(0;x; a, b) = 1, there is
always a solution for S(t;x; a, b) in [0, 1].

Now our log-likelihood function becomes:

G(a, b) =
k∑

i=1

log(S(yi;xi; a, b))+zi[log(β(xi, b))−log(α(xi, a)+S(yi;xi; a, b))].
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In order to estimate a and b for this model via maximizing the log-
likelihood, we may use the maximize functional in MLAB. An example of this
for n = 3, where the parameters become a1, a2, a3, b1, b2, b3, is given below
for the following data. Here x1 is fixed equal to 1 for all subjects in order to
introduce constant terms in log(α(x, a)) and log(β(x, b)); and xi2 = 1 when
subject i had treatment 1 and xi3 = 1 when subject i had treatment 2. The
observed survival time for subject i was truncated (censored) if zi = 0.

subject# x1 x2 x3 y z
1 1 1 0 2.3 0
2 1 0 1 4 1
3 1 0 1 5 1
4 1 0 1 2.2 1
5 1 1 0 6 0
6 1 0 0 3.6 1
7 1 1 0 4.1 1
8 1 1 0 2 1
9 1 1 0 1.5 1
10 1 0 1 3 0
11 1 0 1 2.5 1
12 1 0 1 0.8 1
13 1 1 0 0.9 1
14 1 0 1 1.1 1
15 1 1 0 1.4 0
16 1 0 1 1.9 1
17 1 1 0 2.3 0

Here is the MLAB dialog that uses the survival model in Piantadosi and
Crowley Biometrics (in press).

"log-likelihood function"

fct g() = sum(i,1,k,gt(alpha(i),betav(i), i))

fct gt(av,bv,i) = gs(logs(av,bv*t[i]/av), z[i],av,bv)

fct gs(ls,z,av,bv) = ls + z * (log(bv) - log(av+exp(ls)))

fct logs(av,ub) = root(w,0,ub,av*w+exp(w-ub)-1)-ub

fct alpha(i) = exp(a1*x[i,1]+a2*x[i,2]+a3*x[i,3])

fct betav(i) = exp(b1*x[i,1]+b2*x[i,2]+b3*x[i,3])

/* surv1, surv2 = survival function for treatment 1 and treatment 2 groups */

fct av1(s) = max(1e-30,exp(a1 + s*a2 + (1-s)*a3))

fct bv1(s) = max(1e-30,exp(b1 + s*b2 + (1-s)*b3))

fct surv(t,s) = exp(logs(av1(s),bv1(s)*t/av1(s)))

fct surv1(t) = surv(t,1);

fct surv2(t) = surv(t,0);
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n = 3; "# of covariates "

k = 17; "sample size"

data = read(datafile,k,n+2)

x = data col 1:n

t = data col (n+1)

z = data col (n+2)

/* establish initial guesses */

a1 = 0; a2 = 0; a3 = 0; b1 = -2; b2 = -2; b3 = -2;

Hessmsw = 0; /* starting with identity Hessian */

maximize(g,b3,b2,b1,a3,a2,a1)

The function value is: -2.389855e+01

Argument(s): (-3.284358e-01 -7.916285e-02 -1.281012e+00

-2.723759e+00 1.824017e+01 -1.877267e+01 )

Gradient: (3.302230e-01 4.906215e-03 1.718221e-01

-4.880071e-05 -1.584679e-03 -1.723857e-03 )

# of function evaluations: 242

# of gradient evaluations: 99

# of Quasi-Newton iterations: 94

= -23.8985504

We will use the MLAB function KMSURV to compute and plot the two
Kaplan-Meier survival curves and compare them with the estimated survival
curves for treatment 1 and treadment 2.

/* draw the Kaplan-Meier curve and surv1 for treatment 1 in w1. */

d1 = compress(data,2); /* data for first treatment */

d = (d1 col 4) &’ (d1 col 5)

d = sort(sort(d,2,-1),1)

"double sorting makes censored events occur in front of failure events if

they happen at the same time."

h1 = kmsurv(d); "Column (1,2) of h1 is the Kaplan-Meier survival curve for d"

h = stepgraph(h1 col (1,2))

r = (0 &’ 1) & h & (h[nrows(h),1] &’ 0); "the graph starts at (0,1)"

draw r, color red; "Draw the step-graph of the Kaplan-Meier curve"

"draw censored data tic-marks"

y1 = compress(d,2,1) col 1; "y1 = the list of censoring times"

fct f(x) = lookup(h,x)
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draw points(f, y1) lt none, pt vbar, ptsize .015, color green

top title "Kaplan-Meier curve for treatment 1"

frame 0 to 1, .5 to 1

"draw the estimated survival curve for treatment 1"

draw points(surv1,0:6!20)

w1 = w

/* draw the Kaplan-Meier curve for treatment 2 in w2. */

d2 = compress(data,3); /* data for second treatment */

d = (d2 col 4) &’ (d2 col 5)

d = sort(sort(d,2,-1),1)

h1 = kmsurv(d); "Column (1,2) of h1 is the Kaplan-Meier survival curve for d"

h = stepgraph(h1 col (1,2))

r = (0 &’ 1) & h & (h[nrows(h),1] &’ 0); "the graph starts at (0,1)"

draw r, color red; "Draw the step-graph of the Kaplan-Meier curve"

"draw censored data tic-marks"

y1 = compress(d,2,1) col 1; "y1 = the list of censoring times"

fct f(x) = lookup(h,x)

draw points(f, y1), lt none, pt vbar, ptsize .015, color green

top title "Kaplan-Meier curve for treatment 2"

frame 0 to 1, 0 to .5

draw points(surv2,0:6!20)

w2 = w

view
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Here is the entire surface plot for the function surv.

M = cross(0:6!17, 0:1!13)

M col 3 = surv on M

del w1, w2

draw M lt hidden

view
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