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1 Fourier Series

Around 1740, Daniel Bernoulli, Jean D’Alembert, and Leonhard Euler separately realized that,
under poorly-understood conditions, a real-valued periodic period-p function, y(t) = y(t + p),
for t ∈ R with p a fixed constant in R+, could be expressed as the potentially-infinite sum,
i.e., a potentially-infinite series, of sinusoidal oscillations of various frequencies, amplitudes, and
phaseshifts, so that

y(t) =
∞
∑

h=0

M(h/p) · cos (2π(h/p)t+ φ(h/p)) .

(Here R denotes the set of real numbers, and R+ denotes the set of positive real numbers.) This
series is called the real spectral-decomposition-form Fourier series of the period-p function y because
of Jean Baptiste Joseph Fourier’s book on heat transfer that explored the use of trigonometric series
in representing the solutions of differential equations (submitted to the Paris Academy of Sciences
in 1807. [Sti86])

The term M(h/p) · cos(2π(h/p)t + φ(h/p)) is a cosine oscillation of period p/h, frequency h/p,
amplitude M(h/p), and phaseshift φ(h/p). The period-p function y determines and is determined
by the amplitude function M and the phase function φ, which are both defined on the frequency
values {0, 1/p, 2/p, . . .}.

It is convenient to use Euler’s relation eiθ = cos(θ) + i sin(θ) to develop the mathematical theory
of Fourier series for complex-valued functions of a real argument, rather than just real-valued
functions. In this case, we can express the period-p function y in terms of an associated discrete
complex-valued function y∧, which contains the amplitude and phase functions combined together.
The complex-valued function y∧ is defined on the discrete set {. . . ,−2/p,−1/p, 0, 1/p, 2/p, . . .}.
This function y∧ will be introduced below; it is called the Fourier transform of y.
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Consider

x(t) =
∞
∑

h=−∞

Che
2πi(h/p)t := lim

k→∞

k
∑

h=−k

Che
2πi(h/p)t,

where . . . , C−1, C0, C1, . . . are complex numbers and p > 0. If |Ch| → 0 as |h| → ∞ fast enough so
that

∑∞
h=−∞ |Ch|2 < ∞, then the series defining x(t) converges in the least-squares sense [DM72]

and also converges pointwise almost everywhere [Edw67]; it is the Fourier series for the periodic
complex function x of period p. The complex numbers . . . , C−1, C0, C1, . . . are called the Fourier

coefficients of the function x. (Let Sk(t) =
∑k

h=−k Che
2πi(h/p)t; Sk is the k-th partial sum of the

series x(t) =
∑∞

h=−∞Che
2πi(h/p)t. To say

∑∞
h=−∞Che

2πi(h/p)t converges in the least-squares sense

means
∫ p/2
−p/2 |Sn(t)− Sm(t)|2dt→ 0 as n→∞ and m→∞ jointly.)

Note that, for h 6= 0, e2πi(h/p)t is a period-(p/|h|) periodic function of t, and for h = 0, e2πi(h/p)t is
constant and hence is a periodic function for every positive period. The term Che

2πi(h/p)t is called a
complex oscillation with the frequency h/p and the complex amplitude Ch. For h a non-zero integer,
the frequency h/p is called a harmonic frequency of the fundamental frequency 1/p. (In general, the
frequency hq is a harmonic frequency of the frequency q when h is a non-zero integer.) A periodic
function with the frequency h/p has the period p/|h| and any integral multiple of p/|h| is also a
period. The Fourier series of x is thus the sum of a constant term, C0, a pair of complex oscillation
terms with the fundamental frequencies ±1/p, and all the complex oscillations at all the harmonic
frequencies of the fundamental frequencies. (Of course, the amplitudes of some or all of these terms
might be zero, in which case the corresponding harmonics are missing.)

Exercise 1.1: Show that e2πi(h/p)t is a period-p/|h| function.

Solution 1.1: Since cos(α± 2π = cos(α) and sin(α± 2π = sin(α), we have cos(2π(h/p)(t+
p/|h|)) = cos(2π(h/p)t±2π) = cos(2π(h/p)t) and sin(2π(h/p)(t+p/|h|)) = sin(2π(h/p)t±2π) =
sin(2π(h/p)t), and thus the functions cos(2π(h/p)t) and sin(2π(h/p)t) are period-p/|h| functions
of t, and e2πi(h/p)t = cos(2π(h/p)t) + i sin(2π(h/p)t), e2πi(h/p)t is a period-p/|h| function of t.
Alternately,

e2πi(h/p)(t+p/|h|) = e2πi(h/p)t · e2πi sign(h) = e2πi(h/p)t · 1 = e2πi(h/p)t

since e2πi = 1 and e2πi(−1) = 1/e2πi = 1.

Exercise 1.2: Show that eit is a period=2π periodic function of t, and show that et is a
period-2πi periodic function of t.

Exercise 1.3: Show that |Che
2πi(h/p)t| = |Ch|.

The Fourier series for x can be manipulated to produce the spectral decomposition-form Fourier
series of x. The spectral decomposition of x consists of an amplitude spectrum function M , and a
phase spectrum function φ, where the amplitude spectrum function and the phase spectrum function
both appear in the spectral decomposition-form Fourier series of x.

When x is real, this is

x(t) =
∞
∑

h=0

M(h/p) · cos (2π(h/p)t+ φ(h/p)) .
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When x is real, the functions M(h/p) and φ(h/p) are defined for h ≥ 0 as:

M(h/p) =

√

A2
h +B2

h

1 + δh,0

and
φ(h/p) = atan2(−Bh, Ah),

where
Ah = Ch + C−h and Bh = i(Ch − C−h).

The function atan2(y, x) is defined to be the angle θ in radians lying in [−π, π) formed by the
vectors (1, 0) and (x, y) in the xy-plane, with atan2(0, 0) := π/2. When x > 0, atan2(y, x) =
tan−1(y/x). When y > 0, atan2(y, x) ∈ (0, π), when y < 0, atan2(y, x) ∈ (−π, 0), and atan2(0, x) =
{

0 if x > 0
−π if x < 0

. Note that atan2(y, x) = − atan2(−y, x) for y 6= 0.

Recall that the Kroneker delta function δh,k is defined by

δh,k =
{

1 if h = k;
0 otherwise.

The period-p function x(t) is real-valued if and only if C−h = C∗h for all h, where C∗h is the complex
conjugate of Ch. In this case Ah and Bh are real with Ah = 2Re(Ch) and Bh = −2 Im(Ch),
and M and φ are real-valued with M(h/p) = 2 · |Ch| for h > 0,M(0) = |C0|, and φ(h/p) =
atan2 (Im(Ch),Re(Ch)). Also, with x real, cos(φ(0)) = sign(C0) and M(h/p) ≥ 0.

For h = 0, 1, 2, . . ., the function of t, M(h/p) · cos (2π(h/p)t+ φ(h/p)), is periodic with period p/h,
and is a sinusoidal oscillation of frequency h/p. Thus x(t) is a sum of oscillations of periods ∞, p,
p/2, p/3, . . . (and frequencies 0, 1/p, 2/p, . . .), where the oscillation of frequency h/p has the phase

shift φ(h/p) and the amplitude M(h/p). The frequencies 0,
1

p
,
2

p
, . . . are all harmonic frequencies

of the fundamewntal frequency
1

p
, so the corresponding periods ∞, p, p/2, . . . all evenly divide the

fundametal period p. The limit
∑∞

h=0M(h/p) · cos (2π(h/p)t+ φ(h/p)) is thus a periodic function
with period p. Frequency is measured in cycles per t-unit; if t-units are seconds, then the frequency
h/p denotes h/p cycles per second, or h/p Hertz.

We can also write

x(t) =
A0

2
+
∞
∑

h=1

(Ah cos(2π(h/p)t) +Bh sin(2π(h/p)t)) .

Exercise 1.4: Let x be a real period-p function with x(t) =
∑∞

h=∞Che
2πi(h/p)t =

∑∞
h=0M(h/p)·

cos (2π(h/p)t+ φ(h/p)). Show that, for h > 0,

Che
2πi(h/p)t + C−he

−2πi(h/p)t = M(h/p) · cos (2π(h/p)t+ φ(h/p)) with C∗h = C−h.
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Solution 1.4: Let Ch = αh + iβh with αh, βh ∈ R. Then αh = α−h and βh = −β−h
since x is real. Assume Ch 6= 0 and let we have v = Che

2πi(h/p)t + C−he
−2πi(h/p)t. Then v =

αh(e
2πi(h/p)t+e−2πi(h/p)t)+ iβh(e

2πi(h/p)t−e−2πi(h/p)t) = αh2 cos(2π(h/p)t)−βh2 sin(2π(h/p)t),

since cos(θ) =
1

2

[

eiθ + e−iθ
]

and sin(θ) = − i

2

[

eiθ − e−iθ
]

.

Now, Ah := Ch + C−h = 2αh and Bh := i(Ch − C−h) = −2βh, and so, v = Ah cos(2π(h/p)t) +

Bh sin(2π(h/p)t) =
[

A2
h +B2

h

]1/2

[

Ah
[

A2
h +B2

h

]1/2
· cos(2π(h/p)t) + Bh

[

A2
h +B2

h

]1/2
· sin(2π(h/p)t)

]

.

Let θ = atan2(−Bh, Ah) = atan2(βh, αh). Then
Ah

[

A2
h +B2

h

]1/2
= cos(θ) and

Bh
[

A2
h +B2

h

]1/2
=

sin(−θ) = − sin(θ). Thus, v =
[

A2
h +B2

h

]1/2
[cos(θ) cos(2π(h/p)t)− sin(θ) sin(2π(h/p)t)].

Also, for h > 0, M(h/p) =
[

A2
h +B2

h

]1/2
= 2

[

α2
h + β2

h

]1/2
and φ(h/p) = θ, so v = M(h/p) ·

cos (2π(h/p)t+ φ(h/p)).

And for Ch = 0 = C∗−h with h > 0, we have A0 = B0 = 0 and φ(0) = atan2(0, 0) =
π

2
, and it is

immediate that 0 = M(h/p) · cos (2π(h/p)t+ φ(h/p)).

(Also, if h = 0, then C0 + C0 =
[

A2
h +B2

h

]1/2 · cos(φ(0)), but M(0) = 2|C0|/2 and cos(φ(0)) =

sign(C0), so C0e
2πi(h/p)0 = C0 = M(0) cos(φ(0)).)

When x is complex, the same spectral decomposition form applies. Michael O’Conner has shown
that we can give extended definitions of M and φ, with M and φ depending upon h/p and an
additional parameter ε, so that

x̃(t, ε) :=
∑

0≤h≤∞

M(h/p) · cos (2π(h/p)t+ φ(h/p))

uniformly approximates x(t) a.e., i.e., for −∞ < t <∞, |x(t)− x̃(t)| < 2ε a.e. for any chosen real
value ε > 0. (“a.e.” stands for “almost-everywhere”, meaning everywhere, except possibly on a set
of measure 0.) In order to have x̃ approximate x uniformly it suffices to define M(h/p) and φ(h/p)
so that, a.e.

∣

∣

∣M(h/p) · cos (2π(h/p)t+ φ(h/p))−
(

Che
2πi(h/p)t + C−he

−2πi(h/p)t
)∣

∣

∣ < ε/2|h|.

In fact, except when exactly one of Ch and C−h is zero, M(h/p) and φ(h/p) will be defined so that

M(h/p) · cos (2π(h/p)t+ φ(h/p)) = Che
2πi(h/p)t + C−he

−2πi(h/p)t.

We define

φ(h/p) :=







atan2(−Bh, Ah) if Ah = 0 or Ah 6= ±iBh,
atan2(−Bh − iε/2|h|, Ah + ε/2|h|) if 0 6= Ah = iBh, and
atan2(−Bh + iε/2|h|, Ah + ε/2|h|) if 0 6= Ah = −iBh,
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where

atan2(y, x) =























π/2 if x = 0 and Re(y) ≥ 0,
−π/2 if x = 0 and Re(y) < 0,
tan−1(y/x) if x 6= 0 and Re(x) ≥ 0,
tan−1(y/x)− π if Re(x) < 0 and 0 ≤ Re(tan−1(y/x)) < π/2,
tan−1(y/x) + π otherwise,

and where

tan−1(z) =
1

2i
log

(

i− z

i+ z

)

,

with Im(log(w)) ∈ [−π, π), and with tan−1(i) =∞ · i and tan−1(−i) = (3/4)π −∞i.

Now when just one of Ch and C−h is 0, we define

M(h/p) :=

{

Ah/ (cos(φ(h/p)) · (1 + δh,0)) when cos(φ(h/p)) 6= 0 and
−Bh/ (sin(φ(h/p)) · (1 + δh,0)) when cos(φ(h/p)) = 0,

and when both Ch and C−h are non-zero, we define

M(h/p) :=
[

Che
2πi(h/p)t + C−he

−2πi(h/p)t
]

/ cos (2π(h/p)t+ φ(h/p)) ,

and when Ch = C−h = 0, we define M(h/p) := 0.

These definitions of M,φ, and atan2 coincide with the definitions of M,φ and atan2 given above
for the case where x(t) is real.

Our purpose here is to introduce Fourier transforms and summarize some of their properties for
impatient readers. It is not our purpose to properly and carefully justify every assertion; to do so
would involve us in a thicket of technical issues: computing limits, establishing bounds, interchang-
ing infinite sums and improper integrals, etc. Moreover, in some cases, the proximate arguments
are too long, or depend on results that themselves require lengthy discussion to explain. These are
not unimportant issues, but they are to be sought elsewhere [DM72], [Edw67].

[Major gaps:

1. Proof that
∑∞

h=−∞Che
2πi(h/p)t converges in the L2([0, p])-norm if

∑

j |Cj |2 converges.

2. Proof that {e2πi(j/p)t} is a countable approximating basis of L2([0, p]).

3. Proof that
∫∞
−∞

∫∞
−∞ x(r)e−2πisr dr e2πist ds, exists and equals x(t) a.e. when x ∈ L2(R).

]

2 Fourier Transforms

If x(t) =
∞
∑

h=−∞

Che
2πi(h/p)t, then multiplying both sides by e−2πi(j/p)t, and integrating along the

real axis over one period from −p/2 to p/2 yields
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∫ p/2

−p/2
x(t)e−2πi(j/p)t dt =

∫ p/2

−p/2

∞
∑

h=−∞

Che
2πi(h/p)t · e−2πi(j/p)t dt

=
∞
∑

h=−∞

Ch

∫ p/2

−p/2
e2πi((h−j)/p)t dt

=
∞
∑

h=−∞

Chpδh,j

= pCj ,

so Cj = (1/p)

∫ p/2

−p/2
x(t)e−2πi(j/p)t dt. This is because the orthogonality relation

∫ p/2

−p/2
e2πi(h/p)t · e−2πi(j/p)t dt =

{

p if h = j
0 otherwise

holds for h, j ∈ Z, where Z denotes the set of integers, i.e., the period-p functions e2πi(h/p)t dt and

e−2πi(j/p)t dt are orthogonal to one-another when h 6= j. When h = j, we have
∫ p/2
−p/2 1dt = p, and

when h 6= j, we have

∫ p/2

−p/2
e2πi((h−j)/p)t dt = (e2πi(h−j)t/p)/(2πi(h− j)/p)

∣

∣

∣

t=p/2

t=−p/2

=
[

eπi(h−j) − e−πi(h−j)
]

/(2πi(h− j)/p)

= e−πi(h−j)
[

e2πi(h−j) − 1
]

/(2πi(h− j)/p)

=
[

e2πi(h−j) − 1
]

/
[

eπi(h−j)(2πi(h− j)/p)
]

= [1− 1] /
[

eπi(h−j)(2πi(h− j)/p)
]

= 0.

We thus have x(t) =

∞
∑

h=−∞

[

1

p

∫ p/2

−p/2
x(r)e−2πi(h/p)r dr

]

· e2πi(h/p)t. (This holds when the integral

and summation in the computation of pCj above can be done in either order; this is the case when
x has a Fourier series that converges in the least-squares sense.)

Note, since e2πi(h/p)t is a period-p periodic complex-valued function as well as a period-p/|h| function

for h ∈ Z, x(t) =
∞
∑

h=−∞

Che
2πi(h/p)t is a period-p periodic complex-valued function defined for

−∞ < t <∞.
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Lebesgue integration is employed throughout, since whenever a Riemann integral exists, the cor-
responding Lebesgue integral exists and has the same value, and the Lebesgue integral exists in

cases where the Riemann integral does not [DM72]. Moreover, lim
n→∞

∫ p/2

−p/2
fn =

∫ p/2

−p/2
lim
n→∞

fn when

limn→∞ fn converges, here f1, f2, . . . are measurable functions, and either 0 ≤ f1 ≤ f2 ≤ · · · or
|fn| ≤ g for n = 1, 2, . . . where g is an integrable function. (A real function f is measurable if the
sets {t | a ≤ f(t) < b} are measurable for all choices a < b. A complex function g is measurable if
Re(g(t)) and Im(g(t)) are measurable functions.)

Exercise 2.1: Show that

∫ p/2

−p/2
e2πi(h/p)te−2πi(j/p)t dt = sin(π(h− j))/(π(h− j)/p) for h, j ∈ R

with h 6= j.

Let x(t) be a complex-valued periodic function of period p, defined on −∞ < t <∞, that possesses
a Fourier series expansion that converges in the least-squares sense: that is, x is sufficiently-nice so
that x(t) =

∑∞
h=−∞Che

2πi(h/p)t where . . . , C−1, C0, C1, . . . are complex numbers such that |Ch| → 0
as |h| → ∞ fast enough so that

∑

h |Ch|2 <∞. The Fourier transform of x is:

x∧(s) := (1/p)

∫ p/2

−p/2
x(t)e−2πist dt,

for s = . . ., −2/p, −1/p, 0, 1/p, 2/p, . . . . The (period-p) Fourier transform of x is a discrete
function that produces the Fourier coefficients of the period-p function x, i.e., x∧(h/p) = Ch

for h = . . . ,−1, 0, 1, . . . . The Fourier transform of the period-p function x is a regular discrete
function defined on the regular mesh . . ., −2/p, −1/p, 0, 1/p, 2/p, . . . i.e., a mesh with stepsize
1/p. (Although named for Fourier, the Fourier transform is attributed to Pierre Laplace [Sti86].)
You can think of ∧ as an operator that, when applied to the function x, produces the function

(1/p)
∫ p/2
−p/2 x(t)e

−2πist dt. For h ∈ Z, the value x∧(h/p) is just the Fourier coefficient of x for

the complex-oscillation term of frequence h/p. The period-p functions that have a Fourier trans-
form thus include all those period-p functions that possess least-squares-convergent Fourier series
expansions.

The inverse Fourier transform of x∧ is:

x∧∨(t) :=
∞
∑

h=−∞

x∧(h/p)e2πi(h/p)t = x(t) a.e.

This sum is the complex Fourier series of x. Indeed, we may define x to be a sufficiently-nice
periodic function precisely when x∧∨ converges a.e. to x. Then the statement that a sufficiently-nice
periodic function is equal a.e. to its Fourier series is the Fourier inversion theorem for a sufficiently-
nice periodic function. The Fourier inversion theorem also shows that the Fourier coefficients
Ch are uniquely determined by the sufficiently-nice function x(t), in the sense that if any other
sufficiently-nice function y has the same Fourier coefficients as x, then y = x almost everywhere,
and conversely.

The Fourier transform x∧ of a sufficiently-nice period-p function x is restricted to the domain
consisting of the multiples of 1/p, and x∧(h/p) is the complex amplitude of the complex oscillation
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e2πi(h/p)t of frequency h/p in the Fourier series for x. Thus x∧∨ is a sum of complex oscillations
of frequencies . . ., −1/p, 0, 1/p, 2/p, . . ., which are multiples of the fundamental frequency 1/p,
where the complex values . . ., x∧(−1/p), x∧(0), x∧(1/p), x∧(2/p), . . . are the associated complex
amplitudes. Moreover the Fourier transform of a sufficiently-nice period-p function x defined on
the real line is a discrete decreasing function defined at . . ., −1/p, 0, 1/p, 2/p, . . ., i.e., with stepsize
1/p; 1/p is the fundamental frequency of x. (A decreasing function f(s) satisfies |f(s)| → 0 as
|s| → ∞.)

We use the term “Fourier transform” carefully in conjunction with the term “Fourier integral
transform”, which is a distinct concept obtained by considering the Fourier transform integral
for an arbitrary suitable integrable function, f , in the limit as p → ∞, resulting in the integral
∫ ∞

−∞
f(t)e−2πistdt over the entire real line.

Note that the integral form for x∧(s) is computable when s is not an integer multiple of 1/p. But,
when s is not an integer multiple of 1/p, e−2πist is not of period p, so when s is an integral multiple
of 1/q with q ∈ R+ rather than an integral multiple of 1/p, we, in effect, are computing the value at
s of an inner product of x extended with zero and e−2πist in a space of period-q functions, and not
in the space inhabited by periodic functions of period p. For example, given s, we could take the

period q to be a positive integral multiple of (⌊|s| ·p⌋+1)/s, The function of s given by the integral
∫ p/2
−p/2 x(t)e

−2πist dt defined for arbitrary values of s has another natural meaning as the Fourier

integral transform of the function which coincides with x in the interval [−p/2, p/2], and is zero
outside. Hence, when we want to avoid such interpretations for the Fourier transform x∧ of a period-
p function x, we must take care to only compute x∧(s) for s ∈ {. . . ,−2/p,−1/p, 0, 1/p, 2/p, . . .};
sometimes we may “forcibly” define x∧(s) to be zero at all points s, where s is not an integer
multiple of 1/p. Such a function, which we consider to be only defined on at most a countable set
that has no Cauchy sequences as subsets, is said to have discrete support, and is called a discrete
function. (In general the support set of a function x, defined on R, is the set {t ∈ R | x(t) 6= 0}.)
Sometimes, however, we will want to compute x∧(s) where s is not necessarily a multiple of 1/p;
we will take care to identify these special situations.

A sufficiently-nice complex-valued periodic or almost-periodic function, x, has a Fourier transform
which is a discrete decreasing function (|x∧(s)| → 0 as |s| → ∞). The idea of expressing a periodic
or almost-periodic function as a sum of oscillations can be applied to other kinds of functions as
well. Indeed the extension of the concept of a Fourier transform to various domains of functions
is a central theme of the theory of Fourier transforms. A discrete periodic function has a Fourier
transform defined by a Riemann sum which results in another discrete periodic function; this is
the discrete Fourier transform. A rapidly-decreasing (and therefore non-periodic) function, x, has
a Fourier transform which is again a rapidly-decreasing function. This is the Fourier integral
transform,

∫∞
−∞ x(t)e−2πist dt, which is an integral over the entire real line. Finally, a merely

polynomial-dominated measurable function has a Fourier-Stieljes transform which is the difference
of two positive measures on [−∞,∞] (or alternately, a linear functional on the space of rapidly-
decreasing functions.)

All of these forms of Fourier transforms apply to different domains of functions, and as a function
in one domain is approximated by a function in another, their respective Fourier transforms are
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related. In each case an “inverse transform” formula exists which recovers a function of appropriate
type from its Fourier transform. These relations constitute some of the mathematical substance of
the theory of Fourier transforms.

Some of the various Fourier transforms can be unified by introducing the so-called generalized
functions, but this theory is difficult to appreciate, since periodic and discrete functions are not
generalized functions, but are only represented by certain generalized functions and some general-
ized functions are not, in fact, functions, but merely the synthetic limits of sequences of progressively
more sharply-varying functions; nevertheless this theory is computationally powerful and opera-
tionally easy to employ. It is best considered after studying each of the more elementary Fourier
transforms separately.

Note that when x is periodic of period p and s is an integer multiple of 1/p, x(t)e−2πist is periodic
of period p, so x∧(s) can be obtained by integrating over any interval of size p. Thus, for all
a, x∧(s) = (1/p)

∫ a+p
a x(t)e−2πist dt with s an integer multiple of 1/p. Often we may prefer the

interval [0, p] instead of the symmetric interval [−p/2, p/2], used earlier in the definition of the
Fourier transform.

Occasionally, when, for example, we are simultaneously concerned with the Fourier transform of
a function, x, of period p and a function, y, of period q, we shall use the notation ∧(p) and
∨(p) to explicitly indicate the transform and inverse transform operators which involve the period
parameter p, and which we usually apply to functions of period p; thus x∧(p)∨(p) = x.

Recall that a sufficiently-nice function is one where x∧∨(t) = x(t), except possibly on a set of mea-
sure zero. A precise alternate characterization of sufficiently-nice is not known, but, for example, a
function of bounded variation is sufficiently-nice. We shall generally write f(t) = g(t), even though
f(t) may be different from g(t) on a set of measure zero.

Knowing the Fourier transform of a sufficiently-nice periodic function, x, is equivalent to knowing its
Fourier series; properties of the Fourier series of a periodic function correspond to related properties
of the Fourier transform, x∧(s).

Exercise 2.2: Let x(t) and y(t) be real-valued continuous period-p periodic functions. The
planar curve c = {(x(t), y(t)) | 0 ≤ t < p} is a closed curve due to the periodicity of x and y.

Show that c is the “sum” of the ellipses

Ej = {(Mx(j) cos(2π(j/p)t+ φx(j)),My(j) cos(2π(j/p)t+ φy(j))) | 0 ≤ t < p}

where

Mx(j) = (2− δj,0)|x∧(j/p)|,
φx(j) = atan2(Im(x∧(j/p),Re(x∧(j/p))),

My(j) = (2− δj,0)|y∧(j/p)|, and

φy(j) = atan2(Im(y∧(j/p),Re(y∧(j/p))),

for j = 0, 1, 2, . . ., in the following sense.



2 FOURIER TRANSFORMS 10

Define c̃[t] = (x(t), y(t)) and define Ẽj [t] = (Mx(j) cos(2π(j/p)t+φx(j)), My(j) cos(2π(j/p)t+
φy(j)) ).

Then show that c̃[t] = Ẽ0[t]+ Ẽ1[t]+ · · ·. Also show that E0 = {Ẽ0[0]} and the set Ej = {Ẽj [t] |
0 ≤ t < p/j} for j = 1, 2, . . .. (Note Ej , as a multiset, consists of several “circuits” of an ellipse
for j > 1.)

2.1 Geometric Interpretation

On a subset of the sufficiently-nice period-p functions, the Fourier transform is elegantly interpreted
as a unitary linear transformation on an infinite-dimensional inner-product vector space; such a
space is called a Hilbert space.

Let Q be the interval [0, p], and let L2(Q) be the set of complex-valued functions, x, defined on Q
such that

∫ p
0 |x(t)|2 dt <∞.

Define the inner product in L2(Q) as:

(x, y) :=

∫ p

0
x(t)y(t)∗ dt

and define the norm as:
‖x‖ := (x, x)1/2.

When necessary, we shall write (x, y)L2(Q) and ‖x‖L2(Q) to precisely specify this inner product and
norm on L2(Q).

Both Schwarz’s inequality: ‖(x, y)‖ ≤ ‖x‖ · ‖y‖, and the triangle inequality (also known as
Minkowski’s inequality): ‖x+ y‖ ≤ ‖x‖+ ‖y‖, hold for x, y ∈ L2(Q).

L2(Q) is an infinite-dimensional Hilbert space over the complex numbers, C. L2(Q) is also a metric
space with the distance function ‖x−y‖ for x, y ∈ L2(Q), and L2(Q) is complete (Cauchy sequences
of functions in L2(Q) converge to functions in L2(Q) with respect to the just-specified metric) and
separable (any function in L2(Q) is arbitrarily close to a function in a distinguished countable subset
D of L2(Q), i.e., D is dense in L2(Q).) Separability is, in some sense, the most crucial property
of L2(Q) - it guarantees that a kind of basis set for L2(Q) exists which is “non-trival” in that its
cardinality is less than the cardinality of L2(Q) itself, given that we accomodate the representation
of functions in L2(Q) with respect to such a basis set by including limits (in norm) of sequences
of finite linear combinations of basis functions, as well as the finite combinations themselves. Such
a dense countable set of functions, D, is called an approximating basis of L2(Q). In actuality, the
Fourier basis of period-p complex exponentials was seen to be an approximating basis for a class
of functions that was later determined to be the L2(Q)-functions, so that L2(Q) was seen to be
separable a priori.

Let the functions . . ., e−2, e−1, e0, e1, e2, . . . form an orthogonal approximating basis for L2(Q).
This means that for x ∈ L2(Q), there exist complex numbers . . ., C−2, C−1, C0, C1, C2, . . . such

that limk→∞

∥

∥

∥
x−∑k

j=−k Cjej

∥

∥

∥
= 0; we write x =

∑

j Cjej to indicate this. Note however, x is not,



2 FOURIER TRANSFORMS 11

in general, equal to a linear combination of a finite number of the orthogonal basis functions, but is
approximated arbitrarily closely a.e. by such linear combinations; this is the notion of an orthogonal
approximating basis, rather than a basis in the strict vector-space sense. (The infinite-dimensional
vector space L2(Q) does not possess a strict basis, since infinite sums must be accomodated.)
Having an orthogonal approximating basis means that

(ej , ek) =

{

‖ej‖2 if j = k
0 otherwise.

L2(Q) has other orthogonal approximqting bases, and L2(Q) also has numerous non-orthogonal
approximating bases, 〈. . . , φ−2, φ−1, φ0, φ1, . . .〉; however, with such a basis we cannot take a fixed
sequence of “coordinate components . . . , C−2, C−1, C0, C1, . . . as defining x ∈ L2(Q), but can only
claim that the finite linear combinations of . . . , φ−2, φ−1, φ0, φ1, . . . form a dense subset of L2(Q)
whose completion is L2(Q).

An orthogonal approximating basis can always be constructed from an arbitrary approximating
basis by means of the Gram-Schmidt process. The function (x, ej/‖ej‖)ej/‖ej‖ is the orthogonal
projection of x in the direction ej , of length (x, ej/‖ej‖).

Cj = (x, ej)/‖ej‖2 is called the j-th Fourier coefficient of x, and x =
∑

j Cjej . (Cj is also called
the j-th component of x with respect to the Fourier basis 〈. . . , e−1/‖e−1‖, e0/‖e0‖, e1/‖e1‖, . . .〉.)

If we also have y =
∑

k Dkek, then note that, due to the orthogonality of the approximating basis
functions,

(x, y) =





∑

j

Cjej ,
∑

k

Dkek



 =

∫

Q

∑

j

∑

k

CjejD
∗
ke
∗
k

=
∑

j

∑

k

CjD
∗
k(ej , ek) =

∑

j

CjD
∗
j‖ej‖2.

This is known as Parseval’s identity. As a special case we have ‖x‖2 =∑j |Cj |2‖ej‖2; this is usually
called Plancherel’s identity; it is essentially the Pythagorean theorem in infinite-dimensional space.
These identities are variously labeled with the names of Rayleigh, Parseval and Plancherel.

Let Z denote the integers {. . ., −2, −1, 0, 1, 2, . . .}, and let Z/p denote the numbers {. . .,
−2/p, −1/p, 0, 1/p, 2/p, . . .}, where p is a positive real number. Let L2(Z/p) be the set of
complex-valued functions, f , on Z/p such that

∑

h |f(h/p)|2 < ∞. Introduce the inner product
(f, g) = p

∑

h f(h/p)g(h/p)
∗ for f, g ∈ L2(Z/p), and the associated norm ‖f‖ = (f, f)1/2. With

this norm, L2(Z/p) is a complete separable infinite-dimensional Hilbert space over the complex
numbers, C. When necessary, we shall write (f, g)L2(Z/p) and ‖f‖L2(Z/p) to denote this inner
product and norm on L2(Z/p).

Now fix ej(t) = e2πi(j/p)t. Note ‖ej‖ = p1/2. These complex exponential functions form a particular
orthogonal approximating basis for L2(Q) (this is proven in [DM72].) The mapping x→ x∧, where
x ∈ L2(Q) and x∧ ∈ L2(Z/p), defined by

x∧(j/p) := (x, ej/‖ej‖2) = (1/p)

∫

Q
x(t)ej(t)

∗ dt = (1/p)

∫

Q
x(t)e−2πi(j/p)t dt
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is a one-to-one linear transformation of L2(Q) into L2(Z/p). Note ∧ is a linear operator: (αx +
βy)∧ = αx∧ + βy∧. The Reisz-Fischer theorem states that, in fact, ∧ maps L2(Q) onto L2(Z/p).
The discrete function x∧ is the Fourier transform of x; it is just the representation of x in the coor-
dinate system given by the orthonormal approximating basis 〈. . . , e−1/‖e−1‖, e0/‖e0‖, e1/‖e1‖, . . .〉.
In fact, the mapping ∧ is an isomorphism between L2(Q) and L2(Z/p) as Hilbert spaces. In par-
ticular, inner products are preserved: (x, y)L2(Q) = (x∧, y∧)L2(Z/p) (Parseval’s identity), and hence

lengths defined by the respective norms in L2(Q) and L2(Z/p) are preserved also: ‖x‖L2(Q) =
‖x∧‖L2(Z/p) (Plancherel’s identity). An inner-product-preserving one-to-one linear transformation
is a unitary transformation, and since no reflection is involved, the mapping ∧ can be characterized
as a kind of rotation of L2(Q) onto L2(Z/p) which is, since ∧ is an isomorphism, just a representa-
tion of L2(Q) coordinatized with respect to the orthonormal approximating basis 〈. . ., e−1/‖e−1‖,
e0/‖e0‖, e1/‖e1‖, . . .〉.

Note that every separable infinite-dimensional Hilbert space is isomorphic to L2(Z/p), since a
countable orthonormal approximating basis is guaranteed to exist, and expressing an element, x,
in terms of this orthonormal approximating basis yields a coefficient sequence in L2(Z/p) which
then corresponds to x.

Since ∧ is an isomorphism between L2(Q) and L2(Z/p), the inverse mapping ∨ is also an isomor-
phism between L2(Z/p) and L2(Q).

Note that if we were to choose ej(t) = e2πi(j/p)t/
√
p then the factor 1/p in the Fourier transform

integral would be redistributed into both the operators ∧(p) and ∨(p) equally. Also note that there
are many choices for the approximating basis functions . . . , e−1, e0, e1, . . ., and for each such choice
we have an associated generalized Fourier series expansion for the functions in L2(Q). For certain
choices, we obtain classical orthogonal polynomial expansions, and for other choices, we obtain
particular so-called wavelet expansions.

2.2 Almost-Periodic Functions

A larger class of functions than ∪0<p<∞L2(Q) admit a trigonometric series representation. This is
the class, A, of almost-periodic functions. A complex-valued function, x, defined on the real line
is almost-periodic if, for ε > 0, there exists p > 0 such that for all t ∈ [0, p], |x(t + a) − x(t)| < ε
for at least one point a in every interval of length p. Such functions have a Fourier transform,
x∧(s) = (1/p)

∫∞
−∞ x(t)e−2πist dt, which differs from zero on an, at most countable, discrete set of

points . . ., s−2, s−1, s0, s1, s2, . . .. The inverse Fourier transform of x∧ is

x∧∨(t) =

∫

s∈(−∞,∞)
x∧(s)e2πist dS(x∧) =

∞
∑

h=−∞

x∧(sh)e
2πisht,

where S(x∧) is the Dirac comb measure on the support set of x∧, where

S(x∧)[{α}] =
{

1 if α ∈ {. . . , s−1, s0, s1, . . .}
0 otherwise,

and, in general for U ⊆ R, S(x∧)[U ] = card({U ∩ {. . . , s−1, s0, s1, . . .}).
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The class of functions A, when completed by adding all missing limit points, is a Hilbert space,
but it is not separable, so no countable basis exists. In spite of this, each element x has a unique
countable decomposition as specified above.

The inner product in A is

(x, y)A := lim
p→∞

(1/p)

∫ p/2

−p/2
x(t)y(t)∗ dt

and the norm ‖x‖A := (x, x)
1/2
A .

Plancherel’s identity holds. For x ∈ A : ‖x‖2A =
∑∞

h=−∞ |x∧(sh)|2, where . . ., s−1, s0, s1, . . . are
the points at which |x∧(s)| > 0.

2.3 Convergence

Let Sk(t) =
∑k

h=−k x
∧(h/p)e2πi(h/p)t. Sk is the k-th partial sum of x∧∨. For x ∈ L2(Q), the k-th

partial sum of the Fourier series of x(t), Sk(t), has the property that ‖x− Sk‖ ≤ ‖x−Ak‖, for any
choice of coefficients a−k, . . ., a−1, a0, a1, . . ., ak, where Ak(t) =

∑k
j=−k aje

2πi(j/p)t.

Also, we have Bessel’s inequality: ‖x‖ ≥ ‖Sk‖, so that 〈Sk〉 is a Cauchy sequence, and hence x∧∨

converges in the L2(Q) norm. Since each member x∧, of L2(Z/p), corresponds to x∧∨ in L2(Q),
we see that x∧∨ converges in the L2(Q) norm when

∑∞
h=−∞ |x∧(h/p)|2 <∞.

Exercise 2.3: Is the Fourier series of x unique in the sense that no other sum of complex
oscillations, no matter what their frequencies, can converge to x∧∨?

If x∧∨ converges at the point t, then x∧∨(t) = x(t), unless x is discontinuous at t. In general, if
x∧∨ converges at t, then x∧∨(t) = (x(t−)+x(t+))/2 where x(t+) denotes limε↓0 x(t+ ε) and x(t−)
denotes limε↓0 x(t− ε). In particular, if x has an isolated jump discontinuity at t, then x∧∨(t) lies
halfway between x(t−) and x(t+).

Exercise 2.4: How can the sum of an infinite number of continuous functions converge to a
discontinuous function?

If x is n-fold continuously-differentiable for n ≥ 0 (i.e., x = x(0), x(1), . . ., x(n) exist, and x(1), . . .,
x(n−1) are continuous and periodic, where x(j) denotes the j-th derivative of x) and x∧∨ converges
pointwise almost everywhere in Q then x∧(h/p) = o(1/|h|n+1) or more specifically, |x∧(h/p)| ≤
α(1 + |h|)−(n+1), where α is a fixed real constant value. In particular, if x ∈ L2(Q) is continuous,
then x∧∨ converges uniformly to x almost everywhere in Q.

In general, the smoother x is (i.e., the more continuous derivatives x has,) the more rapidly its
Fourier coefficients approach 0. The converse is also true; if |x∧(h/p)| ≤ α(1 + |h|)−(n+2) for all
h ∈ Z and some constant α, then x is n-fold continuously-differentiable.

Suppose x has an isolated jump discontinuity at t0. Then

lim
k→∞

Sk(t0 + p/(4k)) = x(t0+) + d(x(t0+)− x(t0−)) and
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lim
k→∞

Sk(t0 − p/(4k)) = x(t0−) + d(x(t0−)− x(t0+)),

where d =
2

π

∫ π

0
(sin(u)/u) du − 1 = .0894899 . . .. This 8.94 · · ·-percent overshoot/undershoot on

each side of a jump discontinuity is known as Gibbs’ phenomenon. Convergence of 〈Sk〉 is never
uniform in the neighborhood of such a discontinuity.

Exercise 2.5: What is
1

2
lim
k→∞

[Sk(t0 + p/(4k)) + Sk(t0 − p/(4k))]?

Let Mn denote an increasing mesh 0 ≤ t1 < t2 < . . . < tn ≤ p. The variation of x on Q is

VQ(x) := lim
n→∞

sup
Mn

n
∑

j=1

|x(tj)− x(tj − 1)|

VQ(x) is a measure of the length of the “curve” which is the graph of |x| on Q. The function x is of
bounded variation, i.e., VQ(x) <∞, if and only if both Re(x) and Im(x) are separately expressible
as the difference of two bounded increasing functions.

If x is of bounded variation, then x∧∨ converges pointwise almost everywhere in Q. Moreover
the partial sums, Sk(t) =

∑k
h=−k x

∧(h/p)e2πi(h/p)t satisfy |Sk| < c1 · VQ(x) + c2 where c1 and c2
are constants. In 1966, Lennart Carleson published a paper proving that if x ∈ L2(Q), then x∧∨

converges pointwise almost everywhere, even if x is not of bounded variation. [Edw67]

In fact, the Fourier transform is defined on the larger space, L1(Q), of period-p functions, x, such
that

∫

Q |x| <∞; moreover, if a period-p function x has a Fourier transform x∧, then x ∈ L1(Q); thus

L1(Q) is the proper “maximal” domain for ∧ within the class of period-p periodic functions. But
the corresponding inverse transform x∧∨ may not converge pointwise a.e. to x. The Fourier series
for a function x ∈ L1(Q) is, however, Féjer-summable to x. A series

∑

j aj(t) is Féjer-summable to
the function x(t) if

lim
k→∞

1

k

∑

0≤n<k

∑

−n≤j≤n

aj(t) = x(t).

As just mentioned, there are decreasing discrete complex-valued functions f , defined on Z/p, that
are the Fourier transforms of functions in L1(Q), whose inverse Fourier transforms f∨ do not belong
to L1(Q). For example,

f(h/p) =

{

0 if |h| ≤ 1,
−i · sign(h)/(2 log |h/p|) otherwise.

Such functions f have |f∨| =∞, essentially because f does not decrease fast enough. Nevertheless,
in a certain sense, f has an inverse Fourier transform f∨, which is just not computable by the usual
recipe.

Let S(Q) denote the class of sufficiently-nice period-p functions where x ∈ S(Q) implies x∧∨ = x.
Then L2(Q) ⊂ S(Q) ⊂ L1(Q). Let S(Z/p) = {y∧ | y ∈ S(Q)}, let G(Q) be the class of period-
p functions which are the pointwise sums of at least conditionally-convergent series of the form
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∑

j f(j/p)e
2πi(j/p)t, and let G(Z/p) be the corresponding class of discrete functions, f , on Z/p.

Then S(Q) ⊂ G(Q) and S(Z/p) ⊂ G(Z/p).

The Fourier transform ∧ is an invertable linear map from L2(Q) onto L2(Z/p). We can enlarge the
domain of ∧ to the set S(Q) with the range S(Z/p), keeping ∧ invertable. We can further enlarge
the domain of ∧ from S(Q) to the set L1(Q), but the added functions do not possess inverse Fourier
transforms (i.e., do not have pointwise-convergent a.e. Fourier series.)

Similarly, we can enlarge the domain of ∨, S(Z/p), to the set G(Z/p), but the added functions
define Fourier series which, although convergent, do not possess Fourier transforms. In other words,
∨ : G(Z/p) → G(Q), but there are functions in G(Q) that cannot be mapped back to G(Z/p) by
the Fourier transform recipe. Note that S(Q) = L1(Q) ∩G(Q).

Finally, there is the class J(Q) of period-p functions, which are Féjer sums of series of the form
∑

j f(j/p)e
2πi(j/p)t, and the associated class J(Z/p) of discrete functions f for which we have

L1(Q) ⊂ J(Q) and G(Q) ⊂ J(Q). There are no known simple descriptive characterizations of the
sets S(Q), G(Q), and J(Q), or of the sets S(Z/p), G(Z/p), and J(Z/p).

2.4 Structural Relations

� x∧(0) = (1/p)
∫ p/2
−p/2 x(t) dt = the mean value of x on [−p/2, p/2]. x∧(0) is called the d.c.

(direct current) component of x.

� x∧ has discrete support, with x∧(s) defined when s = h/p where h is an integer.

� The operators ∧ and ∨ are linear operators, so that

(ax(t) + by(t))∧(s) = ax∧(s) + by∧(s) and

(ax∧(s) + by∧(s))∨ = ax∧∨(t) + by∧∨(t).

� x is real if and only if x∧(−s) = x∧(s)∗ where a∗ denotesw the complex conjugate of a, i.e.,
x∧ is Hermitian. (As a matter of notation, we may write y∗(s) to mean the same thing
as y(s)∗; both expressions denote the application of the complex-conjugate operation to the
output of the function y.) We write xR(s) to denote x(−s), where “R” denotes the reversal
operation (the term “reflection” is also used.) Then to say x∧ is Hermitian is to say x is real
and (x∧)R = x∧R = x∧∗.

Exercise 2.6: Show that, for x ∈ L2(Q), x = x∗, if and only if x∧R = x∧∗.

Solution 2.6:

x∧∗(s) =

[

1

p

∫ p/2

−p/2
x(t)e−2πist dt

]∗

=
1

p

∫ p/2

−p/2
x∗(t)e2πist dt

= x∗∧(−s)
= x∗∧R(s).
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And,

x∧R(s) =

[

1

p

∫ p/2

−p/2
x(t)e−2πist dt

]R

=
1

p

∫ p/2

−p/2
x(t)e2πist dt.

Thus, if x = x∗ then x∧R = x∧∗ = x∗∧R. Conversely, if x∧∗ = x∧R then x∧∗ = x∗∧R = x∧R,
and thus x∗∧RR∨ = x∧RR∨ which reduces to x∗ = x.

� The operator pairs (∗, R), (∧, R), and (∨, R) commute but (∨, ∗) and (∧, ∗) do not. Thus
x∗R = xR∗, xR∧ = x∧R, and fR∨ = f∨R.

Exercise 2.7: Show that x∧(−s) =
∫ p
0 x(t)e2πist dt =

∫ p
0 x(−t)e−2πist dt = (x(−t))∧(s).

Exercise 2.8: Is the complex-conjugate operator ∗ a linear operator? Hint: it depends
on what the field of scalars is taken to be for our Hilbert space of periodic functions.

� Note if x∧ is Hermitian then Re(x∧) is even and Im(x∧) is odd, where a function, y, is even
if y(t) = y(−t), and odd if y(t) = −y(−t). Every function x can be decomposed into its even
part, even(x)(t) = (x(t)+x(−t))/2, and its odd part, odd(x)(t) = (x(t)−x(−t))/2, such that
even(x) is even, odd(x) is odd, and x = even(x) + odd(x).

� x is odd (i.e., x(t) = −x(−t),) if and only if x∧ is odd. x is even (i.e., x(t) = x(−t),) if and
only if x∧ is even. Thus, if x is real and even, or imaginary and odd, x∧ must be real.

� The product of two even functions is even, and so is the product of two odd functions, but
the product of an even function and an odd function is odd. Using this fact, together with
Euler’s relation eiθ = cos(θ) + i sin(θ), and the fact that cos(θ) is even and sin(θ) is odd, we
can state the following.

If x ∈ L2(Q) is even, x∧ is the cosine transform of x with

x∧(h/p) = (1/p)

∫ p/2

−p/2
x(t) cos(2π(h/p)t) dt and

x(t) = x∧(0) +
∑

h≥1

2x∧(h/p) cos(2π(h/p)t).

If x ∈ L2(Q) is odd, x∧ is the sine transform of x with

x∧(h/p) = (1/p)

∫ p/2

−p/2
x(t) sin(−2π(h/p)t) dt and

x(t) = x∧(0) +
∑

h≥1

2x∧(h/p) sin(2π(h/p)t).

The development of a trigonometric Fourier series for a real-valued function, x, can be done
without resorting to complex numbers via the cosine transform of the even part of x and the
sine transform of the odd part of x.
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� Note that when x is real, x∧(s) = (M(s)/(2−δs,0))e
iφ(s), and moreover M is an even function

and φ is an odd function.

� (x(at))∧(p/|a|)(s) = x∧(p)(s/a) for s ∈ {. . . ,−|a|
p
, 0,
|a|
p
, . . .}. Note x(at) has period p/|a| when

x(t) has period p.

Exercise 2.9: Show that (x(at))∧(p/|a|)(s) = x∧(p)(s/a) for s ∈ {. . . ,−|a|
p
, 0,
|a|
p
, . . .}.

Solution 2.9: Let y(t) = x(at). Since x has period p, y has period p/|a|.

Now y∧(p/|a|)(s) =
|a|
p

∫ p

|a|

0
x(at)e−2πist dt for s ∈ {. . . ,−|a|

p
, 0,
|a|
p
, . . .}. Let r = at, then

y∧(p/|a|)(s) =
|a|
p

∫ sign(a)p

0

1

a
x(r)e−2πisr/a dr =

sign(s)2

p

∫ p

0
x(r)e−2πi(s/a)r dr = x∧(p)(s/a).

� (x(t+ b))∧(s) = e2πibsx∧(s). Also, for k an integer, (e−2πi(k/p)tx(t))∧(s) = x∧(s+ k/p).

� For x of period p and for k a positive integer, x∧(kp) = kx∧(p).

� (x′)∧(s) = 2πis · x∧(s) for s ∈ {. . . ,−1/p, 0, 1/p, . . .}, where x′ denotes the derivative of x.

Exercise 2.10: Show that (x′)∧(k/p) = 2πi(k/p) · x∧(k/p) for k ∈ Z. Hint: write the
Fourier series for x(t), differentiate term-by-term with respect to t, and use the orthogo-
nality relation for complex exponentials to extract (x′)∧(k/p).

Solution 2.10: Integrating “by parts”, we have (x′)∧(k/p) =
∫ p/2
−p/2 x

′(t)e−2πitk/pdt =

x(t)
[

e−2πitk/p
]t=p/2

t=−p/2
−
∫ p/2
−p/2 x(t)

[

e−2πitk/p
]′
dt = −

∫ p/2
−p/2 x(t)(−2πik/p)e−2πitk/pdt =

2πi(k/p) · x∧(k/p) for k ∈ Z.

� Let B be a basis for Cn (C is the set of complex numbers and Cn is the n-dimensional vector
space of n-tuples of complex numbers over the field of scalars C.) Suppose the n× n 〈B,B〉-
matrix D is diagonal. Recall that the application of the linear transformation given by the
diagonal matrix D to a vector x just multiplies each component of the vector x by a constant,
namely xj → Djjxj for j = 1, 2, . . . , n.

Now note that expressing an L2(Q)-function x as its Fourier series is equivalent to representing
x with respect to the countably-infinite Fourier basis 〈. . . , e2πi(−1/p)t/√p, 1/√p, e2πi(1/p)t/√p, . . .〉.
The j-th component of x in the Fourier basis is just x∧(j/p).

By analogy with the finite-dimensional case, we can say that, in the Fourier basis, the differ-
entiation linear transformation is “diagonal”; the j-th component of x′ in the Fourier basis is
just the j-th component of x multiplied by the constant 2πi(j/p).

2.5 Circular Convolution

Define the circular p-convolution function x⊛ y for complex-valued functions x and y by

(x⊛ y)(r) := (1/p)

∫ p

0
x(t)y(r − t) dt.
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The circular p-convolution x⊛y is a periodic period-p function when x and y are period-p functions
in L2(Q). For functions in L2(Q), circular p-convolution is commutative, associative, and distribu-
tive: x⊛ y = y⊛x, x⊛ (y⊛ z) = (x⊛ y)⊛ z, and x⊛ (y+ z) = x⊛ y+x⊛ z. Also x⊛ y = xR⊛ yR,
and we have the fundamental identities:

(x⊛ y)∧ = x∧y∧ and (x∧y∧)∨ = x⊛ y,

whenever all the integrals involved exist.

The term “circular” emphasizes the periodicity of x and y. We may just say “circular convolution”,
leaving-out the period parameter p which is then understood to exist without explicit mention.

Exercise 2.11: Show that (x ⊛ y) = (y ⊛ x). Hint: hold r constant and change variables:
t→ r − s.

Solution 2.11: (x⊛ y)(r) =
1

p

∫ p

0
x(t)y(r − t) dt =

1

p

∫ r−p

r
x(r − s)y(s)(−1) ds =

1

p

∫ r

r−p
x(r − s)y(s) ds =

1

p

∫ p

0
x(r − s)y(s) ds = (y ⊛ x)(r).

Exercise 2.12: Show that (x⊛ y)∧ = x∧y∧ for x, y ∈ L2(Q).

Solution 2.12:

(x⊛ y)∧(h/p) =
1

p

∫

r∈Q

[

1

p

∫

t∈Q
x(t)y(r − t)

]

e−2πi(h/p)r

=
1

p

∫

r∈Q

[

1

p

∫

t∈Q
x(t)y(r − t)

]

e−2πi(h/p)(r−t)e−2πi(h/p)t

=
1

p

∫

t∈Q

[

x(t)e−2πi(h/p)t
1

p

∫

r∈Q
y(r − t)e−2πi(h/p)(r−t)

]

=
1

p

∫

t∈Q

[

x(t)e−2πi(h/p)t
1

p

∫

s∈Q
y(s)e−2πi(h/p)s

]

=

[

1

p

∫

t∈Q
x(t)e−2πi(h/p)t

] [

1

p

∫

s∈Q
y(s)e−2πi(h/p)s

]

= x∧(h/p)y∧(h/p)

Also for r ∈ Z, we define the convolution of the transforms x∧ and y∧ in L2(Z/p), corresponding
to period-p functions x and y in L2(Q), by:

(x∧ ⊛ y∧)(r/p) :=
∞
∑

h=−∞

x∧(h/p)y∧(r/p− h/p).

Then x∧ ⊛ y∧ = y∧ ⊛ x∧, x∧ ⊛ y∧ = x∧R ⊛ y∧R, and also (xy)∧ = x∧ ⊛ y∧ and (x∧ ⊛ y∧)∨ = xy.

Exercise 2.13: Show that (xy)∧ = x∧ ⊛ y∧.
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Solution 2.13:

x(s)y(s) =

[

∑

k

x∧(k/p)e2πi(k/p)s

][

∑

h

y∧(h/p)e2πi(h/p)s

]

=
∑

k

x∧(k/p)e2πi(k/p)s
∑

h

y∧(h/p− k/p)e2πi(h/p−k/p)s

=
∑

h

∑

k

x∧(k/p)y∧(h/p− k/p)e2πi(h/p)s

= (x∧ ⊛ y∧)∨,

so (xy)∧ = x∧ ⊛ y∧.

The operation of circular p-convolution of a function x ∈ L2(Q) by a fixed function g such that
x⊛ g exists is a linear transformation on L2(Q) (i.e., (αx+ βy)⊛ g = (α(x⊛ g) + β(y ⊛ g).) The
relation (x ⊛ g)∧(j/p) = g∧(j/p)x∧(j/p) shows that circular p-convolution by g is a “diagonal”
linear transformation when applied to functions expressed in the Fourier basis in the same way as
we described the differentiation linear transformation above.

Also, the operation of circular p-convolution by a fixed function g commutes with translations.
Define (Tax)(t) = x(t + a). Then (Ta)x ⊛ g = Ta(x ⊛ g). It is an interesting fact that any linear
operator mapping L2(Q) to L2(Q) is expressible as circular p-convolution by some function (or
functional,) this is precisely the reason that convolution is important and strongly connected to
integral equations.

For suitably-smooth functions, the operation of circular p-convolution by a fixed function g also
commutes with differentiation: (x′⊛g)+(x⊛g)′. (This means (D1

t x(t))⊛g = D1
r [(x⊛g)(r)] where

D1
z denotes differentiation with respect to z.) This further confirms that, just like differentiation,

the operation of circular p-convolution by g is a “diagonal” transformation in the Fourier basis,
since the “product” of diagonal linear transformations is commutative.

Exercise 2.14: Show that (x′ ⊛ g) + (x⊛ g)′.

Solution 2.14: (x ⊛ g)′ = D1
r

[

1
p

∫ p
0 x(t)g(r − t) dt

]

= 1
p

∫ p
0 x(t)g′(r − t) dt = (x ⊛ g′). But

then we also have (g ⊛ x)′ = (g ⊛ x′), and (x ⊛ g)′ = (g ⊛ x)′ and (g ⊛ x′) = (x′ ⊛ g), so
(x⊛ g)′ = (x′ ⊛ g).

Note this is to be expected because the product of diagonal linear transformations is again
diagonal.

It is appropriate at this point to clarify operator notation. We may have prefix operators, say A
and B, where we write B(A(f)) = BA(f), and we can write X = BA to define the prefix operator
X as being the application of the operator A, followed by the application of the operator B. We
may also have postfix operators, say C and D, where we write fCD = (fC)D, and we can write
Y = CD to define the postfix operator Y as being the application of the operator C, followed by
the application of the operator D.
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Clearly, you need to be alert for whether an operator symbol is used as a postfix operator or a prefix
operator. Mixing the two notations, which is commonly done, requires even more vigilance. Also
note that many operators, like differentiation, have multiple ways of being denoted, sometimes using
postfix symbols, sometimes using prefix symbols, and sometimes, if two arguments are involved,
using infix symbols. And such operator symbols can be written as superscripts, as subscripts, or
in “in-line” position. (Can you make a list of all the various differentiation notations in common
use?)

Also for x, y ∈ L2(Q), we define the cross-correlation kernel function x⊗ y by

(x⊗ y)(r) := (1/p)

∫ p

0
x(t)y(r + t) dt.

Then x⊗ y = y ⊗ x, (x⊗ y)R = xR ⊗ yR, x⊗ y = xR ⊛ y, and (x⊗ y)∧ = x∧y∧R = x∧Ry∧. When
x and y are real, (x⊗ y)∧ = x∧y∧R = x∧y∧∗ and (x⊗ x)∧ = x∧x∧∗ = |x∧|2.

2.6 The Dirichlet Kernel

Let x be a complex-valued periodic function, in L2(Q), so that x is of period p. The k-th partial
sum Sk(t) :=

∑

−k≤j≤k x
∧(j/p)e2πi(j/p)t of the Fourier series of x(t) can be summed to yield

Sk(t) =

∫ p

0
Dk(y)x(t− y) dy = (Dk ⊛ x)(t),

where, for v ∈ [0, p),

Dk(v) =

{

2k + 1 if v = 0
sin(π(2k + 1)v/p)

sin(πv/p)
otherwise.

Note the function Sk(t) is just the band-limited (filtered) form of x(t) having just the oscillatory
terms with frequencies in {−k/p, . . . ,−1/p, 0, 1/p, . . . , k/p}.

The function Dk is called the Dirichlet kernel; Dk is extended to be periodic with period p by
defining Dk(v +mp) = Dk(v) for v ∈ [0, p) and m ∈ Z.

Exercise 2.15: Show that

∑

−k≤j≤k

e2πi(j/p)v =

{

2k + 1 if v mod p = 0
sin(π(2k + 1)v/p)

sin(πv/p)
otherwise.

Hint: use the formula for the sum of a geometric series.

Solution 2.15:

If v ∈ (0, p), we have:
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∑

−k≤j≤k

e2πi(j/p)v =
∑

0≤j≤2k

e2πi(j−k)v/p

= e−2πikv/p
∑

0≤j≤2k

e2πijv/p

= e−2πikv/p[e2πi(2k+1)v/p − 1]/[e2πiv/p − 1]

= e−2πikv/pe2πikv/p[e2πi(k+1)v/p − e−2πikv/p]/[e2πiv/p − 1]

= [e2πi(k+1)v/p − e−2πikv/p]/[e2πiv/p − 1]

= eπiv/p[eπi(2k+1)v/p − e−πi(2k+1)v/p]/[e2πiv/p − 1]

= eπiv/p[2i sin(π(2k + 1)v/p)]/[(eπiv/p − e−πiv/p)eπiv/p]

= 2i sin(π(2k + 1)v/p)/[2i sin(πv/p)]

= sin(π(2k + 1)v/p)/ sin(πv/p),

since eiθ = cos(θ)+ i sin(θ), e−iθ = cos(θ)− i sin(θ), and taking the difference yields eiθ−e−iθ =

2i sin(θ). (Note since v ∈ (0, p) by assumption, sin(πv/p) 6= 0.) Moreover,
∑

−k≤j≤k

e2πi(j/p)0 =

2k + 1. Thus the period-p function
∑

−k≤j≤k

e2πi(j/p)v = Dk(v).

Note Dk(v) is the inverse Fourier transform of the discrete function b, where

b(s) =
{

1 for s = −k/p, . . . ,−1/p, 0, 1/p, . . . , k/p,
0 otherwise.

The function b is a discrete function with stepsize 1/p.

We have Dk(v) =
∑

−k≤j≤k e
2πi(j/p)v, and this exhibits the Fourier series for Dk, so we see that

D∧k (s/p) = b(s/p) =
{

1 for s = −k, . . . ,−1, 0, 1, . . . , k
0 otherwise.

Thus, D∧k (s/p)x
∧(s/p) =

{

x∧(s/p) for s = −k, . . . ,−1, 0, 1, . . . , k
0 otherwise

. And D∧k x
∧ = (Dk ⊛ x)∧, so

Dk ⊛x = (D∧k x
∧)∨ =

∑

−k≤j≤k 1 ·x∧(v/p)e2πi(j/p)t = Sk(t). And thus Sk(t) =
∫ p
0 Dk(y)x(t− y) dy.

But the function Sk is just the projection of x into the subspace Bk of L2(Q) spanned by { e2πi(h/p)t |
|h| ≤ k } (!). Thus convolution with Dk is the projection operator into Bk.

2.7 The Spectra of Extensions of a Function

If x is given only on [0, p), then x∧ is, in fact, the Fourier transform of the strict period-p periodic
extension of x. For x defined on [0, q) with q ≥ p, the strict period-p periodic extension of x is
defined as x[p](t) = x(t mod p) where t mod p is that value v ∈ [0, p) such that t = v + kp with
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k ∈ Z. In general, if x is defined on [a, a+q) with q ≥ p, then the strict period-p periodic extension
of x is the function x[p](t) := x(a + ((t − a) mod p)) for t ∈ R. In order for the strict period-p
periodic extension of x to exist, we must have x defined on an interval of length no less than p.

For x defined on [0, p], we also have the even period-2p periodic extension of x,

xep(t) = (xe)[2p](t), where xe(t) =

{

x(−t) if −p ≤ t ≤ 0,
x(t) if 0 ≤ t < p,
0 otherwise.

and the odd period-2p periodic extension of x,

xop(t) = (xo)[2p](t), where xo(t) =

{−x(−t) if −p ≤ t < 0,
x(t) if 0 ≤ t < p,
0 otherwise.

Now (xep)
∧(2p)(s) = ((x[p])

∧(p)(−s)+(x[p])
∧(p)(s))/2 and (xop)

∧(2p)(s) = ((x[p])
∧(p)(s)−(x[p])∧(p)(−s))/2,

where s ∈ {. . . ,−1/(2p), 0, 1/(2p), . . .}.

(In these equations, and those that follow, we may ignore the stricture that y∧(a)(s) is only computed
for s ∈ {. . . ,−1/a, 0, 1/a, . . .}, and instead, we may allow s to range over any desired discrete range
. . . ,−1/b, 0, 1/b, . . .}. We will denote this by writing y∧(a)(s)b.

Also, when x coincides on [0, p] with a function y of period q ≥ p, we define the period-q y-extension
of x, x〈y〉(t) = y(t).

Let 0 < p ≤ q and let y(t) be defined on [0, q] with y(t) = x(t) for t ∈ [0, p]. Take s ∈
{. . . ,−1/q, 0, 1/q, . . .}. Now (x〈y〉)

∧(q)(s) =
1

q

[∫ p

0
x(t)e−2πist dt+

∫ q

p
y(t)e−2πist dt

]

and

∫ q

p
y(t)e−2πist dt =

∫ q−p

0
y(t + p)e−2πiste−2πisp dt = e−2πisp

∫ q−p

0
y(t + p)e−2πist dt. Note when s

is an integer multiple of 1/p, we have e−2πisp = 1. Let z(t) := y(t + p) for 0 < t ≤ q − p. Then
q · (x〈y〉)∧(q)(s) = p · (x[p])∧(p)(s)q + (q − p) · e−2πisp(z[q−p])∧(q−p)(s)q.

When y(t+p) = x(t) for 0 < t ≤ q−p, so that we have used the period-p function x on [0, q] instead
of on [0, p] to define y, then we have y(t) = x[q](t) and q · (x[q])∧(q)(s) = ⌊q/p⌋ · p · (x[p])∧(p)(s)q +
r · (x[r])∧(r)(s)q where r = q mod p.

Exercise 2.16: Show that q · (x[q])∧(q)(s) = ⌈q/p⌉ · r · (x[r])∧(r)(s)q + ⌊q/p⌋ · a · (z[a])∧(a)(s)q
where z(t) = x(t+ r) for 0 ≤ t ≤ p− r and r = q mod p and a = p− r.

If 0 < q ≤ p, then q · (x[q])∧(q)(s) = p · (x[p])∧(p)(s)q − b · (z[b])∧(b)(s)q where z(t) = x(t + q) for
0 ≤ t ≤ p− q and b = p− q.

When a function x given on [0, p] is to be extended, the function xep is often used, since, if x
has no discontinuities in [0, p], xep is continous everywhere, and hence no artificial high-frequency
components arise in the spectrum of xep due to discontinuities.
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2.8 Spectral Power Density Function

Let x(t) be the voltage across a 1 Ohm resistance at time t. By Ohm’s law, the current through the
resistance at time t is x(t)/1Amperes. Thus, the power being used at time t to heat the resistance
is x(t) · x(t)/1 Joules/second, (1/p)

∫ p
0 x(t)2 dt is the average power used, measured in Joules per

second, averaged over p seconds, and
∫ p
0 x(t)2 dt Joules is the total amount of energy converted into

heat in p seconds. Note power is the rate at which energy is converted, so to say the average power
used over p seconds is y Joules/second is the same as saying that the average rate at which energy
is used (converted) over p seconds is y Joules/second. The square root of (1/p)

∫ p
0 x(t)2 dt is called

the root-mean-square (RMS) value of x over p seconds, measured in the same units as x.

Now suppose x(t) ∈ L2(Q) is a complex-valued periodic function of period p. By Plancherel’s
identity, ‖x‖2L2(Q) = ‖x∧‖2L2(Z/p), so the average power used over p seconds is ‖x‖2L2(Q)/p =

‖x∧‖2L2(Z/p)/p =
∑∞

h=−∞ |x∧(h/p)|2, and the total amount of energy transformed into heat over

one period is ‖x‖2L2(Q) = p
∑∞

h=−∞ |x∧(h/p)|2 = ‖x∧‖L2(Z/p).

The function |x∧(s)|2 is called the spectral power density function of x. The average power
used over one period due to the complex spectral components of x in the frequency band [a, b]

is
∑bp

h=ap |x∧(h/p)|2.

When x is real-valued, x∧ is Hermitian, so |x∧|2 = (x⊛xR)∧, and the spectral power density function
is even. Thus, folding into the positive frequencies results in the energy due to the real spectral
components in the positive frequency band [a, b], with 0 ≤ a ≤ b, being

∑bp
h=ap(2−δh,0) · |x∧(h/p)|2.

Note |x∧(h/p)|2 = x∧(h/p)x∧(h/p)∗ = M(h/p)2/(2− δh,0)
2 when x is real, so

(2− δh,0)|x∧(h/p)|2 = M(h/p)2.

3 The Discrete Fourier Transform

Let x(t) be a discrete complex-valued periodic function of period p with stepsize T defined at t = . . .,
−2T , −T , 0, T , 2T , . . . with p = nT , where n ∈ Z+ (Z+ := {j ∈ Z | j > 0}). This means that
x(kT ) = x((k + n)T ) for k ∈ Z. We shall only consider regular discrete functions in this section.
Thus either of the discrete sequences 0, T, . . . , (n−1)T or −⌊n/2⌋T, . . . ,−T, 0, T, . . . , (⌈n/2⌉−1)T ,
among others, constitutes the domain of x confined to one period. Of course, x may in fact be
defined on the whole real line.

The discrete Fourier transform of x is

x∧(s) = (T/p)

⌈n/2⌉−1
∑

h=−⌊n/2⌋

x(hT )e−2πishT ,

where x∧(s) is defined for s = . . ., −2/p, −1/p, 0, 1/p, 2/p, . . ., with p = nT . Note if T ∈ Z+

then p ∈ Z+, and if p = 1 and T ∈ Z+ then n = T = 1 and x is the (degenerate) period-1 discrete
function of stepsize 1. In general, if x is defined with an integral stepsize, x∧ will have a non-integral
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stepsize unless x is degenerate. The transform x∧ is a discrete periodic function of period n/p with
stepsize 1/p. The ratio of the period and the stepsize is the same value n for both x and x∧.

This sum is just a rectangular Riemann sum approximation of the integral form of the Fourier
transform of an integrable periodic function x, computed on a regular mesh of points, each of
which is T units apart from the next. (The value hT serves in the role of t and the factor T serves
in the role of dt in the discretization.)

Unlike the transform of a periodic function defined on the entire real line, x∧ is also a (discrete)
periodic function, and hence the inverse operator, ∨, acts on the same type of functions as the
direct operator, ∧, but, in general, with a different period and stepsize. When necessary we shall
write ∧(p;n) and ∨(p;n) to denote the discrete Fourier transform and the inverse discrete Fourier
transform for discrete periodic functions of period p with stepsize p/n. Then ∨(n/p;n) is the inverse
operator of the operator ∧(p;n).

The inverse discrete Fourier transform of the discrete function y of period p with stepsize T = p/n
is

y∨(p;n)(r) =

⌈n/2⌉−1
∑

h=−⌊n/2⌋

y(hT )e2πirhT ,

for r = . . ., −2/p, −1/p, 0, 1/p, 2/p,. . . . Here y∨(p;n) is a discrete period-n/p function with

stepsize 1/p. By convention, the period-
n

p
functions y∧(p;n)(s) and y∨(p;n)(s) are taken to be discrete

functions with values at . . ., −2/p, −1/p, 0, 1/p, 2/p, . . ., even though the expressions at hand
may make sense on an entire interval of real numbers. Just as ∨(n/p;n) is the inverse operator
of ∧(p;n), ∨(p;n) is the inverse operator of ∧(n/p;n). When ∧ is understood to be ∧(p;n), ∨
shall normally be understood to be ∨(n/p;n). Note when the function y is of period p = nT with
stepsize p/n = T , both y∧(p;n) and y∨(p;n) are periodic of period n/p = 1/T , and are defined on a
mesh of stepsize 1/p.

For a regular discrete periodic function, the relationship between the period p, the stepsize T , and
the number of steps in one period, n, is p = nT . The discrete Fourier transform of a period-p,
stepsize-T , number-of-steps-n periodic discrete function is a period-n/p, stepsize-1/p, number-of-
steps-n periodic discrete function. Thus, we should, perhaps, denote ∧(p;n) by ∧(p;T ;n), and
denote ∨(n/p;n) by ∨(n/p; 1/p;n).

In general, with p = nT , we have:

period stepsize #-steps period stepsize #-steps

p = nT
p

n
= T n

∧−→ n

p
=

1

T

1

p
=

1

nT
n

And with T → 0 and n→∞ such that nT = p, we have

period stepsize #-steps period stepsize #-steps

p 0 ∞ ∧−→ ∞ 1

p
∞
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And now, when p→∞, we have

period stepsize #-steps period stepsize #-steps

∞ 0 ∞ ∧−→ ∞ 0 ∞.

We see that the ‘period’ of the Fourier transform of a function is the reciprocal of its ‘stepsize’ and its
stepsize is the reciprocal of its period. Our notation for the periodic Fourier transform operator on
the period-p functions in L2(Q) is ∧(p), and the corresponding inverse Fourier transform operator

on the stepsize-1/p functions in L2(Z/p]) is written as ∨(p); whereas it would be more consistent
to write ∧(p; 0;∞) and ∨(∞; 1/p;∞), but, as with the discrete Fourier transform ∧(p;n) and its
inverse ∨(n/p;n), we opt for brevity with mnemonic content instead.

Note that when x is a periodic period-1 function in L2([0, 1]), the Fourier transform x∧ is a discrete

stepsize-1 function; in this case, the scale-factor
1

p
“vanishes” in the Fourier transform integral;

because of this, we often see the Fourier transform introduced for period-1 functions to simplify
the expressions involved.

For x of period p = nT with stepsize T , the inverse discrete Fourier transform of the stepsize-1/p,

period-
n

p
function x∧ is

x∧(p;n)∨(n/p;n)(t) =

⌈n/2⌉−1
∑

h=−⌊n/2⌋

x∧(p;n)(h/p)e2πi(h/p)t,

where x∧∨ is of period p defined on a mesh of stepsize T = p/n, and x∧∨(t) = x(t) for t = . . ., −2T ,
−T , 0, T , 2T , . . . . This is the Fourier series of the discrete function x; note it is a finite sum.

For −⌊n/2⌋ ≤ h ≤ ⌈n/2⌉−1, x∧(h/p) is the complex amplitude of the complex oscillation e2πi(h/p)t

of frequency h/p cycles per t-unit in the finite Fourier series x∧∨, and x∧∨ is a sum of n complex
oscillations of frequencies −⌊n/2⌋/p, . . . , 0, . . . , (⌈n/2⌉ − 1)/p. Thus x∧∨ is band-limited; that is,
the finite n-term Fourier series x∧∨ has no terms for frequencies outside the finite interval or band
[−⌊n/2⌋/p, (⌈n/2⌉ − 1)/p].

Observe that by allowing t to be any real value, x∧(p;n)∨(n/p;n)(t) is defined for all t; it is a con-
tinuous periodic function of period p which coincides with x at t = . . ., −2T , −T , 0, T , 2T ,
. . . . Indeed the function x∧(p;n)∨(n/p;n)(t) defined on R is the unique period-p periodic function in

L2(Q) with this property which is band-limited with x∧(p;n)∨(n/p;n)∧(p;n)(s) = 0 for s outside the
band [−⌊n/2⌋/p, (⌈n/2⌉ − 1)/p]. If x is real, then when n is odd, x∧∨ is real, but when n is even,
x∧∨ is complex in general, even though x∧∨(t) is real when t is an integral multiple of T .

Note x∧(p;n)∨(n/p;n)(t) is an interpolating function for the points (kT, x(kT )) for

k = −⌊n/2⌋, . . ., ⌈n/2⌉ − 1. Since x∧(p;n)∨(n/p;n)(t) is periodic, it is, in fact, an interpola-
tion function defined over the entire real line that interpolates the points (kT, x(kT )) for k =
. . . ,−2,−1, 0, 1, 2, . . . .

Exercise 3.1: Show that for a discrete periodic period-p function x, with p ∈ Z+, when the
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number of steps n = p2, the stepsize of x is
1

p
, and in this case, the discrete Fourier transform

x∧(p) is also a discrete periodic period-−p function with stepsize-
1

p
and the number of steps in

each period is n.

Another useful form of the discrete Fourier Inversion theorem is

x∧(p;n)∨(n/p;n)(kT ) = x(kT ) =

⌈n/2⌉−1
∑

h=−⌊n/2⌋

x∧(p;n)(h/p)e2πi(h/n)k,

where x is a discrete period-p function with p = nT .

For nT = p, the functions x(hT ) and e−2πishT with s an integral multiple of 1/p are both periodic
functions of hT with period p and are simultaneously periodic functions of h with period n, and
hence the discrete Fourier transform of x can be obtained by summing over any contiguous index

sequence of length n, so that x∧(s) = (T/p)
∑n−1+a

h=a x(hT )e−2πishT for s = . . ., −1/p, 0, 1/p, . . . .
Similarly, x∧(h/p) and e2πi(h/p)t with t a multiple of T are both periodic functions of h/p with

period n/p and periodic functions of h with period n, so x∧∨(t) =
∑n−1+a

h=a x∧(h/p)e2πi(h/p)t, for
t = . . ., −2T , −T , 0, T , 2T ,. . . . Note that the periodicity of x, where x(−kT ) = x((n − k)T ) for
k ∈ Z, implies that x∧(−k/p) = x∧((n− k)/p) for k ∈ Z.

Exercise 3.2: Show that for p = n with n ∈ Z+,

y(s) := x∧(n;n)(
s

n
) =

1

n

n−1
∑

h=0

x(h)e2πish/n for s = 0, 1, 2, . . . , n− 1.

Thus when p = n, x and y are both period-n, stepsize-1 discrete functions defined on Z, and
x∧(n;n)(s) = y(ns).

Indeed, when summing
T

p
x(hT )e2πishT over h = a, a+1, . . . , n− 1+ a, the periodicity of x insures

the same values are being summed, regardless of the value of the integer a, so the Fourier series
denoted by x∧∨ is a unique sum of complex oscillations, which, when expressed in the particular form
where a = −⌊n/2⌋, allows us to easily combine the positive and negative frequency terms (treating
x∧(⌈n/2⌉/p) as 0 in these combinations when n is even) and shows the spectral decomposition of
x∧∨ to be

x̃(t) =

⌊n/2⌋
∑

h=0

M(h/p) cos(2π(h/p)t+ φ(h/p)),

where M and φ are defined as for the spectral decomposition of a period-p function in L2(Q) and
x̃ uniformly approximates x. When x is real and n is even, we may introduce a special redefinition
of M(n/(2p)) and φ(n/(2p)) which makes x̃ real and satisfies the identity x̃(kT ) = x(kT ). (This
redefinition is based on the fact that x∧(−k/p) = x∧(k/p)∗ for k ∈ Z when x is real.) Take

M(h/p) =
[

√

(x∧(h/p) + x∧(−h/p))2 − (x∧(h/p)− x∧(−h/p))2
]

/(1 + δh,0)
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for 0 ≤ h ≤ ⌈n/2⌉ − 1 and, when n is even, let M(n/(2p)) = |x∧(−n/(2p))|, and, by definition,
M(h/p) = 0 for h > ⌊n/2⌋. Also take

φ(h/p) = atan2(−i(x∧(h/p)− x∧(−h/p)), x∧(h/p) + x∧(−h/p)).

for 0 ≤ h ≤ ⌈n/2⌉ − 1, and, when n is even, define φ(n/(2p)) = atan2(0, x∧(−n/(2p))), and
φ(h/p) = 0 for h > ⌊n/2⌋.

Exercise 3.3: Show that x∧(h/(2p)) is real when x is real and n is even.

Exercise 3.4: Show that
√

(x∧(h/p) + x∧(−h/p))2 − (x∧(h/p)− x∧(−h/p))2 = 2|x∧(h/p)|2
for h ∈ Z when x is real.

Exercise 3.5: Let w = e−2πi/n with n ∈ Z+. Show that w is a primitive n-th root of unity,
i.e., wh 6= 1 for h ∈ {1, 2, . . . , n− 1} and wn = 1. Also show that, for k ∈ Z+, wk is a primitive
(n/ gcd(k, n))-th root of unity. How many distinct primitive n-th roots of unity are there?

Let x(t) be a discrete complex-valued periodic function of period p with stepsize T = p/n

and let q(z) be the polynomial q0 + q1z + q2z
2 + · · · + qn−1z

n−1, where qh =
1

n
x(hT ) for

h ∈ {0, 1, 2, . . . , n − 1} Show that x∧(k/p) = q(wk) for k ∈ Z. Thus the value x∧(k/p) is
computed by obtaining the value of the polynomial q at wk.

Finally, show that the periodicity of x and e−2πikh/n yields x∧(k/p) = q(rk) where r is any
primitive n-th root of unity.

3.1 Geometrical Interpretation

Let Z denote the set of integers {. . ., −1, 0, 1, . . . } and let TZ denote the set of values {. . ., −T ,
0, T , . . .}. Let dn(TZ) denote the set of complex-valued discrete periodic functions defined on TZ
of period p = nT .

Note T/p = 1/n and introduce the inner product (x, y)dn(TZ) = T
∑n−1

h=0 x(hT )y(hT )
∗ and the

norm ‖x‖dn(TZ) = (x, x)
1/2
dn(TZ)

. Then dn(TZ) is a finite-dimensional Hilbert space of dimension n,

and the sequence of functions 〈e0, e1, . . . , en−1〉 is an orthogonal basis for dn(TZ), where ek(hT ) =

ek(hp/n) := e2πi(k/p)(hp/n) = e2πik(h/n) for h ∈ Z.

Exercise 3.6: Show that (ej , ek)dn(TZ) = δj,kp, and ‖ej‖ = p1/2.

Solution 3.6: (ej , ek)dn(TZ) = T
∑

0≤h≤n−1(e
2πijh/n)(e2πikh/n)∗ = T

∑

0≤h≤n−1 e
2πi(j−k)h/n.

Let w = e2πi(j−k)/n. Then, (ej , ek)dn(TZ) = T [1 + w + w2 + · · · + wn−1]. Then if j = k, w = 1
and (ej , ek)dn(TZ) = Tn = p. If j 6= k, (ej , ek)dn(TZ) = T [(wn − 1)/(w − 1)], and wn = 1, so
(ej , ek)dn(TZ) = 0.

The discrete Fourier transform ∧(p;n) maps dn(TZ) onto dn(Z/p), which is also an n-dimensional
Hilbert space. Thus, with respect to the basis 〈e0, e1, . . . , en−1〉, ∧(p;n) is explicitly representable
by an n × n non-singular matrix, Fn, where (Fn)j,k = (1/n)e−2πi(j−1)(k−1)/n for 1 ≤ j ≤ n and
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1 ≤ k ≤ n, and x∧ = xFn where x and x∧ are taken as the vectors [x(0), x(T ), . . . , x((n − 1)T )]
and [x∧(0), x∧(1/p), . . . , x∧((n− 1)/p)].

Exercise 3.7: Show that the matrix Fn is symmetric, i.e., (Fn)j,k = (Fn)k,j for 1 ≤ j, k ≤ n.

Note that the matrix Fn representing ∧(p;n) does not depend on the period p or the stepsize T ,
but only on their ratio n. Also note that, formally, domain(Fn) 6= range(Fn), unless n = p2 and
p2 ∈ Z, however, both dn(TZ) and dn(Z/p) are isomorphic to Cn, so this nit can be resolved as
follows.

Introduce the “vectorizing” isomorphism cp,n : dn(TZ) → Cn where cp,n(x) = (x(0), x(T ), . . . ,
x((n−1)T )), with T = p/n. This is, in essence, just a rescaling of TZ by 1/T . Note cp,n is a linear
one-to-one map of dn(TZ) onto Cn, and cn/p,n is a linear one-to-one map of dn(Z/p) onto Cn.

Then the “correct” way to specify the discrete Fourier transform via the matrix Fn is:
c−1n/p,n(cp,n(x)Fn) = x∧(p;n).

If we want a “nice” form of Parseval’s identity to hold, we need to define the alternate inner product

〈f, g〉dn(Z/p) on dn(Z/p) as 〈f, g〉dn(Z/p) = p
∑n−1

h=0 f(h/p)g(h/p)
∗. With this choice, Parseval’s

identity holds with the factor p hidden: we have (x, y)dn(TZ) = 〈x∧(p;n), y∧(p;n)〉dn(Z/p).

We also have the “standard” Hermitian inner-product (u, v)Cn :=
∑n−1

j=0 ujv
∗
j for vectors u, v ∈ Cn,

and we see that the isomorphism cp,n “relates” the inner-product (·, ·)dn(TZ) on dn(TZ) to the
Hermitian inner-product on Cn as (x, y)dn(TZ) = T (cp,n(x), cp,n(y))Cn . Similarly, 〈f, g〉dn(Z/p) =
nT (cn/p,n(f), cn/p,n(g))Cn .

Therefore Parseval’s identity for a discrete period p, stepsize T , sample-size n function corresponds

to T (cp,n(x), cp,n(y))Cn = nT (c−1n/p,n(cp,n(x)Fn), c
−1
n/p,n(cp,n(y)Fn))Cn .

Since cp,n and cn/p,n are linear mappings, we can use the factor
√
n to “rescale” the matrix Fn to

write (cp,n(x), cp,n(y))Cn = (c−1n/p,n(cp,n(x)
√
nFn), c

−1
n/p,n(cp,n(y)

√
nFn))Cn . For

√
nFn taken as an

n × n matrix of a linear transformation mapping Cn onto Cn, this statement is just (u, v)Cn =
(u
√
nFn, v

√
nFn)Cn for u, v ∈ Cn, i.e., the linear transformation given by

√
nFn preserves lengths.

This identity means that, as a linear transformation mapping Cn onto Cn, the matrix
√
nFn is

unitary, i.e., (
√
nFn)

−1 = (
√
nFn)

∗T =
√
nF ∗Tn . And since Fn is symmetric, F−1n = nF ∗n . Thus the

inverse discrete Fourier transform is represented as a matrix by nF ∗n which matches the defining
inverse summation formula.

Exercise 3.8: Show that the matrix F−1n = nF ∗n . Hint: (
√
nFn)

−1 =
1√
n
F−1n .

Exercise 3.9: Show that (F−1n )j,k = e2πi(j−1)(k−1)T/p for 1 ≤ j ≤ n and 1 ≤ k ≤ n.

Exercise 3.10: Show that ‖Fn row j‖dn(TZ) = n−1/2.

Exercise 3.11: Show that the matrix Fn is normal, i.e., FnF
H
n = FH

n Fn where FH
n := F ∗Tn .

This means Fn is unitarily diagonalizable, and there is an orthonormal Cn-basis consisting of
eigenvectors of Fn.
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Exercise 3.12: Let v ∈ Cn. Show that v = (v∗
√
nFn)

∗√nFn.

Exercise 3.13: Let ēk(h/p) = e2πikh/n = e2πik(h/p)T with p = nT . Show that 〈ē0, ē1, . . . , ēn−1〉
is an orthogonal basis for dn(Z/p) and show that 〈ē0, ē1, . . . , ēn−1〉 = 〈e0, en−1, en−2, . . . , e1〉.
Hint: ēj = e∗j .

Note, for n ≥ 4, that F 4
n = n−2I as shown below, and therefore F−1n = n2F 3

n . The matrix Fn is a

matrix “analog” of the scalar
1√
n
· r where r is a primitive fourth root of unity in C.

Exercise 3.14: Show that F 2
n = n−1Sn where Sn =



















1 0 0 · · · 0 0
0 0 0 · · · 0 1
0 0 0 · · · 1 0
...

...
... · ...

...
0 0 1 · · · 0 0
0 1 0 · · · 0 0



















.

Explicitly, for 1 ≤ j ≤ n and 1 ≤ k ≤ n, (Sn)jk =
{

1 if (j + k − 2)modn = 0,
0 otherwise.

Solution 3.14:

(FnFn)s,t =
n
∑

j=1

(Fn)s,j(Fn)j,t

=
n
∑

j=1

1

n
e−2πi(s−1)(j−1)/n · 1

n
e−2πi(j−1)(t−1)/n

= n−2
n
∑

j=1

e−2πi(j−1)[s−1+t−1]/n

= n−2
n−1
∑

j=0

e−2πij[s+t−2]/n

= n−2
n−1
∑

j=0

wj , where w = e−2πi[s+t−2]/n.

If w = 1, we have (FnFn)s,t = n−2n. If w 6= 1, we have (FnFn)s,t = n−2(wn − 1)/(w − 1) and

wn = 1, so (FnFn)s,t = 0. But w = e−2πi[s+t−2]/n = 1 precisely when s + t − 2 is an integral
multiple of n which occurs when s = t = 1 or when s = k and t = n+ 2− k for k = 2, 3, . . . , n.

Thus (F 2
n)s,t =

{

n−1 if (s+ t− 2)modn = 0,
0 otherwise,

so F 2
n = n−1Sn.

Note S2
n = I, so F 4

n = n−2S2
n = n−2I. Also (

√
nFn)

−1 =
√
nFn
√
nFn
√
nFn, so F−1n = n2F 3

n .

The matrix Sn corresponds to the reversal operator: c−1p,n(cp,n(x)Sn) = xR. This means we can
imagine the Fourier transform matrix Fn as representing a 90◦ rotation composed with a scale by√
n, since (

√
nFn)

2 = Sn. We may imagine the reversal of a function x to be the 180◦ rotation
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of the function x about 0. (Note the reversal of the function x is also the reflection of x in the
complex plane through the subspace orthogonal to the real line. Thus a reflection transformation
is the composition of two 90◦ rotations, i.e., a reflection transformation has a 90◦ rotation as a
“square-root”.)

Now we see that, for n ≥ 4, the minimal polynomial of Fn is λ4 − n−2, and thus the distinct
eigenvalues of Fn are the fourth-roots of n−2: 1/

√
n, i/
√
n,−1/√n, and −i/√n. This follows from

the fact that F 4
n − n−2I = 0. If vFn = λv for some vector v ∈ Cn − 0, then vF 2

n = λvFn = λ2v,
vF 3

n = λ3v, and vF 4
n = λ4v, i.e., the eigenvalues of F 4

n are the 4-th powers of the eigenvalues of Fn.

But, vF 4
n = n−2v, so n−2 is the only eigenvalue of F 4

n , and hence the 4-th roots (
√
n)−1, −(

√
n)−1,

i(
√
n)−1, and −i(

√
n)−1 are the eigenvalues of Fn.

Exercise 3.15: Show that xF 4
n = n2x∧(p;n)∧(n/p;n)∧(p;n)∧(n/p;n) = x.

Solution 3.15: F−1n = n2F 3
n , so x∧∨∧∨ = xFnn

2F 3
nFnn

2F 3
n = n4xF 8

n = n4x(n−2I)(n−2I) = x.

The multiplicities of these eigenvalues have been determined [MP72]. Let m = ⌊n/4⌋ and let r =
nmod 4. Then multiplicity(1/

√
n) = m+ 1, multiplicity(i/

√
n) = m− δr,0, multiplicity(−1/√n)

= m + δr,2 + δr,3, and multiplicity(−i/√n) = m + δr,3. Since the matrix Fn is normal, these
multiplicities are the dimensions of the four corresponding eigenspaces of Fn.

Exercise 3.16: Show that for n ∈ Z+ with m = ⌊m/4⌋ and r = nmod 4, 4m + 1 + δr,2 +
2δr,3 − δr,0 = n.

For n ≥ 4, Fn has only four eigenspaces, and since Fn is unitarily diagonalizable, Fn has n mutually
orthonormal eigenvectors, and hence the four eigenspaces of Fn are mutally orthogonal and their
direct-sum is equal to Cn. For larger values of n, these eigenspaces have high dimension, and there
are many choices for bases for these eigenspaces; the union of these basis sets, whatever they are
chosen to be, form a complete set of n linearly-independent eigenvectors of Fn.

Exercise 3.17: Show that the eigenvalues of
√
2F2 are 1 and −1, and the eigenvalues of

√
3F3

are 1, −1 and −i.

Exercise 3.18: Show that for n odd, the characteristic polynomial of the unitary matrix√
nFn is (x4 − 1)⌊n/4⌋(x − 1) for nmod 4 = 1, and is (x4 − 1)⌊n/4⌋(x − 1)(x + 1)(x + i) for

nmod 4 = 3. Hint: Assume n is a positive odd integer and form the polynomial whose roots
are 1 with multiplicity m+1, −1 with multiplicity m+ δr,3, i with multiplicity m, and −i with
multiplicity m+ δr,3, with m = ⌊n/4⌋ and r = nmod 4.

3.2 Aliasing

Let x ∈ L2(Q) so that x is of period p. By sampling x at n equally-spaced points in each period, we
may also consider x as a member of dn(TZ) where T = p/n. Then we have the aliasing relation:

x∧(p;n)(h/p) =

∞
∑

m=−∞

x∧(p)((h+mn)/p).
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Thus, if x∧(p) is 0 outside the discrete interval [−⌊n/2⌋/p, . . . , (⌈n/2⌉ − 1)/p], then x∧(p;n) = x∧(p),
but otherwise, x∧(p;n)(h/p) is a sum of x∧(p)(h/p) and various aliases, which are the values of
x∧(p) defining the complex amplitudes at higher frequencies: x∧(p)((h/p) ± (mn))/p) for | m |≥ 1.
(Remember x∧(p)(k/p)→ 0 as |k| → ∞.)

Exercise 3.19: Show that x∧(p;n)(h/p) =
∞
∑

m=−∞

x∧(p)((h+mn)/p).

Solution 3.19: Let p = nT where n is a positive integer. The Fourier inversion theorem for
the periodic function x ∈ L2(Q) states:

x(t) =
∑

∞≤j≤−∞

x∧(p)(j/p)e2πi(j/p)t,

so in particular,

x(kT ) =
∑

∞≤j≤−∞

x∧(p)(j/p)e2πi(j/p)kT .

Moreover,

x(kT ) =
∑

j

x∧(p)(j/p)e2πi(j/p)kT =
∑

0≤h<n

∑

m

x∧(p)((h+mn)/p)e2πi((h+mn)/p)kT .

We may write e2πi((h+mn)/p)kT = e2πi(h/p)kT e2πi(mn/p)kT , and since p = nT , e2πi(mn/p)kT = 1, so:

x(kT ) =
∑

0≤h<n

[

∑

m

x∧(p)((h+mn)/p)

]

e2πi(h/p)kT .

Now, the Fourier inversion theorem for the discrete periodic function x ∈ dn(TZ) (which is a
sampled form of x ∈ L2(Q)) states:

x(kT ) =
∑

0≤h<n

x∧(p;n)(h/p)e2πi(h/p)kT ,

and equating coefficients of e2πi(h/p)kT in these two identically-valued sums, we have x∧(p;n)(h/p) =
∑∞

m=−∞ x∧(p)((h + mn)/p). (Strictly, we need to compute the inner-product (·, e2πi(j/p)kT ) of
our two sums for j = 0, 1, . . . , n − 1 to extract the matching coefficients, and then assert that
they are identical.)

The discrete Fourier transform x∧(p;n) thus approximates the Fourier transform x∧(p). This ap-
proximation is good to the extent that x∧(p;n) is not excessively contaminated by aliasing. To be
sure that x∧(p;n) is a good approximation to x∧(p) it is necessary that the sampling rate n/p has
been chosen large enough so that no significant high-frequency components of x are missed; that
is x∧(p) must be nearly zero outside the discrete band [−⌊n/2⌋/p, . . . , (⌈n/2⌉ − 1)/p]; we correctly
deal with this band by sampling at the rate n/p.
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In particular, if x is band-limited, then we can specify a bound for the error in x∧(p;n) as |x∧(p;n)(h/p)−
x∧(p)(h/p)| ≤ O(2ce−cn), where c is a constant, and, of course, when x∧(p) is 0 outside the discrete
band [−⌊n/2⌋/p, . . . , (⌈n/2⌉ − 1)/p], the approximation is perfect.

Note if x is the period-p periodic extension of a function, y, defined on [0, p], such that y(0) 6= y(p)
(so that x(0) 6= limǫ↓0 y(p − ǫ) = x(p),) then artificial discontinuities have been introduced and
x is certainly not band-limited, so some aliasing error must occur in x∧(p;n). We may avoid the
error due to an introduced discontinuity by computing x∧ep instead of x∧, but of course, this also
introduces aliasing error.

3.3 Structural Relations

Let ∧ denote the discrete Fourier transform ∧(p;n), let ∨ denote the inverse discrete Fourier
transform ∨(p;n), and let x be periodic with period p = nT . Note that here ∨ is not the inverse
operator of ∧ (unless the integer n = p2.)

� If x is real, then x∧ is Hermitian, i.e., x∧(−k/p) = x∧(k/p)∗ for k ∈ Z. This is summarized
by writing x∧R = x∧∗ where yR(s) = y(−s). Note if x is real, x∧(0) is real; also, if n is even,
x∧(−n/(2p)) is real.

� If x is imaginary, then x∧ is anti-Hermitian, i.e., x∧R = −x∧∗

� x is even, if and only if x∧ is even, and x is odd, if and only if x∧ is odd. Thus, if x is real
and even, or imaginary and odd, x∧ must be real.

� The operator pairs (∗, R), (∧, R), (∨, R), and (∧(p;n),∨(n/p;n)) commute, but (∨, ∗) and
(∧, ∗) do not. Thus x∗R = xR∗, xR∧ = x∧R, and xR∨ = x∨R. However x∧(p;n)∗ = (T/p)x∗∨(p;n) =
x∗∧(p;n)R, x∗∧(p;n) = (T/p)x∨(p;n)∗ = x∧(p;n)∗R, x∨(p;n)∗ = (p/T )x∗∧(p;n) = x∗∨(p;n)R, and
x∗∨(p;n) = (p/T )x∧(p;n)∗ = x∨(p;n)∗R.

Exercise 3.20: Show that x∧(p;n)R(s) = xR∧(p;n)(s) for s ∈ {. . . ,−1/p, 0, 1/p, . . .}.
Solution 3.20: For s ∈ {. . . ,−1/p, 0, 1/p, . . .}, we have:

x∧(p;n)R(s) =





T

p

∑

0≤h≤n−1

x(hT )e−2πishT





R

=
T

p

∑

0≤h≤n−1

x(hT )e−2πi(−s)hT

=
T

p

∑

1≤h≤n

x((n− h)T )e−2πi(−s)(n−h)T .

And x(−hT ) = x((n− h)T ) and e2πisnT = 1, for s an integer multiple of 1/(nT ), so:

x∧(p;n)R(s) =
T

p

∑

1≤h≤n

x(−hT )e−2πishT = xR∧(p;n)(s).
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� We have x∧(p;n) = (T/p)x∨(p;n)R, so x∨(p;n) = (p/T )x∧(p;n)R, and x∧(p;n)∧(n/p;n) = (T/p)xR,
and thus (p2/T 2)x∧(p;n)∧(n/p;n)∧(p;n)∧(n/p;n) = x.

� x(at)∧(p/|a|;n)(as) = x(t)∧(p;n)(s) where s is an integral multiple of 1/p.

Exercise 3.21: Let x ∈ dn(TZ) where T = p/n. Show that (x(at))∧(p/|a|;n)(ka/p) =
x∧(p;n)(k/p) for k ∈ Z.
Solution 3.21: Let y(t) = x(at), y is a discrete periodic function with period p/|a|

and stepsize T/|a|. Thus (y(t))∧(p/|a|;n)(kr) =
1

n

n−1
∑

h=0

y(hv)e−2πikrhv where v = T/|a| and

r = |a|/p.
Thus

(y(t))∧(p/|a|;n)(k|a|/p) =
1

n

n−1
∑

h=0

x(ahT/|a|)e−2πikh(T/p)

=
1

n

n−1
∑

h=0

x(sign(a)hT )e−2πi(k/p)hT

= (x(sign(a)t))∧(p;n)(k/p).

If a > 0, y∧(p/|a|;n)(ka/p) = (x(at))∧(p/|a|;n)(ka/p) = x∧(p;n)(k/p).

If a < 0, then

y∧(p/|a|;n)(k(−a)/p) = (x(at))∧(p/|a|;n)(−ka/p)
= (x(−t))∧(p;n)(k/p)

=
1

n

n−1
∑

h=0

x((n− h)T )e−2πi(k/p)hT

=
1

n

n
∑

h=1

x(hT )e−2πi(k/p)(n−h)T

=
1

n

n
∑

h=1

x(hT )e−2πik+2πi(k/p)hT

=
1

n

n
∑

h=1

x(hT )e−2πi(−k/p)hT

= x∧(p;n)(−k/p) for k ∈ Z.

Thus, (x(at))∧(p/|a|;n)(ka/p) = x∧(p;n)(k/p) for k ∈ Z.

This is consistent with the identity (x(at))∧(p/|a|)(s) = x∧(p)(s/a) for s ∈ {. . ., −|a|
p
, 0,

|a|
p
, . . .} in the situation where x is defined on [0, p) and periodically extended to R.

� x(t+ t0)
∧(s) = e2πit0sx∧(s), where t0 is a multiple of p/n = T .
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� (e−2πis0tx(t))∧(s) = x∧(s+ s0), where s0 is a multiple of 1/p.

� x∧(0) =

n−1
∑

h=0

x(hT )/n, and x(0) =

⌈n/2⌉−1
∑

h=−⌊n/2⌋

x∧(h/p).

3.4 Discrete Circular Convolution

Let x and y be discrete periodic functions with period p and stepsize T = p/n. By analogy with
the circular convolution of two periodic period-p functions on the real line, we define the discrete
circular convolution of the two discrete periodic period-p functions, x and y, defined on . . ., −2T ,
−T , 0, T , 2T , . . ., as:

(x⊛ y)(rT ) := (1/n)
n−1
∑

h=0

x(hT )y(rT − hT ).

This is just a Riemann sum approximation of the circular convolution integral for period-p functions
in L2(Q). When there is danger of confusion, we shall write ⊛d to denote the discrete circular
convolution operator.

Also, we define the discrete cross-correlation kernel function as:

(x⊗ y)(rT ) := (1/n)
n−1
∑

h=0

x(hT )y(rT + hT ).

The following relations hold.

(x⊛ y)∧ = x∧y∧, so x⊛ y = (x∧(p;n)y∧(p;n))∨(p/n;n)

(xy)∧ = x∧ ⊛ y∧

(xy)∨(p;n) =
1

n
x∧(p;n) ⊛ y∧(p;n)

(x⊗ y)∧ = x∧y∧R

Note when x is real, (x⊗ x)∧ = |x∧|2.

Exercise 3.22: Show that (x ⊛ y)∧(s) = x∧(s)y∧(s), where x and y are discrete periodic
functions with period p = nT and stepsize T , and where x∧(s) =

∑

0≤h≤n x(hT )e
−2πishT and

y∧(s) =
∑

0≤h≤n y(hT )e
−2πishT with s = . . . ,−1/p, 0, 1/p, . . . are discrete periodic functions

with period n/p = 1/T and stepsize 1/p = 1/(nT ).

Solution 3.22:

(x⊛ y)∧(s) =
T

p

∑

0≤h<n





T

p

∑

0≤k<n

x(kT )y(hT − kT )



 e−2πishT
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=
T

p

∑

0≤h<n





T

p

∑

0≤k<n

x(kT )y(hT − kT )



 e−2πis(h−k)T e−2πiskT

=





T

p

∑

0≤k<n

x(kT )e−2πiskT
T

p

∑

0≤h<n

y(hT − kT )



 e−2πis(h−k)T

=





T

p

∑

0≤k<n

x(kT )e−2πiskT









T

p

∑

0≤m<n

y(mT )e−2πismT





= x∧(s)y∧(s).

Exercise 3.23: Show that (xy)∧ = x∧ ⊛ y∧.

Solution 3.23:

x(s)y(s) =





∑

0≤k<n

x∧(k/p)e2πi(k/p)s









∑

0≤h<n

y∧(h/p)e2πi(h/p)s





=
∑

0≤k<n

x∧(k/p)e2πi(k/p)s
∑

0≤h<n

y∧(h/p− k/p)e2πi(h/p−k/p)s

=
∑

0≤h<n

∑

0≤k<n

x∧(k/p)y∧(h/p− k/p)e2πi(h/p)s

= (x∧ ⊛ y∧)∨,

so (xy)∧ = x∧ ⊛ y∧.

Exercise 3.24: Let V be the n×n matrix such that Vjk =

{

1, if j + k = n+ 1;
0, otherwise,

and let C→

be the n× n matrix such that (C→)jk =

{

1, if k = 1 + (jmodn);
0, otherwise.

Now let Nr = V Cr+1
→ and let x, y ∈ dn(TZ) be period-p, stepsize-T , discrete functions with

p = nT .

Show that (x⊛ y)(rT ) = cp,n(x)Nrcp,n(y)
T for r ∈ {0, 1, . . . , n− 1}, where

cp,n(x) = (x(0), x(T ), . . . , x((n − 1)T )) ∈ Cn. Hint: C→ is the n × n permutation matrix such
that for any n× n matrix M , MC→ = M col (n, 1, 2, . . . , n− 1), and Cn

→ = I.

Note that Nr = NT
r implies that x⊛ y = y ⊛ x.

Also show that cp,n(x ⊛ y) = cp,n(x)Y , where Y is the n × n Toeplitz matrix defined by Yjk =
y(jT − kT ) for 1 ≤ j, k ≤ n. Hint: remember that y(−kT ) = y((n− k)T ).

Discrete circular convolution provides a fast way to multiply polynomials. Given two polynomials
A(z) = a0 + a1z + . . . + an−1z

n−1 and B(z) = b0 + b1z + . . . + bn−1z
n−1 of degree at most n − 1,
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the product A(z)B(z) = c0 + c1z + . . .+ c2n−2z
2n−2 has the coefficients

cj =

min(j,n−1)
∑

k=0

akbj−k, where at = bt = 0 for t ≥ n.

Thus if we define the vectors a = [a0, . . . , an−1, 0, . . . , 0], b = [b0, . . . , bn−1, 0, . . . , 0], and c =
[c0, . . . , c2n−1] with 2n components, then c = (aF2n ⊙ bF2n)F

−1
2n , where F2n is the 2n× 2n discrete

Fourier transformation matrix, and where ⊙ denotes the operation of element-by-element multipli-
cation of two vectors, producing another vector. Equivalently, c = (a∧⊙b∧)∨. Note c2n−1 = 0. This
computation of c is fast because there is an algorithm called ‘the fast Fourier transform’ algorithm
(discussed below) that computes aF in O(2n log(2n)) steps when n is a power of 2; when n is not
a power of 2, we can take the coefficient sequences a, b, and c as 2 · 2k-vectors where k = ⌈log2n⌉,
i.e., we extend our length-n coefficient sequences to the least power of 2 greater than or equal to
2n.

3.5 Interpolation

Let x be a complex-valued periodic function in L2(Q), so that x is of period p. Recall that the
k-th partial sum Sk(t) :=

∑

−k≤j≤k x
∧(p)(j/p)e2πi(j/p)t of the Fourier series of x(t) can be summed

to yield

Sk(t) =

∫ p

0
Dk(y)x(t− y) dy = (Dk ⊛ x)(t)

where, for v ∈ [0, p),

Dk(v) =







2k + 1 if v = 0

sin(π(2k + 1)v/p)
sin(πv/p)

otherwise.

The Dirichlet kernel, Dk, is extended to be periodic with period p by defining Dk(v+mp) = Dk(v)
for v ∈ [0, p) and m ∈ Z.

Although Dk(t) is defined on the entire real line, as a discrete function, Dk is restricted to the dis-
crete domain {−⌊n/2⌋T, . . . ,−T, 0, T, . . . , (⌈n/2⌉−1)T} where T = p/n, and extended periodically
to the domain {. . . ,−T, 0, T, . . .} by taking Dk(jT ) = Dk((j mod n)T ). We will generally want to
use the discrete sampled form of Dk with n = 2k + 1, so that {−kT, . . . ,−T, 0, T, . . . , kT} spans
one period of the discrete form of Dk.

If x ∈ L2(Q) is band-limited, so that x∧(p)(s) = 0 for |s| > k/p, with k a fixed non-negative
integer, then x = Sk. (Note it could be that x∧(p)(s) = 0 for |s| > m/p with m < k, in which case
our choice of k is not the least possible.) Moreover if we define the discrete periodic function X
with period p and stepsize T = p/(2k + 1) so that X(hT ) = x(hT ) for h = · · · ,−1, 0, 1, · · ·, then
Sk = X∧(p;2k+1)∨((2k+1)/p;2k+1) where p = (2k + 1)T , since in this case, the aliasing relation states
that x∧(p) = X∧(p;2k+1) and, since x∧(p)(s) = 0 for |s| > k/p, x∧(p)∨(p) = X∧(p;2k+1)∨((2k+1)/p;2k+1).
The discrete function X is just the stepsize-T sampled form of the periodic period p function x.
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Thus, x = X∧(p;2k+1)∨((2k+1)/p;2k+1), allowing the argument of X to range over the real line. This
shows that a band-limited periodic function is completely determined by an odd number of suf-
ficiently closely-spaced samples over one period. In particular, the sampling stepsize must be no
greater than T = p/(2k + 1), where k is chosen to be the least non-negative integer such that x
has no spectral components outside the frequency band [−k/p, k/p]. The required rate of sampling
is thus at least (2k + 1)/p samples per unit of t, so the required rate of sampling must be greater
than the sampling frequency 2k/p samples per unit of t, called the Nyquist sampling frequency, at
which aliasing error can begin to appear. When such samples X(0), X(T ), . . . , X(2vT ) are known,
with the integer v ≥ k and the value T redefined as T := p/(2v + 1), the unique band-limited
interpolating function x that satisfies x(hT ) = X(hT ) can be reconstituted via the discrete Fourier
transform as X∧(p;2v+1)∨((2v+1)/p;2v+1), or directly as

x(t) =
1

n

∑

0≤j<n

X(jT ) sin(π(t/T − j))/ sin(π(t/T − j)/n),

where n = 2v + 1, T = p/n, and sin(0)/0 is taken as n. Note the above sum can instead be taken
over −v ≤ j ≤ v. This identity is known as Whittaker’s interpolation formula.

Exercise 3.25: Let v ∈ Z with v ≥ 0. Show that, if the period-p function x ∈ L2(Q) is
band-limited with x∧(p)(s) = 0 for |s| > v/p, then

x(t) =
1

n

∑

0≤j<n

x(jT ) sin(π(t/T − j))/ sin(π(t/T − j)/n),

with n = 2v + 1, T = p/n, and sin(0)/0 taken as n.

Solution 3.25:

x(t) = x∧(p;n)∨(n/p;n)(t)

=
∑

0≤h<n





T

p

∑

0≤j<n

x(jT )e−2πihjT/p



 e2πi(h/p)t

=
1

n

∑

0≤j<n

x(jT )
∑

0≤h<n

e−2πih(t−jT )/p.

And
∑

0≤h<n e
−2πihu/p = sin(πnu/p)/ sin(πu/p) with sin(0)/0 taken as n; this sum is just the

Dirichlet kernel D⌊n/2⌋(u).

Thus,

x(t) =
1

n

∑

0≤j<n

x(jT ) sin(πn(t− jT )/p)/ sin(π(t− jT )/p)

=
1

n

∑

0≤j<n

x(jT ) sin(π(t/T − j))/ sin(π(t/T − j)/n)

= (x⊛d D⌊n/2⌋)(t),
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where n/p = 1/T and n = 2v + 1.

Let x be a discrete complex-valued period-p stepsize-T function with n = p/T ∈ Z+. Consider the
polynomial V (z) = x(0) + x(T )z + . . .+ x((n− 1)T )zn−1 whose coefficient vector is x = [x(0), . . . ,
x((n− 1)T )]. The discrete inverse Fourier transform ∨(p;n) of x, tabulated in a vector, is [x∨(0),
x∨(1/p), . . . , x∨((n− 1)/p)] = xF−1n , where Fn is the n×n discrete Fourier transform matrix. The
vector xF−1n is just [V (1), V (w), V (w2), . . . , V (wn−1)]T where w = e2πi/n. Thus, given values of
V (z) for z = 1, w, w2, . . . , wn−1, as the components of a vector y, yFn = x is just the vector of the
coefficients of the polynomial V of degree n− 1 which interpolates the n given points (wk, V (wk))
for k = 0, 1, · · · , n − 1. This polynomial is, of course, the Lagrange interpolating polynomial of
degree n− 1 for the n given data points equally-spaced on the unit circle in the complex plane.

3.6 The Fast Fourier Transform

The fast Fourier transform algorithm is a method to numerically compute nx∧, given values of the
discrete periodic function x on 0, 1, . . . , n− 1, where x is of period n and stepsize 1; thus here the
discrete period-n function x is represented with n “steps” and ∧ denotes ∧(n;n). The result of the
fast Fourier transform algorithm applied to the sequence of values 〈x(0), . . . , x(n−1)〉 is the sequence
of values nx∧(0), nx∧(1/n), . . . , nx∧((n− 1)/n). Since x∧ is just a discrete periodic function with
period 1 and stepsize 1/n, this is just the sequence nx∧(0), nx∧(1/n), . . . , nx∧((⌈n/2⌉ − 1)/n),
nx∧(−⌊n/2⌋/n), . . . , nx∧(−1/n), which can be reordered into its corresponding natural order by
“swapping” the first and last halves.

The fast Fourier transform algorithm is “fast” only when n is highly composite. It is particularly
convenient to choose n to be a power of 2. We can develop the formula that characterizes the fast
Fourier transform algorithm as follows. Given x(0), x(1), . . . , x(n − 1), where x is of period n, we

have nx∧(
j

n
) =

∑

0≤k≤n−1

x(k)wjk
n for j ∈ {0, 1, . . . , n− 1}, where wn = e−2πi/n, a primitive nth root

of unity. (Note the function wj
n as a function of j ∈ Z is a discrete period-n function.) Let n = uv,

where u and v are positive integers. Then

nx∧(
j

n
) =

v−1
∑

h=0

u−1
∑

g=0

x(hu+ g)wj(hu+g)
n =

u−1
∑

g=0

v−1
∑

h=0

x(hu+ g)wjhu
n wjg

n .

Note that wjhu
n = wjh

v . Thus:

nx∧(
j

n
) =

u−1
∑

g=0

wjg
n

v−1
∑

h=0

x(hu+ g)wjh
v .

This latter identity shows that nx∧(
j

n
) is the sum of u discrete Fourier transforms of period-v

functions defined by u evenly-spaced length-v transform sums x(0 ·u+g)wj0
v +x(1 ·u+g)wj1

v + · · ·+
x((v− 1) ·u+ g)w

j(v−1)
v for g = 0, 1, . . . , u− 1, weighted by the complex oscillations 1, wj

n, w
2j
n , . . .,
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w
(u−1)j
n . If v is composite, this formula can be applied recursively to each of the u transforms that

construct the final result.

In particular, for n a power of two, we can apply the fast Fourier transform to 〈x(0), x(2), . . . , x(n−
2)〉 to obtain the sequence 〈a0, a1, . . . , an/2−1〉, and we can apply the fast Fourier transform to
〈x(1), x(3), . . . , x(n− 1)〉 to obtain 〈b0, b1, . . . , bn/2−1〉. And, given the result sequences 〈a0, a1, . . .,
a(n/2)−1〉 and 〈b0, b1, . . . , b(n/2)−1〉, we have nx∧(j/n) = aj+ bje

−2πij/n. This follows by specializing
the fast Fourier transform formula above to obtain:

nx∧(j/n) =

(n/2)−1
∑

k=0

[x(2k)wjk
n/2 + (x(2k + 1)wjk

n/2)w
j
n] = aj + bjw

j
n,

for j ∈ {0, 1, . . . , n − 1}, where n is a power of 2. The sequences a and b represent period-
n

2
discrete functions, so for j ≥ n/2, the sequences a and b are extended by aj = a(j mod (n/2)) and
bj = b(j mod (n/2)).

If we have n equally-spaced “samples” x(0), x(1), . . ., x(n − 1) over one period, where n is not a
power of 2, we can interpolate this data, perhaps with a cubic spline interpolation function, and
re-sample to increase n to be a power of 2; alternately we can extend the sequence x to be a
power-of-2 length as discussed on page 21.

Exercise 3.26: Show that nx∧(j/n) =

(n/2)−1
∑

k=0

[x(2k)wjk
n/2+(x(2k+1)wjk

n/2)w
j
n] = aj+bjw

j
n, for

0 ≤ j < n, where n is a power of 2 and the sequences a and b are the discrete Fourier transform
sequences defined above.

Solution 3.26: Assume n = uv where u = 2. For j ∈ {0, 1, . . . , n− 2} we have

nx∧(
j

n
) =

1
∑

g=0

wjg
n

(n/2)−1
∑

h=0

x(2h+ g)wjh
n/2

=

(n/2)−1
∑

h=0

wjh
n/2

1
∑

g=0

wjg
n x(2h+ g)

=

(n/2)−1
∑

h=0

wjh
n/2

[

w0j
n x(2h) + w1j

n x(2h+ 1)
]

=





(n/2)−1
∑

k=0

x(2k)wjk
n/2



+





(n/2)−1
∑

k=0

(x(2k + 1)wjk
n/2



wj
n

= aj + bjw
j
n.

In order to compute the sequences 〈a0, a1, . . . , an/2−1〉 and 〈b0, b1, . . . , bn/2−1〉, we can use the fast
Fourier transform recursively. By recursively using the FFT on every sequence of more than 2
values, we obtain the full fast Fourier transform algorithm for the case where n is a power of two.
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Here is a program for this recursive form of the FFT alogrithm for n a power of 2.

complex array address FFT(complex array x[0:n-1]; integer n; integer s):

"The basic discrete direct n-scaled or inverse Fourier transform

of the data in x is computed and the address of the result complex

array is returned. If s=1, the direct n-scaled transform is returned;

if s=-1, the inverse transform is returned."

{static integer j, k; static real f; complex w, u;

complex array address a,b;

allocate-space for complex array xh[0:n-1];

if (n < 1) goto exit;

if (n = 1) {xh[0]←x[0]; goto exit;}

allocate-space for complex array xa[0:n/2-1];

allocate-space for complex array xb[0:n/2-1];

w←1; f←2π/n; u←cos(f)-i*s*sin(f); "u = exp(-s2πi/n)"

for j←0:n-1:2 do {xa[j]←x[j]; xb[j]←x[j+1];};
if (n = 2) {a←address(xa); b←address(xb); goto finish;}

a←FFT(xa, n/2, s);

b←FFT(xb, n/2, s);

free-space xa,xb;

finish:

for j←0:n-1 do {k←j mod (n/2); xh[j]←a[k]+b[k]*w; w←w*u;};
free-space a,b;

exit:

return(address(xh));

}

The notation “for j←0:n-1:2” represents “for j ← 0,2, . . ., ⌊(n-1)/2⌋”, i.e., “from 0 to n-1
in steps of size 2.”

Exercise 3.27: What is the memory space requirement of this recursive FFT algorithm?
Hint: count the maximum number of complex-numbers that may exist simultaneously during
execution.

Exercise 3.28: Revise this recursive FFT algorithm to use the arguments: complex array

x[0:n-1]; integer starti, stepi, leni, s, where fft(x, starti, stepi, leni, s) com-
putes the scaled transform (or inverse transform) of the sequence x[starti], x[starti+stepi],

x[starti+2*stepi], ..., x[leni-starti+1]. This permits you to avoid the use of the arrays
xa and xb.

This recursive algorithm can be “unwrapped” into an iterative form known as the power-of-two
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Cooley-Tukey algorithm which can leave its output in the input array x of 2n real values when this
is advantageous, and uses a total of (n − 3) log2 n complex multiplications and n log2 n complex
additions, plus (log2 n− 1) sine and cosine evaluations. Here n must be a power of 2.

In order to understand the “unwrapping” that leads to the Cooley-Tukey algorithm, let us look at
an example with n = 8. We have the input sequence 〈x(0), x(1), x(2), x(3), x(4), x(5), x(6), x(7)〉.
The recursive algorithm first computes the scaled discrete transforms of 〈x(0), x(2), x(4), x(6)〉
and 〈x(1), x(3), x(5), x(7)〉 and combines them. To do this, the scaled transforms of 〈x(0), x(4)〉
and 〈x(2), x(6)〉 and 〈x(1), x(5)〉 and 〈x(3), x(7)〉 are computed and combined in pairs. Finally,
computing these four scaled transforms is done, conceptually, by computing the trivial single-
element transforms of 〈x(0)〉, 〈x(4)〉, 〈x(2)〉, 〈x(6)〉, 〈x(1)〉, 〈x(5)〉, 〈x(3)〉, and 〈x(7)〉 and combining
them in pairs. (The single-element discrete Fourier transform is just the identity operator.)

In tabular form we have:

level 0 〈x(0)〉∧ 〈x(4)〉∧ 〈x(2)〉∧ 〈x(6)〉∧ 〈x(1)〉∧ 〈x(5)〉∧ 〈x(3)〉∧ 〈x(7)〉∧
level 1 〈x(0) x(4)〉∧ 〈x(2) x(6)〉∧ 〈x(1) x(5)〉∧ 〈x(3) x(7)〉∧
level 2 〈x(0) x(2) x(4) x(6)〉∧ 〈x(1) x(3) x(5) x(7)〉∧
level 3 〈x(0) x(1) x(2) x(3) x(4) x(5) x(6) x(7)〉∧.

We combine each pair of adjacent length-2k transform sequences at level k to produce the length-
2k+1 transform sequences at level k + 1. At level log2 n, we have the final length-n transform
sequence which is our result.

It is instructive to rewrite our table with each index value given in binary form.

level 0 〈x(000)〉∧ 〈x(100)〉∧ 〈x(010)〉∧ 〈x(110)〉∧ 〈x(001)〉∧ 〈x(101)〉∧ 〈x(011)〉∧ 〈x(111)〉∧
level 1 〈x(000) x(100)〉∧ 〈x(010) x(110)〉∧ 〈x(001) x(101)〉∧ 〈x(011) x(111)〉∧
level 2 〈x(000) x(010) x(100) x(110)〉∧ 〈x(001) x(011) x(101) x(111)〉∧
level 3 〈x(000) x(001) x(010) x(011) x(100) x(101) x(110) x(111)〉∧.

Now, note that the index sequence at level 0 is just the sequence revn(0), revn(1), revn(2), revn(3),
revn(4), revn(5), revn(6), revn(7) where, for v ∈ {0, 1, . . . , n − 1}, revn(v) is the integer whose
log2 n-bit binary form is the reverse of the log2 n-bit binary form of the integer v, e.g. rev8(3) = 6
because 011 reversed is 110. You can see why this happens – at each recursive application of
the FFT procedure, we segregate the even-index (low-order 0-bit) and odd-index (low-order 1-bit)
elements of the input sequence into two sequences for further processing.

This same pattern applies for n an arbitrary power of 2. Thus, if we permute the elements of the in-
put sequence 〈x(0), x(1), . . . , x(n−1)〉, to obtain the sequence 〈x(revn(0)), x(revn(1)), . . . , x(revn(n−
1))〉, then starting at level 0 where we have n length-1 transform sequences, we can just combine
adjacent pairs of length-2k transform sequences in level k and replace each such pair by the resulting
length-2k+1-transform sequence. When we fill-in the values of the length-n transform sequence in
level log2 n, we are done.

The Cooley-Tukey form of the fast Fourier algorithm for n a power of two is given as follows.
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complex array address FFT(complex array x[0:n-1]; integer n; integer s):

"The basic discrete direct n-scaled or inverse Fourier transform

of the data in x is computed and the address of the result complex

array is returned. If s=1, the n-scaled direct transform is returned;

if s=-1, the inverse transform is returned."

{integer a, b, j, k, h; complex t, w, u; real f;

allocate complex array z[0:n-1];

j←0;

for k←0:n-1 do

{z[k]←x[j]; "z = shuffled form of x array, j = bit reversal of k"

h←n/2; while (h<=j) {j←j-h; h←h/2};
j←j+h};

a←1;

while(a<n)

{b←a+a; f←π/a; u←cos(f)-i*s*sin(f); w←1; "u = exp(-s2πi/n)"
"compute the FFT of the n/b different length-b sequences.

each is computed in ’a’ steps (j=0, 1, ..., a-1), where each step

computes two of the complex result values: z[h] and z[k], that

involve u^j."

for j←0:a-1 do "here w=u^j"

{for h←j:n-1:b do {k←h+a; t←z[k]; z[k]←z[h]-w*t; z[h]←z[h]+w*t};
w←w*u};

a←b};
return(z)

}

Note that w
j+n/2
n = −wj

n, so only (n − 1)/2 complex multiplications are involved in computing

aj + bjw
j
n for 0 ≤ j < n, not counting obtaining the powers w1

n, w
2
n, . . . , w

n/2
n .

If we are given the sequence 〈x(0), . . ., x(n− 1)〉 = 〈y(t0), y(t0 + T ), . . ., y(t0 + (n− 1)T )〉, where
the discrete function y is of period nT , t0 is an integral multiple of T , and n is a power of two, we
can use the power-of-two fast Fourier transform algorithm given above to compute the sequence
〈nx∧(0), . . ., nx∧((n − 1)/n)〉, and then obtain y∧(h/(nT )) = e2πit0h/nx∧(((h + n) mod n)/n) for
h = −⌊n/2⌋, . . ., −1, 0, 1, . . ., ⌈n/2⌉ − 1.

Note the inverse discrete Fourier transform of 〈x(0), . . ., x(n − 1)〉 can be computed using the
fast Fourier transform algorithm with the argument s = −1, or with s = 1 and the identity
x∨(n;n) = nx∗∧(n;n)∗, or alternately, the identities x∨(n;n) = nxR∧(n;n) = nx∧(n;n)R.

When x is a real discrete periodic function with period n and stepsize 1, x∧ is a discrete periodic
Hermitian function with period 1 and stepsize 1/n. In this case, the relation x∧R = x∧∗ stated
elementwise is x∧R(k/n) = x∧((n − k)/n) = x∧(k/n)∗ for k ∈ Z, and similarly, if x is imaginary,
we have x∧R = −x∧∗, and stated elementwise, this is just x∧R((n− k)/n) = −x∧(k/n)∗ for k ∈ Z.
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Now let us consider the complex discrete period-n stepsize-1 function z(j) = x(j) + iy(j) where x
and y are real discrete period-n stepsize-1 functions. Let u(j) = iy(j). Then z∧ = x∧ + u∧, and
x∧R = x∧∗ and u∧R = −u∧∗. Thus, 1

2(z
∧ + z∧∗R) = x∧ and 1

2(z
∧ − z∧∗R) = u∧ and −iu∧ = y∧.

If we have two length-n real sequences, x and y, each consisting of n equally-spaced samples over
one period of the associated real periodic function, then the above relations allow us to “pack”
the two sequences together as x + iy, compute the n-scaled transform of x + iy, and recover the
sequences x∧ and y∧.

Exercise 3.29: Let z be the complex discrete period-n stepsize-1 function defined by z(j) =
x(j) + iy(j) where x and y are real discrete period-n stepsize-1 functions. Show that 1

2(z
∧ +

z∧∗R) = x∧ and 1
2(z
∧ − z∧∗R) = u∧ and −iu∧ = y∧.

Solution 3.29:
1
2(z
∧(j/n)+z∧∗R(j/n)) = 1

2(z
∧(j/n)+z∧((n−j)/n)∗) = 1

2 [x
∧(j/n)+u∧(j/n)+

x∧((n− j)/n)∗ + u∧((n− j)/n)∗].

But, x∧((n−j)/n)∗ = x∧(j/n) and u∧((n−j)/n)∗ = −u∧(j/n), since x is real and u is imaginary,
so 1

2(z
∧(j/n) + z∧∗R(j/n)) = 1

2 [x
∧(j/n) + u∧(j/n) + x∧(j/n)− u∧(j/n)] = x∧(j/n).

Similarly, 1
2(z
∧ − z∧∗R) = 1

2 [x
∧ + u∧ − x∧ + u∧] = u∧. And u∧ = iy∧ so y∧ = −iu∧.

Exercise 3.30: Show that if x and y are real discrete period-n stepsize-1 functions and we
form v = x∧(n;n) + iy∧(n;n), then x = Re(v∨(1;n)) and y = Im(v∨(1;n)).

If x∧ is computed with the fast Fourier transform algorithm using floating-point arithmetic with
b-bit precision, and n = 2k, then the Euclidian norm of the error in the sequence 〈x∧(0), x∧(1/n),
. . ., x∧((n− 1)/n)〉 is bounded as follows: Let the resulting b-bit precision floating-point sequence
be denoted by x∧(p;n;b). Then ‖x∧(p;n;b) − x∧(p;n)‖ < 1.06n1/2 · 23−bk · ‖x∧(p;n)‖ [BP94].

4 The Fourier Integral Transform

Let C∞↓ (R) be the set of infinitely-differentiable rapidly-decreasing complex-valued functions on R;
x ∈ C∞↓ (R) means that the n-th derivative of x, x(n), exists for all n ≥ 0, and that thx(n)(t) → 0

as |t| → ∞ for every pair of non-negative integral values for h and n, i.e., x(n)(t) = O(|t|−h) for
every non-negative integral value n and every non-negative integral value h; this is what we mean
by rapidly-decreasing. In other words, a rapidly-decreasing function x(t) approaches 0 as t → ∞
and as t→ −∞ faster than any polynomial function increases, so that, for any polynomial function
p and any rapidly-decreasing function x, p(t)x(t) → 0 as |t| → ∞ fast enough that

∫∞
−∞ p(t)x(t)dt

exists. An example of a rapidly-decreasing function is x(t) = e−t
2

.

The set of functions C∞↓ (R) is called the Schwartz space; it is closed under differentiation, addition,
multiplication, complex-conjugation, reversal, convolution, and Fourier transformation.

Introduce the inner product (x, y)L2(R) =
∫

R xy∗ and the norm ‖x‖L2(R) = (x, x)
1/2
L2(R)

. (Recall

that

∫

R
f =

∫ ∞

−∞
f(t)dt := lim

a→−∞
b→∞

∫ b

a
f(t)dt.)
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Let the set of functions L2(R) be the completion of C∞↓ (R) with respect to the metric ‖x−y‖L2(R);

L2(R) is obtained by taking all functions which are limits of Cauchy sequences of functions in
C∞↓ (R) relative to the metric induced by the just-introduced L2(R)-norm. The space L2(R) consists
of the set of complex-valued measurable functions, x, defined on [−∞,∞], such that

∫∞
−∞ |x(t)|2 dt <

∞.

The Fourier integral transform of x ∈ L2(R) is defined by

x∧(s) = lim
n→∞

∫ ∞

−∞
xn(t)e

−2πist dt,

where 〈x0, x1, . . .〉 is a Cauchy sequence of functions in C∞↓ (R) which converges to x in the sense
that ‖xn − x‖L2(R) → 0 as n→∞; the inverse Fourier integral transform is defined by:

x∧∨(t) = lim
n→∞

∫ ∞

−∞
x∧n(s)e

2πist ds where x∧(s) =

∫ ∞

−∞
xn(t)e

−2πist dt.

We may also write merely

x∧(s) =

∫ ∞

−∞
x(t)e−2πist dt and x∧∨(t) =

∫ ∞

−∞
x∧(s)e2πist ds,

where we interpret
∫∞
−∞ f(r, v)dr as the function g(v) such that

lim
a→−∞
b→∞

‖g(v)−
∫ b

a
f(r, v)dr‖L2(R) = 0.

We may write ∧(∞) and ∨(∞) to distinguish the Fourier integral transform and the Fourier integral
inverse transform from the transforms ∧(p) and ∨(p) defined on L2(Q).

Consider a function x ∈ C∞↓ (R), and consider the periodic extension x[p] where x[p](t) = x(t) on
[−p/2, p/2). We can write the Fourier series for x[p] as

x[p](t) =
∑

h

[

1

p

∫ p/2

−p/2
x[p](r)e

−2πi(h/p)r dr

]

e2πi(h/p)t.

Then

x(t) = lim
p→∞

x[p](t)

= lim
p→∞

x
∧(p)∨(p)
[p] (t)

= lim
p→∞

∑

h

p (x[p])
∧(p)(h/p) e2πi(h/p)t

1

p

= lim
p→∞

∑

h

[

p

p

∫ p/2

−p/2
x[p](r)e

−2πi(h/p)r dr

]

e2πi(h/p)t
1

p
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= lim
p→∞

∑

h

∫ p/2

−p/2
x[p](r)e

−2πi(h/p)(r−t) dr
1

p

= lim
p→∞

∫ ∞

−∞

∫ p/2

−p/2
x[p](r)e

−2πis(r−t) dr ds

=

∫ ∞

−∞

[

lim
p→∞

∫ p/2

−p/2
x[p](r)e

−2πisr dr

]

e2πist ds

=

∫ ∞

−∞

[∫ ∞

−∞
x(r)e−2πisr dr

]

e2πist ds

=

∫ ∞

−∞
x∧(∞)(s)e2πist ds

= x∧(∞)∨(∞)(t), where we take s =
h

p
as a function of h, so

1

p
→ ds as p→∞.

(Note how we compute the limit for p→∞ in two steps. First we note that

lim
p→∞

∑

h

[

∫ p/2

−p/2
x[p](r)e

−2πi(h/p)(r−t) dr
1

p

]

is a Riemann sum over the mesh · · · ,−2

p
,−1

p
, 0,

1

p
,
2

p
, · · ·

with the stepsize
1

p
. We substitute s = h/p and take the part-limit for p→∞ so that

∑

h

→
∫ ∞

−∞
to-

gether with
1

p
→ ds. Second, we take the remaining limit for p→∞ so that

∫ p/2

−p/2
x[p](r)e

−2πisr dr →

x∧(∞)(s).)

We have heuristically shown that the Fourier inversion theorem: x(t) = x∧(∞)∨(∞)(s) a.e. holds for
x ∈ C∞↓ (R). The same result holds for limits of sequences of functions in C∞↓ (R); this completion

of C∞↓ (R) yields either the function space L2(R) or L1(R), depending on which norm is used in

defining convergence, (with some exceptions in L1(R)). (In these situations we have to introduce
the limit of a convergent sequence of C∞↓ (R)-functions, restricted to a finite support interval and
periodically extended, in place of x[p].)

The gaps in this heuristic “proof” of the Fourier inversion theorem for the Fourier integral transform
can be filled-in to establish a firm foundation for the Fourier integral transform and its inverse
[DM72] [Rud98]. Basically, we need to justify exchanging limits and proper integration operations
(i.e., integration of functions of compact support,) which is generally done by appealing to a
dominated convergence theorem.

When x ∈ L2(R) is real, x∧R = x∧∗, and we have:

x∧∨(t) =

∫ ∞

0
M(s) cos(2πst+ φ(s)) ds,

with x∧(−s)e−2πist + x∧(s)e2πist = M(s) cos(2πst + φ(s)), where M and φ are functions of s
defined as follows. Let A(s) = x∧(s) + x∧(−s) and B(s) = i(x∧(s) − x∧(−s)). Define M(s) =
[

A(s)2 +B(s)2
]1/2

/(1 + δs,0) and φ(s) = atan2(−B(s), A(s)). When x is real, M and φ are real
and M(s) ≥ 0.
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Note that for x ∈ L2(R), x∨(s) = [x(−t)]∧, i.e., x∨ = xR∧. Thus, if x is even, x∧ = x∨.

We may also define the Fourier integral transform on the class L1(R), of complex-valued functions,

x, such that
∫∞
−∞ |x(t)| dt < ∞. For x ∈ L1(R), x∧(s) =

∫∞
−∞ x(t)e−2πist dt. However x∧ may not,

itself, be in L1(R), and the inverse Fourier transform integral,

∫ ∞

−∞
x∧(s)e2πistds, does not exist

for every such function, x∧; however x can be recovered from x∧ by a special smoothing device.

Introduce the norm ‖x‖L1(R) =
∫

R |x|. Then x∧∨(t) = lim
L1(R)
a↓0

∫∞
−∞ e−2π

2s2ax∧(s)e2πist dt, where

lim
L1(R)
a↓0 f(a) denotes the function, g, such that lima↓0 ‖f(a)− g‖L1(R) = 0.

The relationships between the Fourier transform on the spaces L2(Q) and L2(Z/p) are: (periodic
function)∧ = discrete function and (discrete function)∨ = periodic function. As the period p tends
to∞ so that compliant periodic functions are extended to converge to rapidly-decreasing functions,
we have periodic function→ C∞↓ (R)-function, and discrete function→ C∞↓ (R)-function. The space
L2(R) is the completion of this common limit space obtained as p→∞, and the Fourier transform
operators ∧(p) and ∨(p) become the Fourier integral transform operators ∧(∞) and ∨(∞) on L2(R).

Note the Fourier integral transform and inverse transform can be “re-parmeterized” in many forms.
The general relations that satisfy x∧∨ = x are:

x∧(s) =

[ |b|
(2π)1−a

]1/2 ∫ ∞

−∞
x(t)eibst dt and x∧∨(t) =

[ |b|
(2π)1+a

]1/2 ∫ ∞

−∞
x∧(s)e−ibts ds,

where b 6= 0. We use a = 0 and b = −2π here; this is the usual choice for signal processing
applications. Other common choices are: a = 1 and b = −1 (mathematics), a = 1 and b = 1
(probability), a = 0 and b = 1 (modern physics), and a = −1 and b = 1 (classical physics),

The common choice a = 1 and b = −1 results in the argument, w, of the Fourier transform function,
x∧(w), having the natural unit of radians per t-unit (angular frequency) rather than cycles per t-
unit (linear frequency). Note if s is a value representing a number of cycles per t-unit, then w = 2πs
is the correspondimg number of radians per t-unit.

Define ∧[a, b] and ∨[a, b] as the operators such that x∧[a,b](s) =

[ |b|
(2π)1−a

]1/2 ∫ ∞

−∞
x(t)eibst dt and

y∨[a,b](t) =

[ |b|
(2π)1+a

]1/2 ∫ ∞

−∞
x∧(s)e−ibts ds where b 6= 0. Then we have x∧[0,−2π](s) = x∧[1,−1](2πs)

and y∨[0,−2π](t) = 2πy∨[1,−1](2πt).

Thus, if x∧(w) = f(w) with a = 1 and b = −1, then x∧(s) = f(2πs) with a = 0 and b = −2π, and
if y∨(r) = g(r) with a = 1 and b = −1, then y∨(t) = 2πg(2πt) with a = 0 and b = −2π – with
the proviso that if a Fourier transform, v∧(w), occurs in the expression defining f(w) or g(r), then
it is to be replaced by v∧(s), and if an inverse Fourier transform, u∨(r), occurs in the expression
defining f(w) or g(r), then it is to be replaced by u∨(t) (these rules follow from the preceding
paragraph.) We need these formulas to convert among the most common differing choices found in
different books.
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In the case b = −1 with a other than 1, the conversion from x∧[a,−1] to x∧[0,−2π] is complicated by

the need to multiply x∧[a,−1] by
[

(2π)1−a
]1/2

and multiply y∨[a,−1] by 2π
[

(2π)1+a
]1/2

.

4.1 Geometrical Interpretation

With the inner product (x, y)L2(R) :=
∫

xy∗, and the norm ‖x‖L2(R) := (x, x)
1/2
L2(R)

, L2(R) is a

Hilbert space, but unlike the situation for periodic functions, the functions e2πist do not belong to
L2(R). Nevertheless, the Fourier integral transform, ∧, is a one-to-one distance-preserving map of
L2(R) onto L2(R), and we have Parseval’s identity: (x, y)L2(R) = (x∧, y∧)L2(R) and Plancherel’s

identity: ‖x‖L2(R) = ‖x∧‖L2(R). (The reason x∧ exists for x ∈ L2(R), even though e2πist 6∈ L2(R),

is because |x| decreases rapidly enough to ensure that

∣

∣

∣

∣

∫ ∞

−∞
x(t)e2πistdt

∣

∣

∣

∣

<∞.)

The Fourier integral transform is a unitary linear transformation on L2(R), and since x∧∧∧∧ = x,
∧ is an infinite-dimensional analog of a “90-degree” rotation mixture. The inverse Fourier integral
transform, ∨, is also a one-to-one distance-preserving map of L2(R) onto L2(R).

The Fourier integral transform is defined on L1(R) and for x ∈ L1(R), x∧ ∈ C(R) (The set C(R) is
the set of continuous complex functions defined on R,) however, similar to the situation in L1(Q),
x∧ may be unbounded, so that x∧∨ does not exist.

C∞↓ (R) is dense in L2(R) (and in L1(R)), and ∧ maps C∞↓ (R) onto itself. Unlike the class of

square-integrable finite-period periodic functions, L2(R) 6⊆ L1(R) (and L1(R) 6⊆ L2(R).)

Exercise 4.1: If C∞↓ (R) is dense in L2(R) and also in L1(R), why doesn’t L2(R) = L1(R)?

Solution 4.1: The completion process that forms L2(R) and similarly L1(R) from C∞↓ (R) is
done with respect to distinct norms.

4.2 Band-Limited Functions

A band-limited function, x ∈ L2(R), which has no spectral component whose frequency lies out-
side the band [−b, b], is determined by an infinite sequence of discrete samples . . ., x(−2/(2b)),
x(−1/(2b)), x(0), x(1/(2b)), x(2/(2b)), . . ., as:

x(t) =
1

2b

∑

−∞<h<∞

x(h/(2b))
sin (2πb(t− h/(2b)))

π(t− h/(2b))
.

This series is known as the cardinal series expansion of x.

Let x ∈ L2(R) be band-limited with x∧(s) = 0 for |s| > b.

Then we can write x(t) =

∫ b

−b
x∧(s)e2πist ds. (Here ∧ denotes the Fourier integral transform ∧(∞).)



4 THE FOURIER INTEGRAL TRANSFORM 48

And since x∧(s) = 0 outside [−b, b], we can write x∧(s) as a Fourier series valid for s ∈ (−b, b):

x∧(s) =
∑

−∞<h<∞

x∧∧(p)(h/(2b))e2πihs/(2b).

And we have x∧∧(p)(v) =
1

2b

∫ b

−b
x∧(r)e−2πirv dr for v = . . ., −1/(2b), 0, 1/(2b), . . ., so,

x∧(s) =
∑

−∞<h<∞

[

1

2b

∫ b

−b
x∧(r)e−2πirh/(2b) dr

]

e2πish/(2b),

and, inverting the order of summation by writing −h for h, we have:

x∧(s) =
∑

∞>h>−∞

[

1

2b

∫ b

−b
x∧(r)e2πirh/(2b) dr

]

e−2πish/(2b)

=
∑

∞>h>−∞

[

1

2b
x(h/(2b))

]

e−2πihs/(2b).

But now,

x(t) =

∫ b

−b
x∧(s)e2πist ds

=

∫ b

−b

[

∑

h

1

2b
x(h/(2b))e−2πish/(2b)

]

e2πist ds

=
∑

h

1

2b
x(h/(2b))

∫ b

−b
e2πi(t−h/(2b))s ds

=
∑

h

1

2b
x(h/(2b))

[

e2πi(t−h/(2b))s

2πi(t− h/(2b))

]s=b

s=−b

=
∑

h

1

2b
x(h/(2b))

[

e2πi(t−h/(2b))b − e−2πi(t−h/(2b))b

2πi(t− h/(2b))

]

=
1

2b

∑

h

x(h/(2b))
sin (2πb(t− h/(2b)))

π(t− h/(2b))
,

where we compute 0/0 as 1.

The identity x(t) =
1

2b

∞
∑

h=−∞

x(h/(2b))
sin (2πb(t− h/(2b)))

π(t− h/(2b))
is called the Shannon sampling theo-

rem; it is a generalization of Whittaker’s interpolation formula to band-limited functions in L2(R).
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In general, for x ∈ L2(R), not necessarily band-limited, we have both x(t) → 0 as |t| → ∞ and

x∧(s) → 0 as |s| → ∞. Therefore the truncated sum
1

2b

∑

−m≤h≤m

x(h/(2b))
sin (2πb(t− h/(2b)))

π(t− h/(2b))

will be a good approximation to x(t) when m is large enough.

Exercise 4.2: Explain what the Shannon sampling theorem says about the value of x(t) for
t ∈ Z/(2b).

Exercise 4.3: Let b be a positive real value and let x(t) ∈ L2(R) be an even function with
x(t) = 0 for |t| ≥ b such that x(t) + x(b − t) is constant for 0 ≤ t ≤ b. We shall call such a
function a bi-constant function.

An example of an even function, x, that satisfies x(t) = 0 for |t| ≥ b and x(t) + x(b− t) = c for

0 ≤ t ≤ b is x(t) =

{

c(1− t/b), if |t| < b
0, otherwise.

In general, an even function, x, that satisfies x(t) = 0 for |t| ≥ b and x(t) + x(b − t) = c for
0 ≤ t ≤ b also satisfies x′(t)− x′(b− t) = 0 for 0 ≤ t ≤ b.

Show that, for b = 1 and 0 < t < 1, x′(t) = e−1/(t−t
2) satisfies x′(t)− x′(b− t) = 0 for 0 ≤ t ≤ 1.

We can thus take x(t) =
∫ 1
t e−1/(r−r

2)dr for 0 ≤ t ≤ 1, and extend x(t) to be a continuous even
bi-constant function on R with support in (−1, 1). What is this function?

Also show that any bi-constant function x with the support set (−b, b) satisfies x∧(t) = x∨(s) = 0
for s = k/b with k ∈ Z − {0}

Solution 4.3: Let x be a bi-constant function. Recall that x is an even function and let
c = x(0) = x(t) + x(b− t) for 0 ≤ t ≤ b. Note x(t) + x(b− t) = c for 0 ≤ t ≤ b is equivalent to
x(αb) + x((1− α)(−b)) for α ∈ [0, 1].

Now, xR∧ = x∨ and since x is even, x∧ = x∨. Also, for k ∈ Z, we have

x∧(k/b) =

∫ ∞

−∞
x(t)e−2πi(k/b)tdt

=

∫ b

−b
x(t)e−2πi(k/b)tdt

=

0
∑

j=−1

∫ (j+1)b

jb
x(t)e−2πi(k/b)tdt

=
0
∑

j=−1

∫ b

0
x(t+ jb)e−2πi(k/b)tdt,

since e−2πi(k/b)t is periodic with period b, so that e−2πi(k/b)(t+jb) = e−2πi(k/b)t · e−2πikj and
e−2πikj = 1.

But then,

x∧(k/b) =

∫ b

0
[x(t− b) + x(t)]e−2πi(k/b)tdt
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=

∫ b

0
[x(t) + x(b− t)]e−2πi(k/b)tdt

=

∫ b

0
ce−2πi(k/b)tdt.

Thus, for k 6= 0,

x∧(k/b) =

∫ b

0
ce−2πi(k/b)tdt

= ce−2πi(k/b)t/(−2πi(k/b))
∣

∣

∣

t=b

t=0

= − cb

2πik

[

e−2πik − 1
]

= − cb

2πik
[1− 1]

= 0,

and, for k = 0,

x∧(k/b) = x∧(0) =

∫ b

0
ce−2πi(k/b)tdt

=

∫ b

0
cdt

= bc.

Beware. We have shown that the integral Fourier transform of a bi-constant L2(R)-function x
is 0 at ±1/b,±2/b, . . ., but this does not imply that x∧(s) is 0 everywhere away from s = 0(!)
What can you say about the Fourier series of the period 2b-function x[2b](t) constructed from
the bi-constant function x given on [−b, b]?

Paley and Wiener have shown that any band-limited function, x ∈ L2(R), with x∧(s) = 0 for
|s| > b, can be extended to a unique function, y, of a complex variable, z, such that y(z) is an
entire function, y(z) = x(z) for z ∈ R and |y(z)| ≤ ceaπ|z| for some constants c and a. In fact, this
function, y(z), is just the inverse Fourier transform of the function x∧, so

y(z) =

∫ b

−b
x∧(s)e2πisz ds.

Thus, a band-limited function x extends to a particular function y of a complex variable, where the
Fourier transform of x determines y on the entire complex plane, by means of the Fourier inversion
formula. The converse is also true: if y(z) is an entire function with |y(z)| ≤ ceaπ|z| for some
constants c and a, then y is band-limited.

The cardinal series expansion of x also determines y as

y(z) =
1

2b

∞
∑

h=−∞

x(h/(2b))
sin (2πb(z − h/(2b)))

π(z − h/(2b))
.
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Note that a non-zero band-limited function x ∈ L2(R) is never a domain-limited function; i.e.,
there is no value a > 0 such that x(t) = 0 for |t| > a. The converse is also true; a non-zero
domain-limited function is not a band-limited function.

In general, the more “spread-out” the function x is, the more “concentrated” x∧ is, and vice-
versa; Dym and McKean [DM72] report a proof of a descriptive result relating “spread” and
“concentration”. Consider x ∈ L2(R) normalized to have total “power” ‖x‖2L2(R) = 1 = ‖x∧‖2L2(R).

Let α2
x ≤ 1 be the “power” of x in the interval [−a, a], so that α2

x =
∫ a
−a |x(t)|2dt. Let β2

x ≤ 1 be

the “power” of x∧ in the interval [−b, b], so that β2
x =

∫ a
−a |x∧(s)|2ds. Note αx is a function of a

and βx is a function of b.

Fix the values a and b, with a > 0 and b > 0. No matter what values of a and b we choose, it is not
possible to choose a function x so that α2

x = 1 and β2
x = 1 simultaneously. However, for any pair

(ᾱ, β̄) ∈ {(α, β) | β ≤ αγ
1/2
ab + (1− α2)1/2(1− γab)

1/2} − {(0, 1), (1, 0)}, where γab is a certain non-
negative monotonically-increasing function with γab rapidly approaching .916 . . . as ab approaches
∞, there is a function y that achieves ᾱ2 = α2

y =
∫ a
−a |y(t)|2dt and β̄2 = β2

y =
∫ a
−a |y∧(s)|2ds for the

prior-chosen fixed positive values of a and b. (γab ≈ .916 . . . · (1− e−4πab).)

Another famous example of the “spread” vs. “concentration” relation between a function x and its
Fourier transform x∧ is the Heisenberg inequality. The classical form of the Heisenberg inequality
for x ∈ L2(R) with ‖x‖L2(R) = 1 is:

[∫ ∞

−∞
(t− E(A))2|x(t)|2dt

]

·
[∫ ∞

−∞
(s− E(B))2|x∧(s)|2ds

]

≥ 1/(16π2),

where A is a real random variable with the probability density function [P (A ≤ t)]′ = |x(t)|2 and
B is a real random variable with the probability density function [P (B ≤ s)]′ = |x∧(s)|2. The
Heisenberg inequality asserts that V ar(A) · V ar(B) ≥ 1/(16π2).

The unnormalized form of the Heisenberg inequality for x ∈ L2(R) is:
[∫ ∞

−∞
t2|x(t)|2dt

]

·
[∫ ∞

−∞
s2|x∧(s)|2ds

]

≥ ‖x‖4L2(R)/(16π
2);

this states that the “spread-weighted” power of x and the “spread-weighted” power of x∧ are
(roughly) inversely related. (Recall that Parseval’s identity says that the total unweighted powers
of x and x∧ are equal.)

4.3 The Poisson Summation Formula

Take p > 0. Given the rapidly-decreasing function f(t) defined on R, define

gp(t) :=
∑

−∞<k<∞

f(t+ kp),

where the summation index k ∈ Z. The function gp is periodic of period p(!) Moreover because
f(r)→ 0 rapidly as |r| → ∞, we have lim

p→∞
gp(t) = f(t).
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Exercise 4.4: Explain graphically what the function gp(t) is as the ‘sum’ of the graphs of the
functions f(t+ kp) for k = . . . ,−1, 0, 1, . . ..

We have the Fourier series:

gp(s) =
∑

−∞<n<∞

[

1

p

∫ p/2

−p/2
gp(t)e

−2πit(n/p) dt

]

e2πi(n/p)s,

and,

1

p

∫ p/2

−p/2
gp(t)e

−2πi(n/p)t dt =
1

p

∫ p/2

−p/2

[

∑

−∞<k<∞

f(t+ kp)

]

e−2πi(n/p)t dt

=
1

p

∑

−∞<k<∞

∫ p/2

−p/2
f(t+ kp)e−2πi(n/p)t dt

=
1

p

∑

−∞<k<∞

∫ p/2

−p/2
f(t+ kp)e−2πi(n/p)(t+kp) dt

=
1

p

∑

−∞<k<∞

∫ (k+ 1

2
)p

(k− 1

2
)p

f(r)e−2πi(n/p)r dr

=
1

p

∫ ∞

−∞
f(r)e−2πi(n/p)r dr

=
1

p
f∧(∞)(n/p).

So,

gp(s) =
∑

−∞<n<∞

[

1

p
f∧(∞)(n/p)

]

e−2πi(n/p)s.

Note for s = 0, we have
∑

−∞<k<∞

f(kp) =
∑

−∞<n<∞

1

p
f∧(∞)(n/p), and in addition,

∑

k

f(k) =

∑

n

f∧(∞)(n) when we take p = 1. This identity is the Poisson summation formula; like the

Plancherel identity, it shows the “equivalence” of the “sizes” of the rapidly-decreasing function f
and its Fourier integral transform.

Also, we obtain the Fourier inversion theorem:

lim
p→∞

gp(s) = f(s) = lim
p→∞

∑

n

f∧(∞)(n/p)e−2πisn/p
1

p
=

∫ ∞

−∞
f∧(∞)(t)e−2πist dt = f∧(∞)∨(∞)(s).
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4.4 Structural Relations

� Recall that any function, x, can be written x = even(x)+odd(x), where even(x)(t) = (x(t)+
x(−t))/2 and odd(x) = (x(t)−x(−t))/2. If x(t) = 0 for t < 0, then even(x)(t) = x(|t|)/2 and
odd(x)(t) = sign(t) · x(|t|)/2. We have x∧ = even(x)∧ + odd(x)∧, and even(x)∧ = Re(x∧),
odd(x)∧ = i Im(x∧).

� x∧∗ = x∗∨ and if x is real, x∧ is Hermitian, i.e., x∧R = x∧∗, also if x is imaginary then
x∧∗ = −x∧R. Also xR∧ = x∗∧∗ = x∗∗∨ = x∨, and x∗∧ = xR∧∗.

Exercise 4.5: Show that ∗ ∨ ∗ = ∧.

� x∧∧ = xR, and so x∧∧∧∧ = x and x∧R∧ = x, i.e., R = ∧∧, R∧ = ∧R, ∨ = ∧R = R∧, ∧ = R∨,
and ∧ ∧ ∧∧ = I.

Exercise 4.6: Show that ∧∧ = R.

Solution 4.6: x∧∧(s) =
∫∞
−∞ x∧(t)e−2πist dt, so x∧∧(−s) =

∫∞
−∞ x∧(t)e2πist dt = x∧∨(s) =

x(s). Thus, x∧∧(s) = x(−s), so ∧∧ = R.

Exercise 4.7: Show that R∨ = ∨R.

Exercise 4.8: Show that ∧ ∗ ∧ = R ∗R = ∗.
Exercise 4.9: Use Parseval’s identity: (x, y)L2(R) = (x∧, y∧)L2(R) and the operator iden-

tities above to show that (x, y∧)L2(R) = (x∧, yR)L2(R) and (x∧, y∧∗)L2(R) = (xR, y∗)L2(R)

or equivalently, (x∧, y)L2(R) = (x, yR∧)L2(R).

Exercise 4.10: Show that (x, y∧∗)L2(R) = (x∧, y∗)L2(R). Hint: remember ∧∧ = R.

Solution 4.10: Parseval’s identity implies that (x∧, y∗)L2(R) = (x∧∧, y∗∧)L2(R) and

(x∧∧, y∗∧)L2(R) = (xR, yR∧∗)L2(R) = (xR, y∧R∗)L2(R). But

(xR, y∧R∗)L2(R) =

∫ ∞

−∞
x(−r)y∧(−r)∗∗dr

=

∫ ∞

−∞
x(−r)y∧(−r)dr

=

∫ −∞

∞
x(r)y∧(r)(−1)dr

=

∫ ∞

−∞
x(r)y∧(r)dr

= (x, y∧∗)L2(R).

Exercise 4.11: Show that (x, y∨∗)L2(R) = (x∨, y∗)L2(R).

� (x′)∧(s) = 2πis · x∧(s).
Exercise 4.12: Prove that (x′)∧(s) = 2πis · x∧(s) for x ∈ L2(R). Hint: use integration
by parts, plus the fact that x(t)→ 0 as t→∞ or t→ −∞.

� Let v(t) be a polynomial function. In general, using operator notation,
[

v(D1
t )(x(t))

]∧
(s) =

v(2πis)x∧(s), where D1
t denotes the prefix differentiation operator with respect to t.
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� (x∧)′(s) = (−i2πt · x(t))∧(s).

� In general, using operator notation, [(2πis)pDq
s ](x∧(s)) = [[Dp

t (−2πit)q](x(t))]∧(s) for non-
negative integers p and q. (The differentiation operator Dq

s denotes q-fold differentiation with
respect to s.)

� The operators [D1
r − (2πr)2] and ∧ commute, where “r” denotes the argument of the function

to which the operators are applied.

� (ei2πvtx(t))∧(s) = x∧(s− v).

� (x(at+ b))∧(s) = (1/|a|)e2πis(b/a)x(t)∧(s/a). Taking b = 0 and a = −1 shows that R∧ = ∧R.

� x(t) · cos(wt) is the carrier oscillation cos(wt) of frequency w/(2π) amplitude-modulated by
the signal x(t): we have (x(t) · cos(wt))∧(s) = (1/2)x∧(s − w/(2π)) + (1/2)x∧(s + w/(2π));
these are the two “side-band” terms of x.

� if x(t) = e−t
2/(2σ2), then x∧(s) = (2π)1/2σe−2π

2σ2s2 . In particular, (e−πt
2

)∧(s) = e−πs
2

.

� The eigenvalues of ∧ are −i, i, −1, and 1, and the eigenfunctions are the Hermite functions:
hn(r) := (−1)neπr2(e−2πr2)(n)/n! for n ≥ 0, where the superscript (n) denotes the n-th
derivative. Specifically we have h∧n = (−i)n · hn [DM72].

� x∧ is continuous for x ∈ L1(R).

4.5 Convolution

For x, y ∈ L2(R), we define the convolution

(x⊛ y)(t) =

∫ ∞

−∞
x(s)y(t− s) ds.

Note if x and y are both 0 outside the interval [−p/2, p/2] then x ⊛ y is 0 outside the interval
[−p, p].

The following identities hold.

� (x⊛ y)∧ = x∧y∧.

� x⊛ y = y ⊛ x, x⊛ (y ⊛ z) = (x⊛ y)⊛ z, and x⊛ (y + z) = x⊛ y + x⊛ z.

� (x⊛ y)′ = x′ ⊛ y = x⊛ y′.

�

∫∞
−∞(x⊛ y)(t) dt = (

∫∞
−∞ x(t) dt) · (

∫∞
−∞ y(t) dt).

� (xy)∧ = x∧ ⊛ y∧.
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� If x ∈ L2(R) is band-limited with x∧(s) = 0 for |s| > b, then

x = (x∧)∨ = (x∧B2b)
∨ = x∧∨ ⊛B∨2b = x⊛ sinc2b,

where sincp(t) := sin(πpt)/(πpt), and Bp(t) :=







1, if |t| < p/2,
1/2, if |t| = p/2,
0, otherwise.

Also, we have the cross-correlation kernel function

(x⊗ y)(r) =

∫ ∞

−∞
x(t)y(t+ r) dt.

Thus x⊗ y = xR ⊛ y, and when x is real, (x⊗ x)∧ = x∧x∧∗ = |x∧|2.

Let 〈y(t)〉x = (
∫∞
−∞ y(t)x(t) dt)/(

∫∞
−∞ x(t) dt). Note if x is a probability density function, and if t is

a random variable such that y(t) has the probability density function x, then 〈y(t)〉x = E(y(t)).

Thus,

〈t〉x⊛y = 〈t〉x + 〈t〉y, and

〈t2〉x⊛y = 〈t2〉x + 2〈t〉x〈t〉y + 〈t2〉y.

4.6 Eigenvalues and Eigenfunctions

Dym and McKean [DM72] present Norbert Weiner’s derivation of the eigenvalues and eigenfunctions
of the Fourier integral linear operator ∧.

If f∧ = λf , i.e, if f is an eigenfunction and λ is a corresponding eigenvalue of the linear operator
∧, then f∧∧ = λf∧, f∧∧∧ = λf∧∧, and f∧∧∧∧ = λf∧∧∧. But then, f∧∧∧∧ = λ4f , and, since
f = f∧∧∧∧, we have f = λ4f , i.e., f(t) = λ4f(t), and fixing t to be any value a such that f(a) 6= 0
and dividing by f(a), we have 1 = λ4. Thus the eigenvalues of ∧ are the fourth roots of unity:
1, i,−1,−i.

Now, if we recall that the Fourier integral transform of x(t) = e−πt
2

is x∧(s) = e−πs
2

, then we
might search for eigenfunctions of ∧ related to Gaussians. And since (f ′(t))∧(s) = 2πis · f∧(s), we
might also look at functions of the form u(t)e−πt

2

where u(t) is a polynomial. It turns-out that the
eigenfunctions of ∧ are the Hermite functions:

hn(t) =
(−1)n
n!

eπt
2

Dn
t

[

e−2πt
2
]

for n ∈ {0, 1, . . .},

(Here Dn
t denotes the operation of n-fold differentiation with respect to t.)

The eigenvalue associated with the eigenfunction hn is (−i)n, i.e., h∧n = (−i)nhn.
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Exercise 4.13: Show that hn(t) = e−πt
2

un(t) where un(t) is a polynomial of exact degree n

with real coefficients. Hint: the polynomials Hn(t) := (−1)ne−t2Dn
t

[

e−t
2

]

for n ∈ {0, 1, . . .}
(called Hermite polynomials) satisfy the recursion relation Hn+1(t) = 2tHn(t)−2nHn−1(t) with
H0(t) = 1, H1(t) = 2t, H2(t) = 4t2 − 2, etc. Consider n!un(t/

√
2π) = Hn(t).

Let en = hn/‖hn‖L2(R). Then, just as happens with unitary linear transformations on Cn, it turns-
out that 〈e0, e1, . . .〉 is an orthonormal approximating basis for L2(R). Therefore every function

x ∈ L2(R) has a Hermite function expansion: x =
∑

0≤n≤∞

(x, en)en based on the normalized eigen-

functions of ∧ (!) (By x =
∑

0≤n≤∞

(x, en)en, we mean lim
k→∞

‖x −
∑

0≤n≤∞

(x, en)en‖L2(R) = 0.) The

value ‖hn‖L2(R) =

[

(4π)n√
2n!

]1/2

.

Now for x ∈ L2(R), we have Weiner’s formula:

x∧ =
∑

0≤n≤∞

(x, en)(−i)nen.

Exercise 4.14: Why isn’t Weiner’s formula x∧ =
∑

0≤n≤∞

(x, en)(−i)n‖hn‖L2(R)en?

Define Ej = {x ∈ L2(R) |x =
∑

0≤n≤∞(x, e4n+j)e4n+j} for j ∈ {0, 1, 2, 3}. The subspaces E0, E1,

E2, and E3 are the eigenspaces in L2(R) with respect to the linear operator ∧, and, since ∧ has a
complete set of eigenfunctions, L2(R) = E0 ⊕ E1 ⊕ E2 ⊕ E3.

Note ∧ on Ej is just multiplication by (−i)j , i.e., f∧ = (−i)jf for f ∈ Ej . And multiplication of
a complex number by (−i)j just “rotates” that number in the complex plane by −jπ/2 radians.

Exercise 4.15: Show that h0, h1, . . ., are eigenfunctions of ∨, the inverse Fourier integral
transform with h∨n = (−i)nhn. Hint: ∧ ∧ ∧ = ∨.

5 Fourier Integral Transforms of Linear Functionals

We can extend the Fourier transform operator to certain functions, x, such that
∫∞
−∞ |x(t)|dt =

∞, for example: x(t) = 1 or x(t) = sin(t). We cannot use the integral formula x∧(s) =
∫∞
−∞ x(t)e−2πistdt to define the Fourier transform in such cases, however, without going in a round-
about path and introducing the famous Dirac-δ functional (although Paul Dirac was not the earliest
discoverer.)

The basic approach comes from the observation, derived from Parseval’s identity, that (x∧, y∗)L2(R) =
(x, y∧∗)L2(R), together with the observation that (x, y∗)L2(R) =

∫∞
−∞ x(t)y(t)dt may exist for func-

tions x that do not decrease, i.e., do not satisfy x(t) → 0 as |t| → ∞, as long as y decreases
rapidly enough to compensate. Therefore we can try to define the Fourier transform x∧ for certain
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slowly-decreasing or non-decreasing functions x. The idea is that, given x, we can “solve” for x∧

in the infinite set of functional equations
∫ ∞

−∞
x∧(s)y(s)ds =

∫ ∞

−∞
x(t)y∧(t)dt,

obtained as y ranges over a suitable set of decreasing functions such as C∞↓ (R) with respect to
which we re-define the Fourier transform; these functions are often called test functions. (Actually,
the more restrictive the class of test functions that y ranges over, the more “expansive” the class
to which x belongs can be.)

In carrying out this program, we soon find that if we want to solve for the Fourier transform of a
polynomial, or even just of x(t) = 1, we must be willing to take the Fourier transform x∧ which we
are trying to construct to be a so-called linear functional (the terms “distribution” or “generalized
function” are also used.) This is the case essentially because the relationship between the “spread”
of a function x and the “concentration” of its Fourier transform x∧ continues to hold as we take
limits and forces us to consider objects such as the δ functional.

Recall that, in general, a linear functional on a vector space V with the field of scalars C is a function
F mapping elements of V to complex values such that F (αx+ βy) = αF (x) + βF (y) for x, y ∈ V
and α, β ∈ C. The linear functionals on V are just the simplest class of linear transformations on
V , those of rank 0 or 1 whose range is just C. Let the set of linear functionals on V be denoted
by V ⊤; V ⊤ is also a vector space called the dual space of V , although, unlike the situation in
finite-dimensional spaces, V and V ⊤ are not necessarily isomorphic. Various linear functionals are
often defined with respect to an inner-product operation (·, ·) defined on V , thus we may have
F (x) = (x, f) where f ∈ V is a fixed element of V corresponding to the linear functional F ; it can
even be the case that (x, f) is defined when f 6∈ V .

We are specifically interested in the situation where V is the space of functions L2(R); in this case
a linear functional is a function that maps functions in L2(R) to complex numbers. (The word
‘functional’ is used in an attempt to disambiguate what kind of function we are discussing.)

It is convenient to define the pseudo-inner-product 〈f, g〉 := (f, g∗)L2(R). Note 〈f, g〉 = 〈g, f〉. The
integral 〈f, g〉 is the continuous analog of the finite-dimensional Euclidean inner-product which we
know represents the application of a linear functional defined by a covector to a vector in Rn. (Also,
note that 〈f, g〉 = (f, g) when f and g are real-valued functions.) Thus in the same way, we may take
〈f, g〉 as representing the application of a linear functional, F , defined by F (g) =

∫∞
−∞ f(t)g(t)dt to

obtain a complex number, or symmetrically, as representing the application of a linear functional,
G, defined by G(f) =

∫∞
−∞ f(t)g(t)dt. Note here, the linear functional F is associated with a

corresponding function f , (and the linear functional G is associated with a corresponding function
g).

Exercise 5.1: Show that 〈x, yR〉 = 〈x∧, y∧〉.

Solution 5.1: We have (x, y∧∗) = (x∧, y∗), so (x, y∧∧∗) = (x∧, y∧∗), and y∧∧∗ = yR∗, so
〈x, yR〉 = 〈x∧, y∧〉, or equivalently, 〈yR, x〉 = 〈y∧, x∧〉.

For the function space L2(R), we can define continuous linear functionals as follows. Let F be a
linear functional on L2(R). If, for every sequence of functions x1, x2, . . . ∈ L2(R) that converges to
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a function x ∈ L2(R) in the sense that ‖xn − x‖L2(R) → 0 as n→∞, the corresponding sequence
of complex numbers F (x1), F (x2), . . . converges to the value F (x), then the linear functional F ∈
L2(R)⊤ is continuous. We can also define bounded linear functionals: the linear functional F ∈
L2(R)⊤ is bounded exactly when there exists a real constant b such that |F (x)| ≤ b‖x‖L2(R) for
all x ∈ L2(R); in other words, F (x) does not produce a result greater than O(‖x‖L2(R)). Any
continuous linear functional is bounded and vice versa.

An important class of linear functionals in L2(R)⊤ are those linear functionals, F , that correspond
to functions, f , in L2(R) itself. We write [f ]L = F to show this correspondence. For each
function f ∈ L2(R), the corresponding linear functional, [f ]L, is computed on x ∈ L2(R) as
[f ]L(x) = 〈x, f〉 = 〈f, x〉 =

∫∞
−∞ x(t)f(t)dt, which is guaranteed to exist because the product |f ||x|

approaches 0 sufficiently quickly.

The dual space L2(R)⊤ also contains linear functionals corresponding to other admissible functions,
f , defined on R, such as f(t) = t, or f(t) = cos(t), which are not found in L2(R). These
functions have the property that the integral 〈x, f〉 exists for x ∈ L2(R). (Such admissible functions
grow no faster than polynomials, as you might suppose from the definition of the Schwartz space,
C∞↓ (R).) We shall denote the class of non-L2(R) admissible functions as NL2(R), and for f ∈
NL2(R), we shall write [f ]NL to denote the corresponding linear functional. The linear functionals
based on either L2(R)-functions or on proper admissible NL2(R)-functions are called regular linear
functionals. For f ∈ L2(R) ∪ NL2(R), we shall just write [f ] to denote the corresponding linear
functional when we are indifferent as to whether f ∈ L2(R) or f ∈ NL2(R). Finally, it is convenient
to define RL2(R) := L2(R) ∪ NL2(R). [Are all the admissible functions in NL2(R), ordinary
pointwise limits of C∞↓ (R)-functions (or even stronger, limits of functions with compact support,
where general C∞↓ (R)-functions are obtained by letting the support sets of the sequence functions
grow larger and larger?]

There are linear functionals in L2(R)⊤ which are not regular. The most famous such linear func-
tional is the Dirac-δ functional. The non-regular linear functionals in L2(R)⊤ are limits of certain
sequences of regular linear functionals in L2(R)⊤ (they may also be the limits of many other ar-
bitrary sequences in L2(R)⊤.) Recall that in order for a sequence of functions x1, x2, . . . ∈ L2(R)
to converge (in norm) to a function x ∈ L2(R), we must have ‖xn − x‖L2(R) → 0 as n → ∞.

In contrast, to have a sequence of regular linear functionals [x1], [x2], . . . ∈ L2(R)⊤ converge to a
linear functional X ∈ L2(R)⊤, we require that |[xn](y)−X(y)| → 0 as n→∞ for all test functions
y ∈ C∞↓ (R). In this case, we say that [x1], [x2], . . . functionally-converges to X ∈ L2(R)⊤. By ex-

tension, we shall define the linear functional X ∈ L2(R)⊤ to be the functional limit of the sequence
of (not-necessarily regular) linear functionals X1, X2, . . . in L2(R)⊤ when |Xn(y) − X(y)| → 0 as
n→∞ for all y ∈ C∞↓ (R).

A non-regular linear functional, G, applied to a function x ∈ L2(R) is computed as G(x) = 〈G, x〉 =
∫∞
−∞G(t)x(t)dt =

∫∞
−∞[limn←∞ gn(t)]x(t)dt where G(t) = limn←∞ gn(t) with gn ∈ RL2(R). Note

G denote a linear functional and G denotes the limit of a sequence of functions of a real argument.
We have to reach for a name for the limit “function” limn→∞ gn(t) since this limit function is not
a proper function defined on R. This issue is akin to a sequence of rational numbers converginging
to an irrational number outside the field of rational numbers where the sequence members reside.

We may abuse notation by writing G(x) to denote the value of the linear functional G on the
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function x and writing G(t) to denote the value of the associated limit G on the real value t; thus
the type of the asrgument of G determines whether we mean G(x) or G(t). (We generally mean
G(t) within integrals.)

Recall that L2(R) is the completion of C∞↓ (R) with respect to the metric based on the norm

‖ · ‖L2(R). The dual space L2(R)⊤ contains the regular linear functionals corresponding to the
elements of C∞↓ (R), plus the regular linear functionals corresponding to functions f ∈ L2(R) −
C∞↓ (R), plus the additional regular linear functionals corresponding to functions f ∈ NL2(R)
such that the integral 〈x, f〉 exists for all x ∈ L2(R), together with all the functional limits of
functionally-convergent sequences of regular linear functionals. These limits include many non-
regular linear functionals.

Note the correspondence between functions, f , and regular linear functionals, [f ], such that [f ](x) =
〈f, x〉 =

∫∞
−∞ f(t)x(t)dt, is a many-to-one relationship. In general there are uncountably many

functions, fj , that are equivalent to f in the sense that 〈fj , x〉 = 〈f, x〉 for all test functions x;
in this case, fj = f a.e. Thus, if f = g a.e. for f, g ∈ L2(R), then we have [f ] = [g], i.e., the
corresponding regular linear functionals are equal. In general, however, we want a definition of
equality for arbitrary linear functionals. For F,G ∈ L2(R)⊤, we say that F = G exactly when
F (x) = G(x) for all x ∈ L2(R).

The reason that regular linear functionals are infinitely differentiable, and in most other ways more
“pliable” than RL2(R)-functions, is that, of all the functions, fj , that satisfy [fj ] = [f ], we may
pick the smoothest such function to represent the linear functional [f ]; we thus need not deal with
the many wilder equivalent functions.

We will redefine the integral Fourier transform and its inverse to apply to linear functionals in
L2(R)⊤, i.e., ∧ : L2(R)⊤ → L2(R)⊤. However, for x ∈ L2(R), the “new” Fourier transform [x]∧L
of the regular linear functional [x]L is just the regular linear functional [x∧]L where x∧ is the “old”
Fourier transform of the function x. What is different is the wealth of new regular linear functionals
corresponding to functions in NL2(R) and the new non-regular linear functionals that may now be
assigned Fourier transforms. Many of these non-regular linear functionals have Fourier transforms
involving the Dirac-δ functional.

5.1 The Dirac-δ Functional

The Dirac-δ functional, δ, is defined by δ(x) = x(0) for x ∈ L2(R).

Note the Dirac-δ functional is continuous on C∞↓ (R), but it is not continuous on L2(R). This is

because the notion of convergence used to construct L2(R) from C∞↓ (R) is based on integration:
‖xn − x‖L2(R) → 0 as n → ∞, and this permits functions that are discontinuous at 0 to be limit
points in L2(R) such that x(0) is not the limit of x1(0), x2(0), . . ., even though we may still claim
that the sequence x1, x2, . . . converges in the L2(R)-norm to x.

The Dirac-δ functional, δ, is often written as δ(t) with a parameter t appearing as a “phantom”
argument so that δ(t)(x) = x(0). This notation is useful within formal integral expressions such as
∫∞
−∞ δ(t)x(t)dt :=: 〈x, δ〉 := x(0). In this context, the translated δ functional, δ(t− a) arises, where
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δ(t− a)(x) = δ(t)(y) = x(a) where y(t) is the translate x(t+ a) (in an integral expression we have
∫∞
−∞ δ(t− a)x(t)dt =

∫∞
−∞ δ(t)x(t+ a)dt = x(a).) We prefer to write δa in place of δ(t− a) so that

the functional δ may be written δ0, but the function-argument notation is too useful in integral
expressions to be abandoned.

Exercise 5.2: Let Ta denote the operation of translation by a constant, a, so that Ta(x) = y,
where y(t) = x(t + a). Show that Ta is a linear tranformation on L2(R), and show that δa is
the composition δ0Ta.

We can construct the Dirac-δ functional as follows. Suppose f is continuous at 0. Choose ǫ1, ǫ2, . . .
to be a decreasing sequence of positive values with ǫn ↓ 0 as n→∞. Then, for each ǫn there exists
a positive value an such that |f(t)− f(0)| ≤ ǫn when |t| < an. The values a1, a2, . . . can always be
taken to be a sequence of positive values an with an ↓ 0 as n→∞.

Now let pn(t) = K(an)e
−t2/(a2n−t

2) where K(an) =
[

∫ an
−an

e−t
2/(a2n−t

2)dt
]−1

where an > 0. Note

pn(t) ≥ 0,
∫ an
−an

pn(t)dt = 1, and p∗n = pn.

Now, since
∫ an
−an

pn(t)dt = 1,

| [pn](f)− f(0) | =

∣

∣

∣

∣

∫ an

−an

f(t)pn(t)dt− f(0)

∫ an

−an

pn(t)dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ an

−an

(f(t)− f(0))pn(t)dt

∣

∣

∣

∣

≤
∫ an

−an

|f(t)− f(0)|pn(t)dt

≤
∫ an

−an

ǫnpn(t)dt

= ǫn.

And ǫn ↓ 0 as n → ∞. Thus, [pn] → δ0 as n → ∞ where [pn] is the regular linear functional
associated with pn, i.e., [pn](f)→ δ0(f) = f(0) as n→∞.

Exercise 5.3: Describe the graph of the function pn on the interval (−an, an).

Exercise 5.4: Does the fact that pn(t) ≥ 0 have any import?

Let m1,m2, . . . be a sequence of positive real values with mn ↑ ∞ as n→∞ (for example: mn = n.)
Then in place of the sequence p1, p2, . . ., we can use any sequence q1, q2, . . ., with qn(t) = mnq(mnt)
where q(t) is an infinitely-smooth C∞↓ (R)-function with support on [−1, 1] such that

∫∞
−∞ q(t)dt = 1.

For any such sequence, we have [qn] → δ0 as n → ∞. The transformation q → mnq(mnt) reduces
the support set from [−1, 1] to [−1/mn, 1/mn] while increasing the “height” so as to maintain
∫∞
−∞ qn(t)dt = 1.

Note that pn → 0 a.e. as n → ∞, but ‖pn‖L2(R) = 1 for all n. In other words, δ0 is not a

regular functional obtained from a member of L2(R) since L2(R) contains only those functions,
f , that satisfy ‖f − fn‖L2(R) → 0 as |n| → ∞ for some sequence of functions f1, f2, . . . found in
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C∞↓ (R). However, we have just seen that 〈pn, f〉 → δ0(f) = f(0) as n → ∞ for all f ∈ C∞↓ (R),
or equivalently, [pn] → δ0 as n → ∞. It is this notion of limit that we use to define the limit of a
sequence of linear functionals.

Exercise 5.5: Show that p1, p2, . . . is not a Cauchy sequence in L2(R) with respect to the
metric based on the norm ‖ · ‖L2(R).

Exercise 5.6: Show that δ(at) =
1

|a|δ(t) for a ∈ R with a 6= 0. (This is an example where

use of a phantom argument with the δ functional simplifies matters.)

Solution 5.6: Recall that the δ functional applied to a test function, f , in C∞↓ (R) can be

defined by limn→∞

∫∞
−∞ pn(t)f(t) dt. Note pn is an even function, so pn(at) = pn(−at) = pn(|a|t).

Moreover, for a 6= 0,
∫∞
−∞ |a|pn(|a|t) dt = 1, so the sequence |a|p1(|a|t), |a|p2(|a|t), . . . is another

suitable sequence for defining the δ functional, i.e., [|a|pn(|a|t)]→ δ(t) as n→∞.

Thus,

δ(at)(f) = lim
n→∞

∫ ∞

−∞
pn(at)f(t) dt

= lim
n→∞

∫ ∞

−∞
pn(|a|t)f(t) dt

= lim
n→∞

∫ ∞

−∞
pn(|a|t)f(t) dt

= lim
n→∞

∫ ∞

−∞

1

|a| |a|pn(|a|t)f(t) dt

=
1

|a| limn→∞

∫ ∞

−∞
|a|pn(|a|t)f(t) dt

=
1

|a|δ(t)(f),

and hence δ(at) =
1

|a|δ(t).

Exercise 5.7: Show that δ(a(t− r)) =
1

|a|δ(t− r) for a ∈ R with a 6= 0.

The above construction computes δ0(f) as the limit of a sequence of integrals: 〈f, pn〉 =
∫∞
−∞ f(t)pn(t)dt → f(0) as n → ∞. We generally abuse notation and indicate this by writing

f(0) =
∫∞
−∞ f(t)δ(t)dt. Also, since pn(t)

∗ = pn(t), we have δ(t)∗ = δ(t), so, continuing to abuse

notation, f(0) =
∫∞
−∞ f(t)δ(t)∗dt :=: (f, δ0)L2(R) =: δ0(f) = 〈δ0, f〉.

If g ∈ RL2(R), then the product gδr is a linear functional on L2(R). Specifically (gδr)(f) =
〈g(t)δ(t − r), f(t)〉 = 〈δr, gf〉 = g(r)f(r), and 〈g(r)δr, f〉 = g(r)f(r), so we may write g(t)δr =
g(r)δr.

In general, we define [h](f) := 〈h, f〉 =
∫∞
−∞ f(t)h(t)dt when [h] is a regular linear functional based

on a function h ∈ RL2(R), and we define G(f) specifically, not necessarily involving an integral
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expression, when G is not a regular linear functional, although we still use the integral notation
〈G, f〉 to indicate the result of applying G to f . (In this situation, 〈G, f〉 is to be taken as shorthand
for limn→∞〈gn, f〉 where g1, g2, . . . are RL2(R)-functions such that the sequence of regular linear
functionals [g1], [g2], . . . functionally-converges to G.)

We may interpret the integral
∫∞
−∞ f(t)h(t)dt as the Stieljes integral

∫∞
−∞ f(t)dmh where mh is

a measure whose (Radon-Nikodym) derivative is the function h. Moreover, rather than com-
pute the limit limn→∞

∫∞
−∞ f(t)pn(t)dt to get the value f(0) corresponding to the symbolic result

∫∞
−∞ f(t)δ(t)dt, we can compute limn→∞

∫∞
−∞ f(t)dmpn =

∫∞
−∞ f(t)dmδ where mδ is the discrete

measure induced by the Dirac-δ functional: mδ(s) =

{

1, if 0 ∈ s,
0, otherwise.

(Note this is equivalent to

mpn → mδ as n → ∞, which is a perfectly acceptable statement about the limit of a sequence of
measures.) It is a slightly lesser abuse of notation if we take

∫∞
−∞ f(t)δ(t)dt to mean

∫∞
−∞ f(t)dmδ,

even though the Radon-Nikodym derivative of mδ does not exist (since δ is not a proper function.)

Note that a regular linear functional can be converted to a proper function, and that function can
be used in applications or derivations of results. Non-regular linear functionals, however, can really
only be applied to functions in L2(R) to obtain complex numbers. By abusing notation as discussed
above, non-regular linear functionals can be used and manipulated in certain integral expresions.

Exercise 5.8: Show that the δ functional is not bounded with respect to the norm ‖ · ‖L2(R)

(i.e., there does not exist a constant b such that |δ0(f)| ≤ b‖f‖L2(R) for all f ∈ L2(R). (Thus
the Riesz representation theorem does not apply to the δ functional.) Hint: Consider a sequence
of functions p1, p2, . . . in L2(R) for which pn(0)→∞ as n→∞.

5.2 Functional Derivatives

Now we may construct the functional derivative of the δ functional. To do this we just take
δ′ = limn→∞[p′n]. Thus,

[p′n](f) =

∫ an

−an

f(t)p′n(t)dt

= f(t)pn(t)|t=an
t=−an −

∫ an

−an

f ′(t)pn(t)dt

= f(an)pn(an)− f(−an)pn(−an)−
∫ an

−an

f ′(t)pn(t)dt,

and pn(an) = pn(−an) = 0, so [p′n](f) = −
∫ an
−an

f ′(t)pn(t)dt→ −δ0(f ′) as n→∞.

Thus, δ′0(f) = −δ0(f ′) = −f ′(0), and in general, δ
(k)
0 (f) = (−1)kδ0(f (k)) = (−1)kf (k)(0) when

f is k-fold continuously-differentiable at 0. (Beware: if X is a function, then X ′ is the ordinary
derivative of X, but if X is a linear functional, then X ′ is the functional derivative of X.)

Exercise 5.9: Show that δ
(k)
r (f) = (−1)kf (k)(r) for r ∈ R where f is k-fold continuously-

differentiable at r.
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Exercise 5.10: By definition, δr(u) = 1 for u(t) = 1 (note u ∈ NL2(R).)
Show that

∫∞
−∞ δ(t− r)dt := limn→∞

∫∞
−∞ pn(t− r) · 1 dt = 1. This is consistent with 〈δr, u〉 = 1.

The above development of δ0 and δ
(k)
0 is based on using a suitable sequence of regular L2(R)⊤-

functionals [p1], [p2], . . .. There are many other sequences of functionals in L2(R)⊤ that converge to
δ0, but not all of these are composed solely of regular functionals, and hence may not be ameniable
to forming a sequence of integrals that converge to the value δ0(f).

Exercise 5.11: Show that [H] is a regular linear functional where H(t) is the Heaviside step-

function: H(t) =







0, if t < 0,
1
2 , if t = 0,
1, if t > 0.

Give a sequence of regular linear functionals [h1], [h2], . . . based

on continuous functions h1, h2, . . . that converge to [H]. Note H(t) = 1−B0(t). Can h1, h2, . . .
be chosen to be C∞↓ (R)-functions? Hint: enforce hn(0) =

1
2 for n > 0.

Exercise 5.12: Show that the functional dba, defined for b > a by dba(f) = (f(b)−f(a))/(b−a)
is a non-regular linear functional. Note that the non-regular linear functional da defined by
da(f) = f ′(a) satisfies da = limb↓a dba. Hint: dba = (δb − δa)/(b− a).

Exercise 5.13: Consider a sequence of C∞↓ (R)-functions q1, q2, . . ., where qn has support

(−an, an) with an > 0, such that [qn] → Q ∈ L2(R)⊤. Show that the functional derivative, Q′

defined by limn→∞[q′n] satisfies Q
′(f) = −Q(f ′) for all f ∈ C∞↓ (R), and hence we have

Q(k)(f) = (−1)kQ(f (k)) for Q ∈ L2(R)⊤. (We use this relation as the definition of the

functional derivative Q(k) of Q ∈ L2(R)⊤. In prefix operator terms, we have Q(k) = (−1)kQDk
a ,

where a denotes the argument of whatever function Da is applied to.)

Now let us consider the functional derivative of [H]. We have

[H]′(f) = (−1)[H](f ′)

= −
∫ ∞

−∞
H(t)f ′(t)dt

= −
∫ ∞

0
f ′(t)dt

= −f(t)|t=∞t=0

= −(f(∞)− f(0))

= f(0),

Thus, [H(t)]′ = δ(t).

Similarly, [H(t− a)]′ = δ(t− a) and [H(−(t− a))]′ = δ(t− a) as well.

Exercise 5.14: Use integration by parts:
∫ b
a pq′ = p(b)q(b) − p(a)q(a) −

∫ b
a p′q to show that

[H]′ = δ0.

Exercise 5.15: Define sign(t) = 2H(t)− 1. Show that sign ′(t) = 2H ′(t) = 2δ(t).

Exercise 5.16: Show that
∫ t
−∞ δ(r)dr = H(t). Hint: use the sequence p1, p2, . . ..
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We can generalize the computation of [H]′ to see that any piecewise-continuous function, x, with a
piecewise-continuous derivative can have its functional derivative expressed in terms of δ functionals.

Let . . . , t−2, t−1, t0, t1, t2, . . . be the separated points at which x is discontinuous, or at which x′ is
not defined. (In the first case, we have a jump discontinuity (or a punctured jump discontinuity)
of x, and in the second case, we have a cusp of x whereat x′ has a punctured jump discontinuity.)
Now define jx(tk) = limǫ↓0 x(tk + ǫ) − x(tk − ǫ) (this is often written x(tk+) − x(tk−).) Then we
can write:

x(t) = xc(t)−
∞
∑

k=−∞

|jx(tk)| ·H(sign(jx(tk))(t− tk)),

where xc is a continuous function in RL2(R).

In essence, when, as t increases, x jumps upward by the amount m at tk, we reknit x together
by subtracting the translated step-function |m|H(t − tk), and when x jumps downward by the
amount m at tk, then we reknit x together by subtracting the translated and reflected step-function
|m|H(−(t− tk)).

This “reknitted” form of x forms the function xc. The function xc will generally have a punctured
discontinuity at tk (because H(0) = 1/2,) but these singular points can be fixed by redefining
the knitted function xc(t) at t = tk as limt↓tk xc(t). This makes xc a continuous function, and,
although xc may not be differentiable at the knit-points, the corresponding linear functional [xc]
has a functional derivative [xc]

′, since this functional derivative is defined in terms of integration
with respect to test functions in C∞↓ (R) and problems on a set of measure 0 are of no matter.

Thus, we have:

[x]′ = [xc]
′ −

∞
∑

k=−∞

jx(tk) · δ(t− tk).

This is because [|m| ·H(sign(m)(t− tk))]
′ = |m| · δ(sign(m)(t− tk)) · sign(m) = |m| 1

| sign(m)| ·
δ(t− tk) · sign(m) = mδ(t− tk).

Thus, a δ functional appears in the functional derivative of a regular linear functional at each jump
discontinuity, scaled by the size of the jump.

5.3 Convolution of Linear Functionals

We can extend the convolution operation to apply to linear functionals as follows. First we define
the convolution of a linear functional G with a regular linear functional [x] for x ∈ RL2(R) as
(G⊛[x])(r) := 〈G, x(r−t)〉 =

∫∞
−∞G(t)x(r−t)dt. Note (G⊛[x])(r) is a linear functional determined

by the convolution parameter r.

Also note the translated linear functional G(t− s) is defined in terms of the linear functional G as:
〈G(t− s), x〉 =

∫∞
−∞G(t− s)x(t)dt =

∫∞
−∞G(t)x(t+ s)dt = 〈G, x(t+ s)〉. Thus (G⊛ [x])(r− s) has

a meaning, and it makes sense to assert 〈G, x(r − t)〉 = 〈G(r − t), x〉.
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Now we may define F ⊛ G for F,G ∈ L2(R)⊤ as F ⊛ G = E ∈ L2(R)⊤ where E(x) = (F ⊛ (G ⊛

xR))(0) for x ∈ RL2(R). (Note the similarity to the δ functional definition. This suggests there
is an entire hierarchy of linear functionals, where the linear functionals at level j are applicable to
the linear functionals at level j − 1. Indeed, the Fourier transforms ∧ and ∨ can be seen as linear
functionals defined on linear functionals of L2(R).)

Thus,

〈F ⊛G, x〉 = (F ⊛ (G⊛ xR))(0)

=

[

∫ ∞

−∞
F (u)

[∫ ∞

−∞
G(v)xR(s− v)dv

]

s=t−u

du

]

t=0

=

[∫ ∞

−∞

∫ ∞

−∞
F (u)G(v)x(v − (t− u))dvdu

]

t=0

=

[∫ ∞

−∞

∫ ∞

−∞
F (u)G(v)x(v + u)dvdu

]

.

Note for the functional convolution F ⊛ G to be commutative, it is sufficient that at least one
of the linear functionals F , G have bounded support. Similarly, for the functional convolution
(E ⊛ F ) ⊛G to be associative, (i.e (E ⊛ F ) ⊛G = E ⊛ (F ⊛G)), it is sufficient that at least two
of the linear functionals E, F , G have bounded support. (The support set of a linear functional
F ∈ L2(R)⊤ is the set R − ∪W∈VF

W , where VF is the set of all open subsets, W , of R such
that F (g) = 0 for all those functions g ∈ L2(Q) whose support is within W , i.e., F (g) = 0
for g ∈ {f ∈ L2(R) | support(f) ⊆ W} [Rud98]. Basically, the support set of F is the set of
points in R where F “pays attention”, that is, the complement of the set of points in R where F
“pays no attention” and returns 0 for any argument function that can deviate from 0 only outside
support(F ).)

Exercise 5.17: Show that support(δ0) = {0}.

Exercise 5.18: Show that δ0 ⊛ x = [x] for x ∈ RL2(R), where (δ0 ⊛ x)(r) = 〈δ0(t), x(r − t)〉.
Also show that (δa ⊛ x)(r) = [x(r − a)].

Exercise 5.19: Show that δa ⊛ δb = δa+b.

Solution 5.19:

(δa ⊛ δb)(f) = 〈δa ⊛ δb, f〉
= (δ(t− a)⊛ δ(t− b))(f)

= 〈
∫ ∞

−∞
δ(t− a)δ(s− t− b))dt, f(s)〉

=

∫ ∞

−∞

∫ ∞

−∞
δ(t− a)δ(s− t− b))f(s) dt ds

=

∫ ∞

−∞
δ(t− a)

∫ ∞

−∞
δ(s− t− b))f(s) ds dt

=

∫ ∞

−∞
δ(t− a)f(t+ b)dt
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= f(a+ b)

= 〈δa+b, f〉.

Therefore δa ⊛ δb = δa+b.

In general, (g ⊛H)(r) =
∫ r
−∞ g(t)dt where H is the Heaviside step-function. Thus convolution by

H is integration for g ∈ C∞↓ (R)(!) Also, F = δ ⊛ F (i.e., δ is a unit in the convolution algebra

L2(R)⊤.) Thus, F (k) = (δ ⊛ F )(k) = δ(k) ⊛ F for k ≥ 0. Also, [H]′ = δ = δ′ ⊛ H, so u ⊛ δ′ = 0
where u(t) = 1.

5.4 The Integral Fourier Transform for Linear Functionals

Let f1, f2, . . . be a sequence of C∞↓ (R)-functions such that the regular linear functionals [f1], [f2], . . .

functionally converge to the linear functional F ∈ L2(R)⊤. Now we may take the integral Fourier
transform of the linear functional, F , to be that linear functional that is the limit of the functionally-
convergent sequence of regular linear functionals [f∧1 ], [f

∧
2 ], . . . i.e., F

∧ = limn→∞[f∧n ] where F =

limn→∞[fn]. We have limn→∞[f∧n ] := limn→∞

[

∫∞
−∞ fn(t)e

−2πistdt
]

.

Let F be a linear functional in L2(R)⊤ where F is the functional limit of the regular functionals
[f1], [f2], . . .. Then the linear functional F∧ satisfies

F∧(g) =

∫

R
F∧g =

∫ ∞

−∞
lim
n→∞

∫ ∞

−∞
fn(t)e

−2πistdt g(s) ds

= lim
n→∞

∫ ∞

−∞
fn(t)

∫ ∞

−∞
g(s)e−2πistds dt

= lim
n→∞

∫ ∞

−∞
fn(t)g

∧(t)dt

= F (g∧).

Thus we may define the Fourier transform of a linear functional F ∈ L2(R)⊤ to be the linear

functional F∧ ∈ L2(R)⊤ such that F∧(g) = F (g∧) for all functions g ∈ C∞↓ (R). This definition
is consistent with the definition [f ]∧ := [f∧] for f ∈ L2(R) and extends the Fourier transform to
non-regular linear functionals.

The identity 〈f∧, g〉 = 〈f, g∧〉 for all f, g ∈ L2(R) is equivalent to the identity F∧(g) = F (g∧) in
the case where F = [f ]L is a regular linear functional based on the function f ∈ L2(R), and we
extend our notation to allow 〈F∧, g〉 to represent F∧(g) and 〈F, g∧〉 to represent F (g∧) in all cases.

Now, using the defining relation F∧(g) = F (g∧) for all g ∈ C∞↓ (R), we may re-establish all
the basic identities, although we have to work a bit harder to do so. For example, the identity
(F∧)′(s) = [−2πit ·F (t)]∧(s) holds, but now it must be proven as follows. (Remember that we may
abuse notation to assign the linear functional F a parameter t, and write F (t) instead of F , allowing
us to manipulate expressions involving the application of F in a more “suggestive” manner.)
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In order to show that (F∧)′(s) = [−2πit · F (t)]∧(s) holds, we need to show that 〈(F∧)′(s), g(s)〉 =
〈[−2πit ·F (t)]∧(s), g(s)〉 for every g ∈ C∞↓ (R). But, we have 〈(F∧)′, g〉 = 〈F∧,−g′〉 = 〈F,−(g′)∧〉 =
〈F∧,−

∫∞
−∞ g′(t)e−2πistdt〉, and, integrating by parts, we have

〈(F∧)′, g〉 = 〈F,−
((

g(t)e−2πist
∣

∣

∣

t=∞

t=−∞

)

−
∫ ∞

−∞
g(t)D1

t [e
−2πist]dt

)

〉

= 〈F,
∫ ∞

−∞
g(t)(−2πis)e−2πistdt〉

= 〈F, (−2πis)
∫ ∞

−∞
g(t)e−2πistdt〉

= 〈F,−2πis · g∧(s)〉
= 〈−2πis · F (s), g∧(s)〉
= 〈(−2πis · F (s))∧, g(s)〉
= 〈(−2πit · F (t))∧, g(t)〉.

(Dk
t denotes k-fold differentiation with respect to t.)

Thus, (F∧)′ = [−2πit · F (t)]∧.

Note, we have 〈F,−(g′)∧〉 = 〈F (s),−2πis · g∧(s)〉. (Does this imply the previously-introduced
identity (g′)∧(s) = 2πis · g∧(s)?)

The following identity provides the Fourier transform of the k-th derivative of the δ functional:

(δ
(k)
r )∧(s) = (2πis)ke−2πisr .

Let g ∈ L2(R). Then
〈(δ(k)r )∧, g〉 = 〈δ(k)r , g∧〉

= (δ(k)r )(g∧)

= (−1)k(g∧)(k)(r)

= (−1)k
[

Dk
s

(∫ ∞

−∞
g(t)e−2πistdt

)]

s=r

= (−1)k
[∫ ∞

−∞
g(t)(−2πit)ke−2πistdt

]

s=r

=

∫ ∞

−∞
(2πit)ke−2πirtg(t)dt

= 〈(2πit)ke−2πirt, g(t)〉
= 〈(2πis)ke−2πirs, g(s)〉.

Thus (δ
(k)
r )∧(s) = (2πis)ke−2πisr.

Note for k = 0 and r = 0, we have δ∧0 (s) = δ∧ = 1. This is consistent with the direct heuristic
formula δ∧r (s) =

∫∞
−∞ δr(t)e

−2πistdt = 〈δr(t), e−2πist〉 = (δr(t))(e
−2πist) = e−2πisr. Also, 1∧ = δ∧∧ =

δR = δ.
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Exercise 5.20: Show that, for F ∈ L2(R)⊤, we have (F ′)∧(s) = 2πis · F∧(s).

Exercise 5.21: Let yr(s) = e−2πirs. Show that y∨r (t) = δr(t). In particular, y∨0 (t) = δ0.

Solution 5.21: Let u(t) = 1 and recall that u∧(s) = δ(s). Then

y∨r (t) =

∫ ∞

−∞
e−2πirse−2πistds

=

∫ ∞

−∞
1 · e−2πis(r−t)ds

= u∧(r − t)

= δ(r − t)

= δ(t− r)

= δr(t).

Exercise 5.22: Show that [−2πit]∧ = δ0
′ = −δ0D1

t .

Also,

(F (t− r))∧(s) = e−2πisrF∧(s) and

(e−2πitrF (t))∧(s) = F∧(s+ r) and

F (at))∧(s) = 1
|a|F

∧( sa) for F ∈ L2(R)⊤.

Exercise 5.23: Let x(t) = e2πirt. Show that x∧(s) = δ(s− r).

Exercise 5.24: Show that δ∧(g(s)) = 1 for g ∈ L2(R), and then show that (δ(at))∧(s) =
1

|a|δ(s). Hint: use δ(at) =
1

|a|δ(t).

5.5 Periodic Linear Functionals

Regular linear functionals based on admissible periodic functions in NL2(R) are members of
L2(R)⊤, and hence the Fourier transform on linear functionals subsumes the Fourier transform
for periodic functions.

Exercise 5.25: Let xf (t) = cos(−2πift) and let u(t) = 1. Show that [xf ]
∧(s) = 1

2(δf + δ−f ).

Solution 5.25:

[xf ]
∧(s) =

∫ ∞

−∞
cos(−2πift)e−2πistdt

=

∫ ∞

−∞

1

2

[

e2πift + e−2πift
]

e−2πistdt

=
1

2

∫ ∞

−∞

[

e−2πi(s−f)t + e−2πi(s+f)t
]

dt
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=
1

2

[∫ ∞

−∞
u(t)e−2πi(s−f)tdt+

∫ ∞

−∞
u(t)e−2πi(s+f)tdt

]

=
1

2
(u∧(s− f) + u∧(s+ f))

=
1

2
(δ(s− f) + δ(s+ f))

=
1

2
(δf + δ−f ).

Note that x0(t) = u(t) and thus, again we repeat [u]∧(s) = δ0.

Let [xn(t)] be the regular linear functional corresponding to the function xn(t) =
∑

−n≤h≤n

Che
2πi(h/p)t

where Ch ∈ C. Then [xn(t)]
∧(s) =

∑

−n≤h≤n

Ch

[

e2πi(h/p)t
]∧

(s) =
∑

−n≤h≤n

Chδ(s− h/p).

Also when, for some fixed real value α and for some fixed integer k, we have |Ch| ≤ α|h|k for all
h ∈ Z, then the sequence of regular linear functionals [x0], [x1], . . . functionally-converges to a linear
functional X. If the integer k ≤ −1, then X is the regular linear functional [x] where the function

x(t) is the period-p function given by the Fourier series
∑

−∞<h<∞

Che
2πi(h/p)t.

If the integer k ≥ 0, then X is the non-regular linear functional

(

∑

−∞<h<∞

Chδ(s− h/p)

)∨

(t)

corresponding to the divergent series
∑

−∞<h<∞

Che
2πi(h/p)t (!) In either case, X is called a periodic

period-p linear functional, since X(t)(f) = X(t+jp)(f) for j ∈ Z. The linear functional X∧(s) has
a “complex area”-Ch “spike” at s = h/p whenever Ch 6= 0; and hence X∧ is descriptively called a
Dirac comb linear functional.

Note that, although the sequence x1(t), x2(t), . . ., where xn(t) =
∑

−n≤h≤nChe
2πi(h/p)t, correspond-

ing to the linear functional X, may be divergent in the L2(R)-norm, it is convergent to the linear
functional X in the sense that |[xn](f)−X(f)| → 0 as n→∞ for f ∈ C∞↓ (R). This is because the
integral [xn](f) is “tempered” by the rapid decay of the test functions in C∞↓ (R). Thus, although
∑

−∞<h<∞

Che
2πi(h/p)t may not exist as a function of t, the linear functional that we might digres-

sively denote by

[

∑

−∞<h<∞

Che
2πi(h/p)t

]

is well-defined when |Ch| = O(|h|k) for some fixed integer

k.

Whether X is regular or not, we can recover the coefficients Ch via the following formula.

Ch =
1

p
lim
n→∞

∫ ∞

−∞
U(t/p)xn(t)e

−2πi(h/p)tdt,

or more succinctly,

Ch =
1

p

∫ ∞

−∞
U(t/p)X(t)e−2πi(h/p)tdt,
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where U(t) is a so-called unitary function; a unitary function U is an infinitely-smooth even bi-
constant function in C∞↓ (R) with U(t) = 0 for |t| ≥ 1 and U(t) + U(t− 1) = 1 for t ∈ [0, 1].

Recall that such a function satisfies U∧(s) = 0 for s ∈ Z − {0}, and U∧(0) = 1.

Then

1

p
lim
n→∞

∫ ∞

−∞
U(t/p)xn(t)e

−2πi(h/p)tdt =
1

p
lim
n→∞

∫ ∞

−∞
U(t/p)

∑

−n≤k≤n

Cke
2πi(k/p)te−2πi(h/p)tdt

= lim
n→∞

∫ ∞

−∞
U(t/p)

∑

−n≤k≤n

Cke
−2πi((h−k)/p)t 1

p
dt

= lim
n→∞

∑

−n≤k≤n

Ck

∫ ∞

−∞
U(t/p)e−2πi((h−k)/p)t

1

p
dt

= lim
n→∞

∑

−n≤k≤n

Ck

∫ ∞

−∞
U(r)e−2πi(h−k)rdr

= lim
n→∞

∑

−n≤k≤n

CkU
∧(h− k)

= lim
n→∞

ChU
∧(0)

= Ch.

The following example leads to instances of the Dirac comb linear functional on “both sides” of the
∧ operator.

Let xn(t) =
1

p

∑

−n≤h≤n

1 · e2πi(h/p)t and consider the linear functional Xp = limn→∞[xn].

Note xn(t) =
1

p
+

2

p

∑

1≤h≤n

cos(2π(h/p)t).

Also, x∧n(s) =
1

p
δ(s) +

2

p

∑

1≤h≤n

1

2
(δ(s− h/p) + δ(s+ h/p)) =

1

p

∑

−n≤h≤n

δ(s− h/p).

Thus, X∧p (s) =
1

p

∑

−∞<h<∞

δ(s− h/p).

We can “sum” the divergent series Xp(t) =
1

p

∑

−∞<h<∞

1 · e2πi(h/p)t by using a device presented in

[Zem87].

Consider the series g(t) =
1

p

∑

h 6=0

(2πi(h/p))−2e2πi(h/p)t; each term,
1

p
(2πi(h/p))−2e2πi(h/p)t, can be

differentiated twice to ovtain the term
1

p
e2πi(h/p)t. Thus Xp(t) =

1

p
+ g′′(t).
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But the Fourier series
1

p

∑

h 6=0

−(2π(h/p))−2e2πi(h/p)t is the Fourier series of the period-p periodic

function f[p](t), where f(t) =
p

4π2

[

π2

6
− 1

2

(

2π

p
t− π

)2
]

on [0, p).

Thus, g(t) = f[p](t), and g′(t) = (f[p])
′(t) =

1

2
− 1

p
(tmod p), and g′′(t) = −1

p
+
∑

h

δ(t− hp).

Therefore, Xp(t) =
1

p
+ g′′(t) =

∑

h

δ(t− hp).

Also, we can verify that Xp(t) =
∑

h δ(s− hp) =
∑

h δhp, since the h-th Fourier coefficient of Xp is

1

p

∫ ∞

−∞
U(t/p)Xp(t)e

−2πi(h/p)tdt =
1

p

∫ ∞

−∞
U(t/p)

1

p

∑

−∞≤h≤∞

δhp e
−2πi(h/p)tdt

=
1

p

∑

−∞<h<∞

δhp

∫ ∞

−∞
U(t/p)e−2πi(h/p)t

1

p
dt

=
1

p

∑

−∞<h<∞

δhp

∫ ∞

−∞
U(r)e−2πihrdr

=
1

p

∑

h

δhpU
∧(h)

=
1

p

∑

0≤h≤0

δ0pU
∧(0)

=
1

p
U∧(0)

=
1

p
.

Thus,

X∧p (s) =

(

∑

−∞<h<∞

δ(t− hp)

)∧

(s) =
1

p

∑

−∞<h<∞

δ(s− h/p) =
1

p
X1/p(s).

Exercise 5.26: How is the above identityX∧p (s) =
1

p
X1/p(s) related to the Poisson summation

formula?

Solution 5.26: We have 〈XR
p , f〉 = 〈X∧p , f∧〉, and since Xp is even, XR

p = Xp, and thus,

〈Xp, f〉 = 〈X∧p , f∧〉, and this is equivalent to
∑

h

f(hp) =
1

p

∑

h

f∧(
h

p
); this is just the Poisson

summation formula.

Exercise 5.27: Let y ∈ L2(R) such that the support set of y is contained in [0, p) where
p ∈ R+. Show that the period-p periodic extension of y, y[p], is y(t) ⊛ (

∑

h δ(t− hp)). Also,

compute
[

y[p]
]∧
.
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5.6 Some Fourier Integral Transforms

Recall H(t) =







0, if t < 0,
1
2 , if t = 0,
1, if t > 0,

and let B̄a(t) = H(t+ a
2 )−H(t− a

2 ). Note sign(t) = 2H(t)− 1 = H(t)−H(−t).

Let sincp(s) =

{

1, if s = 0,
sin(πps)/(πps), otherwise.

Below we use the linear functional δv on L2(R) defined such that 〈δv, f〉 =
∫∞
−∞ δv(t)f(t) dt =

∫∞
−∞ δ(t − v)f(t) dt := f(v). The operator δv is often imagined as a unit-area “spike” at v. Note
δv = [H]′(v). (We do not write [H ′(v)] because H ′ is not a function.) [H]′(v) is not a regular linear
functional. Also, in prefix operator terms, we have [H]′′(v) = δ′v = δv(−1)D1

a where a denotes the
argument of whatever function the differentiation operator D1

a is applied to.

� x(t) =







be−at, if t > 0,
b
2 , if t = 0,
0, if t < 0,

x∧(s) = b/[a+ i2πs].

� x(t) = e−at
2

with a ∈ R and a > 0, x∧(s) =

√

π

a
e−π

2s2/a.

� x(t) = e−a|t| with a ∈ R and a > 0, x∧(s) =
2a

a2 + (2πs)2
.

� x(t) =
1

2π

a

(t− b)2 + (a/2)2
, x∧(s) = e−2πsb−aπ|s|.

� x(t) = 1, x∧(s) = δ0.

� x(t) = δ0, x
∧(s) = 1.

� x(t) = cos(2πat), x∧(s) = 1
2(δa + δ−a).

� x(t) = sin(2πat), x∧(s) = i
2(δ−a − δa).

� x(t) = log(|t|), x∧(s) = −1/|2s|.

� x(t) = tk with k ∈ Z+, x∧(s) = 2πikδ(k)(2πs).

� x(t) = H(t), x∧(s) = 1
2

(

δ0 +
1
πis

)

.

� x(t) = sign(t), x∧(s) = 1
πis .

Exercise 5.28: Show that (sign(at))∧(s) =
sign(a)

πis
, and that (H(at))∧(s) =

1

2

(

δ0 +
sign(a)

πis

)

.

� x(t) = B̄a(t), x
∧(s) = a sinca(s). Note B̄a is a bi-constant function, and x∧(k/a) = 0 for

k ∈ Z − {0}.
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� x(t) = sinca(t) with a ∈ R and a > 0, x∧(s) =
1

a
B̄a(s).

� (

∫ t

−∞
x(r) dr)∧(s) = x∧(s)/(2πis) +

1

2
x∧(0)δ(s).

�

(∫ t

0
x(z) dz

)∧

(s) = x∧(s)/(2πis) +

(

1

2
x∧(0)−

∫ 0

−∞
x(r)dr

)

δ(s)

� x(t) = tH(t) = (H ⊛H)(t), x∧(s) = πiδ′2πs − i/(4π2s2).

� x(t) = 1/t, x∧(s) = −iπ · sign(s).

6 Finite Record of a Function

Suppose we are given x on an interval of length p, say [a, p+a], and we wish to know x∧. Consider
y(t) = x(t) · b(t), where b(t) is chosen to be 0 outside [a, p + a]. Now y∧ = (xb)∧ = x∧ ⊛ b∧, so
that y∧ is just x∧ convolved with b∧. But b∧ is, in principle, known so that we can characterize the
effect of convolving with b∧ and thereby observe the nature of x∧ as seen in y∧. The function y∧ is
an estimate of x∧, and differing choices of the “windowing” function, b, will have differing effects
on the nature of the estimate y∧. (Note if x is known on all of R, then b(t) = 1 is appropriate, and
this is consistent with y∧ = x∧ ⊛ δ0 = x∧.)

No matter what choice of b is made, in any case where x is, in fact, not zero outside [a, p+ a], the
estimate y∧ will differ from x∧. This error y∧−x∧ is said to be due to leakage. Values of y∧(s) are
really composed of the corresponding values of x∧(s) plus neighboring values of x∧ as obtained in
the convolution x∧ ⊛ b∧. These neighboring values are said to “leak” into the estimated value for
x∧.

When b(t) = 1 if a ≤ t ≤ p+ a, and 0 otherwise, then b∧(s) = e−2πis(a+p/2) · sin(πps)/(πs).

Other reasonable choices for b are: b(t) = . . ..

7 Spectral Power Density Function

Let x(t) be the voltage across a one Ohm resistance at time t. By Ohm’s law, the current through
the resistance at time t is x(t)/1Amperes. Thus, the power being used at time t to heat the
resistance is x(t) · x(t)/1 Joules/second. Often x(t) = 0 for t < 0. In any event,

∫∞
−∞ |x(t)|2 dt

Joules is the total amount of energy converted into heat.

Now suppose x(t) belongs to L2(R) so that x∧ exists. By Plancherel’s identity, ‖x‖2 = ‖x∧‖2, so
the energy converted is

‖x‖2 = ‖x∧‖2 =
∫ ∞

−∞
|x∧(s)|2 ds.
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The function |x∧(s)|2 is called the spectral power density function of x. It should, of course, be
called the spectral energy density, but the word “power” is used in order to correspond to the case
where x is periodic. The energy converted due to the complex spectral components of x in the
frequency band [a, b] is

∫ b
a |x∧(s)|2 ds.

When x is real-valued, x∧ is Hermitian, so |x∧|2 = (x ⊛ xR)∧ = (x ⊗ x)∧, and the power density
function is even. Thus, folding into the positive frequencies results in the energy due to the
real spectral components in the positive frequency band [a, b], with 0 ≤ a ≤ b, being

∫ b
a (2 −

δs,0)|x∧(s)|2 ds. Recall that M(s) is the amplitude spectrum function of x, and note |x∧(s)|2 =
x∧(s)x∧(s)∗ = M(s)2/(2− δs,0)

2 when x is real, so (2− δs,0)|x∧(s)|2 = M(s)2. The factor (2− δs,0)
in the integrand, which differs from 2 at just one point, can be replaced by 2. The finicky −δs,0,
is not necessary, but it is harmless, and it reminds us of the underlying manipulations which have
been performed.

8 Time-Series, Correlation, and Spectral Analysis

Let x(t) be a real (complex-valued extension - ?) stochastic process. Then the autocovariance
function of x is defined as

Cxx(r, t) := cov(x(r), x(t)).

When the mean function mx(t) := E(x(t)) and the variance function vx(t) := Var(x(t)) = Cxx(t, t)
are both constant, with E(x(t)) = µx and Var(x(t)) = σ2

x, then x is called weakly-stationary, and
the autocovariance function Cxx(r, t) is, in fact, just a function of the lag h = r − t, and we have
Cxx(h) = E(x(t+ h)x(t))− µ2

x.

When x is weakly-stationary, Cxx is continuous, with Cxx(0) = σ2
x, and when x is real, Cxx is real

and even and |Cxx(h)| is a decreasing function of h, so Cxx(0) = maxhCxx(h).

The autocorrelation kernel function of x is just the non-central second moment Dxx(r, t) = E(x(r) ·
x(t)), and if x is weakly-stationary, then the autocorrelation kernel function depends only on the
lag h = r − t and we write Dxx(h) = E(x(t+ h) · x(t)).

The autocorrelation kernel function is not the same as the correlation coefficient ρx(h) := cor(x(t+
h), x(t)) = Cxx(h)/(Cxx(0)), but it is linearly-related by (Dxx(h) − µ2

x)/Cxx(0) = ρx(h), and it is
often easier to work with Dxx than with either ρx(h) or Cxx(h).

It may be that Cxx(h) = cov(x(t + h), x(t)) can, with probability 1, be computed as an average
over time of a time sample x̃ of the weakly-stationary process x, so that

Cxx(h) = lim
p→∞

(1/(2p))

∫ p

−p
(x̃(t+ h)− µx)(x̃(t)− µx) dt,

and also

µx = lim
p→∞

(1/(2p))

∫ p

−p
x̃(t) dt.
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If, in general,

E(g(x(f1(t)), . . . , x(fn(t)))) = lim
p→∞

(1/(2p))

∫ p

−p
g(x(f1(t)), . . . , x(fn(t)))

then the process x is called an ergodic process. Note an ergodic process is weakly-stationary.

When x is ergodic, the auto-correlation kernel function Dxx(h) = (x ⊗ x)(h). When x is ergodic
and µx = 0, then ‖x‖2 = Cxx(0) = σ2

x, and thus the variance of x is the total “power” of x, and the

component of the variance of the form
∫ b
a |x∧(s)|2 ds is the part of the variance due to the “power”

of x in the frequency band [a, b]. More generally, Cxx(h) = (x ⊗ x)(h) and
∫

Cxx = (
∫

x)2, and
C∧xx(s) = |x∧(s)|2. The transform C∧xx(s) is the spectral power density function of the process x.

[Define cross-cov and cor, and their transforms.]

9 Linear Systems

A one-input linear system is an operator, H, which maps an input function, x, to a corresponding
output function, y. Thus y(t) = (Hx)(t). H is a linear operator, so that H(ax + bz) = a(Hx) +
b(Hz).

A shift-invariant linear system has the property that H(x(t− s)) = (Hx)(t− s). A shift-invariant
linear system, H, must be frequency-preserving in the sense that, if x is a period-p periodic function,
then y = Hx is also a period-p periodic function. In particular, H(a · cos(st+ b)) = c · cos(st+ d)
for some values c and d. The admissible input functions, x, are just those complex-valued functions
which possess a Fourier-Stieljes transform.

An example of primary importance is that where H is defined via a k-th order ordinary differential
equation form with constant coefficients; i.e., H = αkD

k + αk−1D
k−1 + . . . + α1D + α0, where

D denotes the differentiation operator (with respect to the argument t of the input function it is
applied to.) In this situation, a solution function x of the non-homogeneous k-th order ordinary
differential equation with constant coefficients: (αkD

k + αk−1D
k−1 + . . .+ α1D + α0)x = y, is the

input function to the linear system H corresponding to the output function y, i.e., Hx = y where
H = αkD

k + αk−1D
k−1 + . . .+ α1D + α0.

Every shift-invariant linear system operator H has an associated complex-valued function h, called
the system-weighting function of H, such that (Hx) = x⊛h. Often h is called the impulse-response
function of H, since h = δ0 ⊛ h, where δ0 is the Dirac-δ functional with its spike at 0. Let Hx = y.
Note that saying y = x⊛ h shows that each value, y(t), is a certain weighted “sum” of the values
of x, where the value x(r) is weighted by h(t− r).

In order that y(t) depend only on the x-values x(r) with r ≤ t, we must have h(t) = 0 for t < 0. A
linear system with such a weighting function is called physically-realizable; it corresponds to some
real-time processor which can input x and output y in real-time. Such a processor may, of course,
involve memory, but not a delay due to “reading ahead”.
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A linear system operator H is stable if Hx is bounded when x is bounded; thus finite input
cannot cause the output of a stable system to “blow-up”. If H is a stable shift-invariant linear
system operator with the impulse-response function h, then the Fourier transform of h exists and
the complex-valued function h∧ is called the frequency-response function of H, and is such that
(Hx)∧ = x∧h∧. Often h∧ is called the transfer function of H.

We may write h∧ in polar form as h∧(s) = |h∧(s)|eiφ(s), where φ(s) is the phase-shift function of h∧.
If h is real then |h∧(s)| = M(s)/(2− δs,0) where M(s) is the amplitude function of h. In any event,
|h∧(s)| is called the gain function of H and φ is called the phase-shift function of H, since if the
input x(t) is a complex oscillation Aei(2πst+q), then the output (Hx)(t) is |h∧(s)|Aei(2πst+q+φ(s)),
which is just an oscillation of the same frequency, s, whose amplitude is multiplied by the gain
|h∧(s)| and whose phase is shifted by the phase-shift value φ(s). This is just a special case of the
relation (Hx)∧ = x∧h∧.

When the system-weighting function, h, is real, then the frequency-response function h∧ is Hermi-
tian, i.e., h∧R = h∧∗, and the gain and phase-shift functions are real and |h∧(s)| is even and φ(s)
is odd. In this case H preserves real signals, i.e., Hx is real whenever x is real.

Cascading two stable shift-invariant linear systems H1 and H2 results in a linear system H2H1

whose output is (H2(H1x)), and the frequency-response function is h∧1 h
∧
2 , so the gain function is

|h∧1 (s)| · |h∧2 (s)| and the phase-shift function is φ1(s) + φ2(s).

Given the input x and the output y of a stable shift-invariant linear system we may determine the
frequency-response function h∧(s) as y∧(s)/x∧(s) at each frequency, s, which appears in x, i.e., for
which x∧(s) 6= 0. A test input function, x, constructed for the purpose of determining h∧ should
thus have a broad spectrum. In the same way, given the output function y and the frequency-
response function h∧ (possibly determined by a prior computation based on known input and
output,) we can also obtain the input function as x = (y∧/h∧)∨; this is often called a deconvolution
computation.

If we have the output function y and we know the form of the linear operator H (as a differential
operator, for example,) apart from the values of some parameters appearing in H, then we can
determine these parameter values, and thus determine H, by curve-fitting data-points of the form
(t, y(t)) where y(t) = (Hx)(t). (Indeed, there is no requirement that H be a linear operator in this
situation.)

Exercise 9.1: Show that, if the signal x is input to the linear system H with the transfer
function h, then the spectral power density at frequency s of the output is |h∧(s)|2 · |x∧(s)|2.
Thus the input spectral density |x∧(s)|2 is scaled by |h∧(s)|2.

When x has finite duration, the total energy in the input function x is ‖x‖L2(R) and the total
energy in the output function x is ‖h∧x∧‖L2(R). Thus the linear system H can produce output
with energy in excess of the input energy (if it is plugged-in,) or, it can produce output with
energy less than the input energy, or, it can produce output with energy identical to the input
energy,
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9.1 Linear System Filtering

Given a noisy signal x(t) = q(t) + n(t), where q(t) is the pure signal and n(t) is the noise, we
may wish to filter x for various purposes. In general, filtering-out noise in a signal is an averaging
or smoothing process, and using Fourier transforms to compute and suppress the high-frequency
components of the signal is often appropriate.

We suppose that the noise n is ergodic ((?) specify q and n more carefully.) and we restrict our
attention to shift-invariant linear filters. A linear filter is a linear transformation F such that the
output y(r) = (Fx)(r) is computable as (x⊛ f)(r), where f is the system-weighting function of F .

Given x, we may obtain the auto-correlation kernel transform dxx(s) = (x⊗x)∧(s), and we suppose
that the cross-correlation kernel transform dxq(s) = (x⊗ q)∧(s) is known. Then in terms of dxx(s)
and dxq(s), the Wiener filter F is that shift-invariant linear transformation which has the system-
weighting function f(t) = (dxq(s)/dxx(s))

∨(t). It is the unique shift-invariant linear filter which
minimizes the mean square error MSEqy =

∫∞
−∞[q(t)− (Fx)(t)]2 dt between the desired noise-free

output q and the realized filtered output, y(t) = (Fx)(t). If the signal q and the noise n are
uncorrelated, then

f∧(s) =







0 if dqq(s) + dnn(s) = 0,
dqq(s)

dqq(s) + dnn(s)
otherwise;

and MSEqy reduces to
∫∞
−∞ dqq(s)dnn(s)/(dqq(s) + dnn(s)) ds.

If q and n have their respective power concentrated in largely non-overlapping frequency bands,
MSEqy is small, since dqq(s)dnn(s) is small. Often q’s power is concentrated in a band of relatively
low-frequency values, while n is white and has power at high-frequencies also. Then the Wiener
filter becomes a low-pass or band-pass filter of optimal shape. Even when dxx and dxq, (or dqq and
dnn), are not known, some reasonable estimates may often be employed to advantage[PTVF92].

When the noise in x is, in fact, the result of applying a shift-invariant linear filterH with the system-
weighting function h to the signal q, then x = q⊛h, and recovering q from x entails a deconvolution
process. In this case, the Wiener filter system-weighting function (dxq/dxx)

∨ = (q∧/x∧)∨ is just
the perfect deconvolution system-weighting function (1/h∧)∨. [Suppose f is to be chosen such that
x⊛ f = q. Then when x = q ⊛ h, we have x∧ = q∧h∧, so x∧/h∧ = q∧, and hence x⊛ (1/h∧)∨ = q.
Therefore f should be chosen as (1/h∧)∨.] Thus, when the noise n in x is due to passing the signal
q through a shift-invariant linear system, then the Wiener filter can recover q exactly.

In the situation where we have the noisy signal x where x is the result of cascading two operators,
H1 and H2, when we suppose we know the form of the linear operator H1 apart from the values
of some parameters appearing in H1, and we assume that H2 is a “reasonable” noise-injecting
operator, (for example, H2 may “encode” the process of measuring a result of H1,) then curve-
fitting data-points of the form (t, x(t)) with appropriate weights can both accomodate the noise
injected by H2 and estimate the unknown parameters appearing in H1.

[Also, consider the spectra of: x+noise, x ·noise, xR. Use x ·noise = x ·y = x(1+(y−1)) = x(1+ε)
where E(y) = 1 and E(ε) = 0.]
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10 Prediction and Control

.... (to add)
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