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Introduction

Tumors that originate in the body via a variety of mechanisms usually
grow slowly for some time. Many months or years may be needed for the ex-
istence of such a tumor to manifest itself. This near-steady-state existence of
a tumor is described by the term cancer dormancy [Uhr et al., 1997][Vitetta
et al., 1997]. Cancer dormancy is a well-recognized clinical phenomenon in
which malignant cells persist for a prolonged period of time with little or
no increase in the tumor cell population. This state may occur naturally, or
following apparently-effective therapy.

There are at least two plausible independent pathways to the clinically
“quiescent state” of a tumor. The first pathway corresponds to intrinsic
properties of the tumor cells (related to the expression of suppressor genes,
production of growth and/or anti-growth factors and corresponding recep-
tors, etc.) The second pathway corresponds to approaching an equilibrium
of interaction between the growing tumor cell population and various cel-
lular and molecular components of the immune system. In either or both
situations, the tumor appears to be dormant. Nevertheless, tumor dormancy
is not necessarily a stable state. Many factors - infection, stress, immunode-
pression events, changes in endocrine status, etc. may disturb the balance
between the host and the dormant tumor.

We will present a mathematical model for tumor growth and suppression
below and show that this model can describe the regrowth of a dormant tu-
mor by either of two distinct mechanisms. The first mechanism is a modest
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decrease in the efficiency of immune-suppression of the tumor which has,
prior to this decrease, been able to maintain an equilibrium state wherein
the tumor does not exhibit growth. Variants of this mechanism have been
studied in [Kuznetsov, 1991] and [Kuznetsov et al., 1994]. The second mech-
anism we explore is the existence of a mutant clone of tumor cells which is not
effectively suppressed by an immune response and hence grows unchecked,
except for natural constraints imposed by nutrient resources.
In our model, tumor growth is reversed and then held in check by the

continual attack of killer cells; however, when the equilibrium relationship
between the killer cell and the tumor cell populations is suitably perturbed,
the tumor “escapes” control and grows.

Single Clone Model for Tumor Regrowth

Let c(t) denote the number of cancer cells present at time t, measured in
units of 1 million cells. Let e(t) denote the number of cytotoxic killer cells
present at time t, measured in units of 1 million cells. Then the growth-rate
of the cancer cell population is defined by the differential equation:

c′(t) = kc(t)(1− bc(t))− ape(t)c(t).

The term kc(1−bc) is the intrinsic rate of tumor cell growth. The parameter
k is the maximal rate of tumor-cell growth (when b = 0, the tumor grows at
the rate k,) and the parameter b is the reciprocal of the maximal tumor cell
population size; i.e. 1/b = (the maximum number of tumor cells permitted
to arise)/106.
The term apec specifies the rate of destruction of tumor cells. We as-

sume that killer cells bind with tumor cells, and that when this occurs then
either (1) the tumor cell is destroyed, or (2) the killer cell is destroyed or
inactivated. (The event that both cells are destroyed is deemed negligible.)
The parameter p is the probability that a tumor cell bound with a killer

cells will be destroyed, and 1− p is the probability that a tumor-cell-killer-
cell bound pair results in the killer cell being destroyed and the tumor cell
surviving. The parameter a is defined so that a(1−p) is the rate of killer cell
destruction (after binding with a tumor cell,) and ap is the rate of tumor
cell destruction (after binding with a killer-cell.) Note that 1− a is the rate
of neither cell killing the other after binding, and unbinding to try again.
Thus, ap is the “kinetic” constant that multiplies e and c to form the overall
tumor-cell destruction rate term apec.
The growth-rate of the killer-cell population (which changes size as new

killer cells are attracted and arrive via the lymph system) is defined by the
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differential equation:

e′(t) = r + (f(t)c(t)/(g + c(t)))e(t)− de(t)− (a(1− p)c(t))e(t)

The parameter r is the base rate of arrival of killer cells at the tumor via the
lymph system; we take r to be a derived parameter defined as e0d, where
e0 = .3 (.3 million is our estimate of the number of killer cells present in
the absence of tumor cells taken from [Kuznetsov et al., 1994]. The term
(f(t)c/(g + c))e is the additional rate of both local proliferation and arrival
of killer cells due to the chemokine and cytokine stimulation signals induced
by the tumor-cell population of size c.

The expression f(t)c/(g+c) is a logistic growth rate expression in which
f(t) = if t = 0 then v else if t < u then 0 else v. (The notation “if D then
E1 else E2” defines a function with a discontinuity, so that (if D then E1

else E2) is the value of the expression E1 when the condition D holds, and is
the value of the expression E2 otherwise.) The parameter v is the maximal
rate of logistic growth of killer-cell population due to tumor growth, and the
parameter u is the delay time of the immune response before “new” killer
cells can be applied to attack the tumor, i.e. u is the time for precursor
cells to mature into killer cells. The function f “cancels” its additional
growth term until t > u. The parameter g is the mid-point (IC-50) logistic
parameter in the additional arrival rate term. The parameter d is the natural
rate of death of killer cells. Finally, the term a(1−p)ce is the rate of killer-cell
death or inactivation due to the presence of H2O2, gangliosides, cytolytic
peptides produced by the tumor, etc.

We have used the experimental data due to Sui et al. [Sui 1986], where
BCL1 lymphoma tumor cells were injected into the spleens of chimeric mice,
and the resulting tumor growth was followed. In particular we are given the
mean number of tumor cells seen at various times in four groups of mice
(numbered 0,1,2,3). These seeded tumors were initially of approximate size
.5 million cells per mouse in group 0, .5 million cells per mouse in group 1,
5 million cells per mouse in group 2, and 50 million cells per mouse in group
3. In groups 1, 2 and 3 the resulting tumors respond to the action of the
immune system. Group 0 mice have no immune response; tumor-size data
from this group will be used to help estimate the parameters that define
tumor growth by fitting the pure growth model c′(t) = kc(t)(1− bc(t)) with
c(0) = .5.

It is appropriate to both fit and view the data and our fitted models in
logarithmic form; doing this is equivalent to weighting the data to assume
the error in the tumor-size observations is more nearly log-normal than

3



normal. The main purpose, however, is to introduce convenient units for
both fitting and viewing. In order to fit the data, we replicated our model
for each of the group 1,2, and 3 data-sets, and introduced the pure-growth
differential equation model mentioned just above for the group 0 data. We
have assumed that the initial number of killer cells contained in the spleen
of the chimeric mice of groups 1,2, and 3 is .3 million, so, we used the initial
conditions e(0) = e0 for each replicated differential equation, where e0 = .3.
This indicates that e010

6 is the number of killer cells that were initially
present when the tumor cells were injected.

We used the MLAB mathematical and statistical modeling system from
Civilized Software Inc., Silver Spring, MD, (see www.civilized.com) to fit
our models and draw the corresponding graphs, since MLAB is especially
designed to deal with differential equation models, including large systems
of stiff equations. (The differential equations being studied here are stiff.)
For the four data-sets used, fitting our model consists of fitting four functions
defined by seven differential equations to estimate the eight parameters d, u,
v, p, a, k, b, and g. This fitting required various exploratory computations
and careful search of the parameter space for suitable initial guesses that
lead to physiologically-plausible values. Our result is d = .5910007682,
u = 28.05445851, v = .524999404, p = .9982002827, a = .138698686, k =
.1877015458, b = .001880059483, and g = .1607110637. Note particularly
that 28 days is an appropriate estimate of the maturation time for CD8+

cytotoxic T lymphocytes. Figure 1 below shows this fit. Note for groups 1,
2, and 3, the tumor growth is suppressed and enters a equilibrium state of
apparent dormancy. The limiting stable steady state of our model in this
situation may be interpreted as the tumor dormant state.

The MLAB do-file (script file) that produced the above figure is given
below.

/* file: fig1.do - study of delayed immune response (simple form)

fit of model to tumor growth data. */

reset

echodo=3

/* We are given the mean number of tumor cells in four groups

(0,1,2,3) of mice at various times. These tumors were initially

of size .5, .5, 5, 50 million cells per mouse in each group.

In groups 1, 2 and 3 these tumors respond to the action of

the immune system. Group 0 mice have no immune response;

this group will be used to estimate the parameters that
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define tumor growth.

Our model consists of two functions:

e(t)=(# cytotoxic killer cells at time t)/10^6, and

c(t)=(# cancer cells at time t)/10^6

for groups 1,2, and 3, and just c(t) for group 0.

*/

/* no immune response group 0, initial size =.5,

col 1 in units of days, col 2 in units of 10^6 cells. */

c0data col 1 =list(0, 20, 30, 50, 60, 70, 95)

c0data col 2 =list(0.5, 16, 135, 405, 440, 468, 513)

/* immune response group 1, initial size =.5 */

c1data col 1=list(0, 20, 35, 40, 50, 70, 90, 110)

c1data col 2=list(.5, 6.31, 63.1, 35.48, 28.18, 2.82, 0.89, 0.89)

/* immune response group 2, initial size =5 */

c2data col 1=list(0, 20, 30, 70)

c2data col 2=list(5, 100, 177.8, 11.22)

/* immune response group 3, initial size =50 */

c3data col 1 =list(0, 10, 20, 40, 60, 70, 90, 110)

c3data col 2 =list(50, 251.2, 398.2, 281.84, 63.1, 50, 3.16, 1.26)

/* transform data by taking log10 of # of cells */

fct l(x)=6+log10(x)

lc0d=(c0data col 1)&’(l on (c0data col 2))

lc1d=(c1data col 1)&’(l on (c1data col 2))

lc2d=(c2data col 1)&’(l on (c2data col 2))

lc3d=(c3data col 1)&’(l on (c3data col 2))

function l10(x)=6+log10(x+.000001)

function e1’t(t)=.3*d +(f(t)*c1/(g+c1))*e1 -d*e1 -a*(1-p)*e1*c1

function c1’t(t)=k*c1*(1-b*c1) -a*p*e1*c1

function lc1(t)= l10(c1)

function le1(t)= l10(e1)

function e2’t(t)=.3*d +(f(t)*c2/(g+c2))*e2 -d*e2 -a*(1-p)*e2*c2
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function c2’t(t)=k*c2*(1-b*c2) -a*p*e2*c2

function lc2(t)= l10(c2)

function le2(t)= l10(e2)

function e3’t(t)=.3*d +(f(t)*c3/(g+c3))*e3 -d*e3 -a*(1-p)*e3*c3

function c3’t(t)=k*c3*(1-b*c3) -a*p*e3*c3

function lc3(t)= l10(c3)

function le3(t)= l10(e3)

fct f(t)=if t<u then 0 else v

function c0’t(t)=k*c0*(1-b*c0) /* pure growth model */

function lc0(t)= l10(c0)

initial e1(0)=.3

initial c1(0)=.5

initial e2(0)=.3

initial c2(0)=5.

initial e3(0)=.3

initial c3(0)=50.

initial c0(0)=.5

/*parameter guesses (best-fit guesses used.) */

u= 28.05445851

d=.5910007682

v= .524999404

p=.9982002827

g=.1607110637

a=.138698686

k=.1877015458

b=.001880059483

errfac=.000001

method=gear

disastersw=-2

fit(k,b,u,d,v,p,g,a), lc0 to lc0d, lc1 to lc1d, lc2 to lc2d, lc3 to lc3d
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/* draw the graphs */

m=points(lc0,le1,lc1,le2,lc2,le3,lc3, 0:200!166)

/* group 1 data & fit */

draw lc1d pt circle lt none color red

draw m col (1,3) lt dashed color red /* graph le1 vs. t*/

draw m col (1,4) color red /* graph lc1 vs. t*/

left title "log10(number of cells)"

bottom title "time in days"

top title "growth of tumor (initial size .5)"

frame .5 to 1, .5 to 1

w1=w

/* group 2 data and fit */

draw lc2d pt circle lt none color yellow

draw m col (1,5) lt dashed color yellow /* graph le2 vs. t*/

draw m col (1,6) color yellow /* graph lc2 vs. t*/

left title "log10(number of cells)"

bottom title "time in days"

top title "growth of tumor (initial size 5)"

frame .0 to .5, 0 to .5

w2=w

/* group 3 data and fit */

draw lc3d pt circle lt none color green

draw m col (1,7) lt dashed color green /* graph le3 vs. t*/

draw m col (1,8) color green /* graph lc3 vs. t*/

left title "log10(number of cells)"

bottom title "time in days"

top title "growth of tumor (initial size 50)"

frame .5 to 1, .0 to .5

w3=w

/* group 0 data & fit */

draw lc0d pt circle lt none color green

draw m col (1,2) color orange /* graph lc0 vs. t*/

left title "log10(number of cells)"

bottom title "time in days"

top title "tumor growth (initial size .5), no immune response"
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frame .0 to .5, .5 to 1

w4=w

view

/* end of fig1.do */

Now, if we modify our model to have the parameter p change from
0.9982002827 to 90 percent of that value after 150 days, then tumor re-
growth is exhibited as shown in Figure 2. This is done by replacing p in
our seven differential equations by the expression h(t), and defining h(t) =
if t < 150 then p else .9p. This result indicates that a modest decrease
in the immune response effectiveness, corresponding to a small increase in
the proportion 1− p of killer lymphocytes being inactivated by tumor cells,
dramatically changes the outcome of the disease.
It is worthwhile to note that suitably changing the immune response

parameters v, d, or k can produce a similar regrowth event. However, in-
creasing the parameter g from 0.16 to 5 did not change approaching the
tumor dormancy steady state. Thus our modeling suggests that regrowth of
dormant tumor may be associated with diminishing immune system activ-
ity, caused by a variety of mechanisms. Many immune functions are reduced
with age or chronic stress. We explored the effect of diminishing the various
immunological parameters in our model; we observed that slowly reducing
the parameters p, v, d, or k with age also induced regrowth of the dormant
tumor.
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Two Clone Model for Tumor Regrowth

Another explanation of tumor regrowth is that there is a small popu-
lation of immune-resistant cancer cells that are either initially-present or
that develop and which grow unchecked by the action of killer cells. We
can explore the behavior of such an aberrant clone population by introduc-
ing a pure growth model for such a population via the differential equation
m′(t) = .33km(t)(1 − b(m(t) + c(t))) with m(0) = sc(0) and modifying the
growth term kc(t)(1−bc(t)) to be kc(t)(1−b(m(t)+c(t))) in the differential
equation that defines the function c. The parameter s is the proportion of
the initial population of cells that matches the size of the initial population
of aberrant immune-resistant cells.
Thus, the two clones model for cancer regrowth is written:

c′(t) = kc(t)(1− b(c(t) +m(t)))− ape(t)c(t)

m′(t) = .33km(t)(1− b(m(t) + c(t))),

e′(t) = r + (f(t)c(t)/(g + c(t)))e(t)− de(t)− (a(1− p)c(t))e(t),

with c(0) = c0, m(0) = sc0, e(0) = e0, and f(t) = if t < u then 0 else v,
where e0 = .3 and c0 is variously equal to .5, 5, and 50.
We can estimate the value of s that causes the total tumor size c(t) +

m(t) to rise to the value 500 after 290 days by simultaneously curve-fitting
replicates of the function c(t) +m(t) to the point (290, 500) for groups 1,2,
and 3, along with the data for each group of chimeric mice. We also fit these
model functions to the additional data point (110, 1), corresponding to 106

being the number of dormant tumor cells present initially at days 100 to 110
as estimated in [Uhr et al., 1997]. MLAB permits such simultaneous fitting
of many functions indirectly defined by differential equations. We obtained
s = 4.081604 · 10−5

± 1.86 · 10−5. The result is shown in Figure 3.

Simulation of Immunotherapy for an Established Dormant

Cancer

Inducing an increased presence of various cytokines, chemokines and/or
other immunomodulators in tumor tissue may augment the function of the
immune system, and this can accomplished via vaccine agents.
In Figure 4 below, we show the results of numerically simulating the

effects of changing the dynamics of the immune system via various vaccine
regimes, thus modifying its action on an established dormant tumor. Such
a change will result in reducing the tumor mass. However, generally this
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response is temporary, and tumor regrowth may occur after stopping the
immunotherapy and thereby reducing the influx of killer cells.
Figure 4a shows the result of increasing the flow of killer cells into a

dormant tumor in three steps due to three imagined vaccine immunization
treatments administered on days 180, day 194, and day 215. The modeled
tumor is characterized by the parameters of a “normal” mouse obtained by
fitting and exhibited in Figure 1. In this case, we assume the vaccination
provokes a temporary rise in the size of the population of killer cells available
to attack the tumor; this increase is independent of the (dormant) tumor-
size. This is done by modifying the “base arrival rate” .3d by multiplying by
factors that are temporarily greater than one, corresponding to each vaccine
injection.
The therapeutic effect of vaccination shown in Figure 4a was modeled

by the following equations.

e′(t) = q(t)(.3d) + (f(t)c(t)/(g + c(t)))e(t)− de(t)− a(1− p)e(t)c(t), and

c′(t) = kc(t)(1− bc(t))− ape(t)c(t), with

f(t) = if t < u then 0 else v.

The effects of the vaccinations are described by the “multiplier’ function q,
where:

q(t) = f1(t)f2(t)f3(t), and

f1(t) = 1 + w(t, u1),

f2(t) = 1 + w(t, u2),

f3(t) = 1 + w(t, u3), and

w(t, z) = if t < z then 0 else 60(exp(−.35(t− z))− exp(−.4(t− z)).

The function w(t, z) is 0 until time z; at time z it rises to a maximum of
nearly 3 at about time z + 7 (indicating a 4-fold increase of the arrival-rate
of killer cells); and thereafter exponentially decays to nearly 0 by day z+18.
We used the initial conditions e(0) = .3, c(0) = 50 and the parameter

values used for Figure 1, together with u1 = 180, u2 = 194, and u3 = 215.
Figure 4b shows the result of modeling such imagined immunizations

beginning ten days after tumor regrowth has started in a mouse with a
diminished immune response as modeled in Figure 2; thus, the vaccinations
occur at days 160, 174, and 195. Also, in this case, we assume our vaccine
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works by increasing the proliferation of killer cells in response to the logistic
tumor size function, rather by increasing the arrival rate independently of
the tumor size. This is done by multiplying the tumor-size dependent growth
term for the killer cell population by factors which are temporarily greater
than one, rather than modifying the base arrival rate as done above. Also,
we assume that, although the number of killer cells increases in response to
vaccination, their effectiveness, as measured by the parameter p, remains
diminished at a level 10% lower than the “normal” mice modeled in Figure
1.
Our model is given by the following differential equations.

e′(t) = .3d+ q(t)(f(t)c(t)/(g + c(t)))e(t)− de(t)− a(1− p)e(t)c(t), and

c′(t) = h(t)kc(t)(1− bc(t))− ape(t)c(t), with

f(t) = if t < u then 0 else v, and

h(t) = if t < 150 then p else .9p.

The effects of the vaccinations are here described by the “multiplier”
function, q, defined in terms of the functions f1, f2, f3 and w given above;
f1, f2, f3, and w are defined as they were above, except that u1 = 160,
u2 = 174, and u3 = 195.
We used the initial conditions e(0) = .3, c(0) = 50 and the parameter

values used for Figure 2, together with u1 = 160, u2 = 174, and u3 = 195.
Figure 4c shows the result of our simulation of the effect of immunother-

apy by injecting immune memory cells in a mouse with a regrowing tumor
due to a diminished immune response as modeled in Figure 2 (and Figure
5b.) We assumed that, soon after injection, the memory cells will increase
the immune response to the tumor due to enhanced stimulation of the pro-
duction of killer cells for a period of about 150 days. This mechanism of
adaptive immunotherapy is modeled with the differential equations:

e′(t) = .3d+ q(t)(f(t)c(t)/(g + c(t)))e(t)− de(t)− a(1− p)e(t)c(t), and

c′(t) = h(t)kc(t)(1− bc(t))− ape(t)c(t), with

f(t) = if t < u then 0 else v, and

h(t) = if t < 150 then p else .9p.

The effects of the vaccinations are here again described by the “multiplier”
function, q, defined in terms of the functions f1, f2, f3 and w; f1, f2, and
f3 are defined as they were above, except that u1 = 160, u2 = 174, and
u3 = 195. The function w has the same form as before, except that it has
been “lengthened” (by changing .35 to .35/10 and .4 to .4/10) to correspond
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to an enhanced rate of proliferation of killer cells proportional to the logistic
tumor size for a time period of about 150 days.
We used the initial conditions e(0) = .3, c(0) = 50 and the parameter

values used for Figure 2, together with u1 = 160, u2 = 174, and u3 = 195.
Figure 4d depicts the simulated situation where we modeled administer-

ing a “cytostatic” drug that has the effect of reducing the logistic growth-
rate parameter k that governs the rate of tumor regrowth; this might be an
agent that reduces the tumors’ nutrient supply, for example. In particular,
we again used a reduced immune response mouse as described in Figure 2
which exhibits tumor regrowth starting at day 150. We imagine adminis-
tering a drug that cuts the value of k in half on day 170. This is done
mathematically by replacing k with the function λ(t) = if t < 170 then k
else k/2.

Discussion

The assumption that, after the introduction of tumor cells (at time 0),
no enhanced immune response occurred during the first 28 days after the
mice were challenged with such injections was key to obtaining the excellent
fits exhibited in Figure 1. The probability of inactivation of an immune
killer cell after binding to a tumor cell is also a crucial parameter of the
model. The value of p, as well as the numerical values of the other kinetic
parameters of our model, are typical of the kinetic characteristics of CD8+

cytotoxic T lymphocytes involved in the allogenic immune response in mice.
We have studied two related mechanisms of tumor regrowth. The first

model predicted that a small permanent reduction in the level of antitumor
immune response may provoke the regrowth of a monoclonal tumor from
a dormant state. Reducing the probability of killing or inactivation of a
tumor cell by an immune killer lymphocyte, or reducing the rate of arrival
of the immune lymphocytes into the tumor region, were the most critical
factors in inducing the model to exhibit tumor regrowth. Various factors
(i.e. aging, stress, infection, etc.) may explain why such a tumor-growth-
inducing change might occur.
The second two-clone tumor model also agreed with the experimental

observations. Under the assumption that a small fraction (0.33%) of the tu-
mor cell population injected initially into the mice is non-immunogenic and
that the growth of this clone is three times slower than the growth rate of the
major immunogenic tumor cell population, this model unsurprisingly pre-
dicted eventual tumor regrowth. Unlike our first model, This second model
also predicts that size of the tumor after dormancy is determined by the
initial number of injected tumor cells. Variability of initial doses of injected
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cells explains the high dispersion of the time of clinical detection of regrown
tumor after dormancy [Vitetta et al., 1997], under the assumptions of our
second model. Moreover, immunological abnormality of a minor fraction of
BCL1 lymphoma cells was reported in the same study[Vitetta et al., 1997].

Note that the curves describing tumor regrowth presented above have
distinct shapes. It would be interesting to see if tumor regrowth known
to be due to immune system decline matches the regrowth profile in our
first model while tumor regrowth due to the presence of a abnormal clone
matches the regrowth profile of our second model.

Clinical and experimental observation confirms that intensive limited-
term immunotherapy does not provide complete tumor elimination, as pre-
dicted via modeling. Immunotherapy may reduce tumor mass to a handful
of cells; however, if the functional activity of the immune system is slightly
impared, tumor regrowth after immunization is likely. Model-fitting predicts
that the life-time of killer cells is short (about 2 days). Medium-term control
of cancer is exhibited when long-life immune memory cells are activated due
to our simulated immunization. But long-term control results from reducing
the cancer growth-rate.
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Figure 1: Fit of immune-response model to group 0-3 data. dashed = killer
cells, solid = tumor cells, circles = data of Sui et al.
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Figure 2: Fit of immune-response model to group 0-3 data with 10% lower
killing probability after 150 days. dashed = killer cells, solid = tumor cells.
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Figure 3: Anti-tumor immune response model with resistant aberrant clone
fit to group 0-3 data with 106 tumor cells at day 110 and 500 · 106 tumor
cells at day 290 for groups 1-3. dashed = killer cells, solid = tumor cells,
long dashed = aberrant clone tumor cells.
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Figure 4: Simulation of adjuvant immunization. (a) during dormancy, (b)
after start of tumor regrowth, (c) immunization with long-life memory cells,
(d) induction of diminished tumor growth rate. dashed = killer cells, solid
= tumor cells.
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