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0.1 Simple Binding

Consider the reaction F +G
k1
⇋

k2
B.

The study of this reaction is common in chemistry and biochemistry. For example, F could be a
hormone or drug and G the associated receptor sites. The symbol B represents the bound complex.

Let us also allow F (t), G(t), and B(t) to be functions which specify the concentrations of F , G,
and B respectively at time t. Then we have the differential equation model:

dB

dt
(t) = k1F (t)G(t)− k2B(t), B(0) = B0,

F (t) = F0 − (B(t)−B0),

G(t) = G0 − (B(t)−B0),

where F0, G0, and B0 are the initial concentrations of F , G, and B respectively, and the molar
association and dissociation rate constants k1 and k2 appear as the proportionality constants for
the terms which occur in dB/dt.

Note that k1 = (
dB

dt
(0) + k2B0)/(F0G0), so when B0 = 0 and F0 and G0 are known, k1 may be

estimated from the initial velocity dB/dt(0), which can, in turn, be estimated from a few points
with t near 0.

The solution to our differential equation is:

B(t) = (S(B0 −R)−R(B0 − S)ed·k1·t)/(B0 −R− (B0 − S)ed·k1·t),
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where

S = A+ d/2

R = A− d/2

d = 2(A2 − (F0 +B0)(G0 +B0))
1/2

A = (F0 +G0 + 2B0 + k2/k1)/2

An appropriate definition of this function in MLAB involves using auxiliary functions as follows:

fct B(T) = H1((F0+G0+2*B0+K2/K1)/2,T)

fct H1(A,T) = H2(A,SQRT(4*(A^2-(F0+B0)*(G0+B0))),T)

fct H2(A,D,T) = H3(A+D/2,A-D/2,EXP(D*K1*T))

fct H3(S,R,E) = ((B0-R)*S-(B0-S)*R*E)/(B0-R-(B0-S)*E)

It is useful to study this example carefully. Many occasions will arise where functions will need to
be defined with the help of auxillary functions in a similar manner.

If we have time-course data consisting of time-values vs. concentration-values of one or more of
the species B, F , or G, we can use a curve-fitting program like MLAB that handles ODE models,
(or in this case, since we have an algebraic model, a program like MLAB that handles non-linear
models,) to estimate the values of k1, k2, and even F0 and G0 and B0, (although usually B0 is 0.)
It is actually easier and more transparent to use the ODE model than it is to use the algebraic
model.

Note we must have data at early times before equilibrium is approached; data at late times will
allow us to estimate the equilibrium constant k1/k2, but k1 and k2 will not be separably estimable
with only late time data.

Moreover, if we try to estimate all the parameters F0, G0, k1, and k2, we are likely to get a good
pictorial fit, but also estimates that are completely non-unique, where varying any parameter can
be compensated by varying the others, so that our estimates are essentially worthless. If we have
previously determined k1/k2 by fitting an equilbrium model, this will help in reducing the “degrees
of freedom”.

Note however, when k1 and k2 are known, (or k1/k2 in the equilibrium case,) we can use kinetic or
equilibrium data measuring any of F , G, or B to “assay” the initial amounts of F or G or both by
estimating F0 and/or G0 via curve-fitting, (again assuming B0 is known.) Examples of fitting our
kinetic model to data will be given below.

0.2 Derivation of the Kinetic Model

Suppose we have a volume with #F free F -molecules and #G free G-molecules and also #B B-
molecules and S solvent molecules; #F is a function of time, #F (t), and similarly, #G is a function
of time, #G(t), and #B is a function of time, #B(t). But S is assumed to be constant.
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Let N(t) be the total number of molecules present at time t; N(t) = #F (t) +#G(t) +#B(t) + S.
As F +G⇋B, N(t) varies. Note the minimum possible value of N(t) is #F (0)+#G(0)+#B(0)−
min(#F (0),#G(0))+S and the maximum possible value of N(t) is #F (0)+#G(0)+2#B(0)+S.

Now for a random “collision” of molecules occurring at or sufficiently near time t, the probability

that this is a collision of an F -molecule and a G-molecule is
#F (t)

N(t)
·
#G(t)

N(t)
+

#G(t)

N(t)
·
#F (t)

N(t)
,

since we first pick one molecule and then the second to form our collision, and the first is either
an F -molecule and the second is a G-molecule, or vice-versa. (This is assuming the number of
each type of molecule is large enough so that a “sampling with replacement” model is adequate.

The “true” probability is

(

#F

1

)(

#G

1

)

/

(

N

2

)

=
2 ·#F ·#G

N(N − 1)
. Note N is a function of t here and

below.)

We take a time-interval It containing t such that It is short enough that N(t) does not appreciably
change during It.

Now, looking at our stochastic collision process, assume that during the small interval of time
It containing t, the expected number of “collisions” of molecules per second in our volume is
proportional to N(t)2 · Lt, i.e., αN(t)2 · Lt, where Lt is the length, i.e., the duration, of the
time-interval It.

This assumption is acceptable when we also accept that the number of collisions between molecule i
and molecule j during the time-interval It follows a Poisson distribution with the density parameter
λLt, i.e., P (there are k (i, j)-collisions during It) ≈ e−λLt(λLt)

k/k!. Then the expected number of
collisions between molecule i and molecule j during the time-interval It is approximately λLt. Here
λ is an unknown parameter specifying the expected number of collisions between any fixed pair of

molecules during a time-interval of unit length. Now since we have

(

N

2

)

pairs of molecules that can

be the components of a collision, the total expected number of collisions during the time-interval

It is approximately

(

N

2

)

λLt ≈ αN2Lt where α = λ/2.

The Poisson distribution arises as follows. Let an interval I of length L be divided into n subintervals

of length
L

n
. Suppose the probability of at least one event (such as a collision between two specified

particles) in any length
L

n
subinterval of I is pn. Note pn is a function of L as well as n. We will

assume that the occurrence of events in any subinterval is independent of the occurrence of events
in any other disjoint subinterval. And also we assume that the expected number of events in an
interval of length δL is δ times the expected number of events in an interval of length L; i.e., let
X̄L denote the expected number of events in an interval of length L, then X̄δL = δX̄L.

The probability of at least one event occurring in exactly k of our n disjoint length
L

n
subintervals

is given by

(

n

k

)

pkn(1 − pn)
n−k, and the expected number of non-empty subintervals is npn. That

is, when we consider the events in our n length-L/n adjacent intervals, “discretely-coalesced”
(by combining the number of events in each length-L/n subinterval) into a sequence of Bernoulli
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random variables b1, b2, . . ., bn where bj is 1 if one or more events occur in the j-th subinterval of

length
L

n
and bj is 0 if no events occur in the j-th subinterval, then the sum b1 + b2 + · · · + bn is

binomially-distributed, i.e., P (b1+ · · ·+bn = k) =

(

n

k

)

pkn(1−pn)
n−k. As n approaches ∞,

∑

1≤j≤n

bj

approaches the number of events in the interval L and

(

n

k

)

pkn(1− pn)
n−k → e−λL(λL)k/k! where

λL = lim
n→∞

npn.

(This implies the probability of two events occurring at exactly the same time is negligible, which
is true if time is infinitly-divisible, i.e., correctly modeled by the positive real halfline.)

Now when
L

n
is small, we may suppose the probability of one or more events in a length

L

n

subinterval is small and such that pn → 0 as n → ∞, so that
L

n
→ 0. Also when pn is small, we

may suppose that p2n is negligibly small. Now, considering a length
L

n
subinterval as two length

L

2n
subintervals, we see that pn = p2n + p2n − p22n; this is the probability that one or more events

occur in the first length
L

2n
subinterval or in the second length

L

2n
subinterval, (p22n is subtracted

because it is counted twice in p2n + p2n). Thus pn < 2p2n and npn < 2np2n, and in general, npn
increases monotonically at a diminishing rate as n → ∞. (Note npn is the total expected number
of events in our interval of length L, assuming p2n is negligible.) And since pn → 0 as n → ∞, i.e.,

as
L

n
→ 0, npn increases monotonically to some limit λL as n → ∞ and

L

n
→ 0. (If npn increased

to ∞ then there would be an infinite number of events expected in the interval I, which we dismiss
as a possibility.) Equivalently npn → λ as n → ∞.

Moreover, since we assume pn is the probability of one or more events in any interval of length
L

n
,

where L > 0 is arbitrary, as noted before, pn depends on L as well as n, and pn must increase as L
increases, approaching 1 as L → ∞, and decrease as L decreases, approaching 0 as L → 0, assuming
pn > 0 for some finite value of L. For L = 1, when n → ∞, lim

n→∞
npn = λ for some non-negative

constant λ, and then in general, lim
n→∞

npn = λL for arbitrary L > 0, since for L = 1, npn → λ = X̄1

as n → ∞, and for arbitrary L > 0, npn → X̄L = LX̄1 = Lλ as n → ∞ by assumption.

Recall the probability of at least one event occurring in exactly k of our n disjoint length
L

n

subintervals is

(

n

k

)

pkn(1− pn)
n−k, and the expected number of non-empty subintervals is npn. As

n → ∞,

(

n

k

)

pkn(1 − pn)
n−k → e−λL(λL)k/k! for k ≥ 0 where λL = lim

n→∞
npn. . This is because,
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using the binomial theorem to expand (1− pn)
n−k, we have:

(

n

k

)

pkn(1− pn)
n−k =

(

n

k

)

pkn
∑

0≤j≤n−k

(

n− k

k

)

1n−k−j(−pn)
j

=
(n)k

k!
pkn

∑

0≤i≤n−k

(n− k)i

i!
(−pn)

i

=
(n)k

k!

1

nk
(npn)

k
∑

0≤i≤n−k

(n− k)i

i!

1

(n− k)i
(−(n− k)pn)

i

→
1

k!
(λL)k

∑

0≤i≤∞

1

i!
(−λL)i

=
(λL)k

k!
e−λL

where (a)m := a(a− 1) · · · (a−m+ 1), since n− k → n, npn → λL,
(n)k

nk
→ 1,

(n− k)i

(n− k)i
→ 1, and

(−(n− k)pn)
i → (−npn)

i → (−λL)i as n → ∞.

The probability density function f(k) :=
(λL)k

k!
e−λL with the parameter λ representing the “density

of events”, (i.e., λL is the expected number of events in an interval of length L), is known as the
Poisson density function with the parameter λL.

Thus the probability of exactly k events in an interval of length L is
(λL)k

k!
e−λL. Note the interval

I can be an interval in space, or as in our situation, an interval of time. The expected number of
events during a time-interval of length L is

∑

0≤k≤∞

k
(λL)k

k!
e−λL = λL

∑

1≤k≤∞

λL)k−1

(k − 1)!
e−λL

= λL
∑

0≤k≤∞

(λL)k

k!
e−λL

= λLe−λL
∑

0≤k≤∞

(λL)k

k!

= λL.

Note we have obtained the distribution of the Poisson random variable XL where XL is the number
of events in the interval [0, L] where events occur with density λ, i.e., E(X1) = λ. The uncountable
sequence 〈XL〉 defined as L ranges over the non-negative real numbers R+ is a Poisson Process.
Let Sn be the waiting time for the n-th event with S0 = 0, and let Tj = Sj−Sj−1 for j ≥ 1; Tj is the
j-th interarrival time or increment and Sn = T1 + T2 + · · ·+ Tn. We have P (Sn ≤ t) = P (Xt > n).
Note P (T2 > t | T1 = s) = P (T2 > t) = P (Xt = 0) = e−λt; this states T2 is independent of T1, and
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in general, the random variables T1, T2, T3, . . . are independent and identically-distributed with
the distribution function P (Tj ≤ t) = 1 − e−λt. The Poisson process has independent increments
and is memoryless. No matter what occurred in the past, at any given current time, the waiting
time to the next event has the same distribution as T1.

Now returning to the reaction F + G ⇋ B, of the approximately αN(t)2 · Lt collisions dur-

ing the interval It, the expected number of FG-collisions is approximately

(

#F (t)

N(t)
·
#G(t)

N(t)
+

#G(t)

N(t)
·
#F (t)

N(t)

)

· αN(t)2 · Lt = 2α#F (t)#G(t) · Lt FG-collisions.

The proportionality “constant” α depends upon the density of molecules in our volume. If we were
to have N varying as our volume remained constant then α would vary accordingly. If, however,
our volume also varies to maintain a constant density, as is generally the case for a solution, or
more generally, for any gas or liquid maintained at constant pressure and temperature, then α is
constant, (although α generally depends on temperature.)

Let the fraction β of these FG-collisions be energetic enough to bind to form a B molecule.

Also let γ be the proportion of any given number of B molecules that “decay” into an F molecule
and a G molecule during our time-interval It. Then the expected number of such decays occuring
during our time-interval It is approximately γ#B(t) ·Lt. (Such “decays” are due to both collisions
and molecular instability. Although we may question if a molecule can “decay”, including the case
of radioactive decay, in the absence of a “stimulus” of some kind.)

Thus the expected change in the number of B-molecules during the time-interval It is

∆#B(t) := βα2#F (t)#G(t) · Lt − γ#B(t) · Lt.

This is just the expected number of B-molecules created during the time-interval It minus the
number of B-molecules destroyed during the same time-interval. Note as Lt ↓ 0, ∆#B(t) → 0.

Now
∆#B(t)

Lt
=

1

Lt
(βα2#F (t)#G(t) · Lt − γ#B(t) · Lt), and

∆#B(t)

Lt
→

d#B(t)

dt
as Lt ↓ 0, and

thus
d#B(t)

dt
= lim

Lt↓0
(βα2#F (t)#G(t)− γ#B(t)) = βα2#F (t)#G(t)− γ#B(t).

Now we can convert #F , #G, and #B, to molarity units, (or other equivalent units,) by multiplying
by appropriate constants, e.g. for #F , we divide #F by 6.02214129e23 (Avogadro’s number) to get
the amount of F in units of moles. And we may then multiply by the [molecular-weight of F ] to
get the amount of F in units of grams. (Avogadro’s number is the number of molecular-weight-M
molecules in M grams of these molecules.) And to get the concentration of F in molarity units,
we divide the number of moles of F by the volume in liters of our solution containing our reacting
substances to get the moles of F -molecules per liter. We do the same form of conversion to express
#B and #G in molarity units.



7

We may incorporate all these conversion constants together with the unknown proportionality
constants α, β, and γ into two unknown constants k1 and k2, and then we may write:

dB

dt
(t) = k1F (t)G(t)− k2B(t), B(0) = B0,

F (t) = F0 − (B(t)−B0),

G(t) = G0 − (B(t)−B0),

where F (t), G(t), and B(t) are the molar concentrations of the species F , G, and B respectively
at time t and F0, G0, and B0 are the initial concentrations of F , G, and B respectively, and the
molar association and dissociation rate constants k1 and k2 appear as proportionality constants for
the terms which occur in dB/dt.

Note, in principle, we can determine the product αβ if we know k1, and we can determine the value of
γ if we know k2, (along with the volume of solution.) The unit of αβ is [(#molecules)(seconds))]−1

and the unit of γ is (seconds)−1, so γ = k2, and we have 2αβ = k1 · (Avogadro’s number)−2 ·
(solution volume in liters)−2.

0.3 Units

In the first-order ordinary differental equation dB/dt(t) = k1F (t)G(t)−k2B(t), we have F (t), G(t)
and B(t) given in molarity units, i.e., moles/liter – ormilliliter ormicroliter, etc. And then dB/dt(t)
has the unit (moles/liter)/second – or nanosecond or minute or hour, etc. But then F (t)G(t) has
the unit moles2/liter2 and thus k1 must be a constant with the unit (liter)/(moles·second), or more
generally, (liter)/(moles·time-unit), and k2 must be a constant with the unit 1/second, or more
generally, (time-unit)−1, in order for our differential equation to be dimensionally consistent. Note
k1 and k2 do not have interconvertable units, thus the values of k1 and k2 are not easily comparable
as a measure of either the speed or the equilibrium levels of our reaction. However, the bigger k1

and the smaller k2, the more “irreversible” the reaction F + G
k1
⇋

k2
B is. If k2 = 0, the reaction is

completely irreversible.

We have the following units in common use.

fraction composition by mass: (mass of solute)/(mass of solute plus solvent).

fraction composition by volume: (volume of solute)/(volume of solution).
Note the volume of the solution is in general not exactly equal to the volume of the solvent plus
the volume of the solute, even when both are in the same state of matter, due to various effects.

molarity concentration (moles/liter): (moles of solute)/(liters of solution).
We compute the moles of a solute by dividing the mass of the solute in grams by the molecular
weight of the solute to obtain a number approximately equal to the number of molecules of solute
present scaled by the reciprocal of Avogadro’s number; this is the mole amount of the solute.

molality concentration (moles/kg): (moles of solute)/(kg of solvent).
The molarity for water solvent at 25-degrees C is approximately the same as the molality.
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mole fraction composition: (moles of solute1)/(
∑

imoles of solutei).
Here the solvent is taken as another solute.

normality (charge concentration): (valence)(#ions)(moles of solute)/(liters of solution).
Here we focus on either positive ions or negative ions and, in either case, represent their molar
concentrations with positive values.

pH (− log10 charge concentration) [needs work!] Generally only used when the ion being measured
is H+. Since the equilibrium constant of the reaction H2O ⇋ H+ +OH− is approximately 10−14,
we have [H+][OH−] = 10−14[H2O] where here the square brackets denote concentration amounts,
and with [H2O] ≈ 55.5 moles/liter, and [H+] = [OH−], we have [H+] = (10−14)1/2, so the pH-value
is 7 for 1 liter of water. (??) If pH = 14 in 1 liter of solution, then [H+] = 10−14 which we take to
be suffuciently close to 0 for pH = 14 to serve as the upper bound of pH, representing very little
H+ ion present.

0.4 Derivation of the ODE Solution

We will consider the form of our ODE where B0 = 0 for simplicity. Thus we have

dB

dt
(t) = k1F (t)G(t)− k2B(t), B(0) = 0,

F (t) = F0 −B(t),

G(t) = G0 −B(t),

where F0 and G0 are the initial concentrations of F and G respectively, and the molar association
and dissociation rate constants k1 and k2 appear as the proportionality constants for the terms
which occur in dB/dt.

Thus we have the non-linear ODE

B′(t) = k1(F0 −B(t))(G0 −B(t))− k2B(t),

or equivalently,
B′ = k1F0G0 − [(F0 +G0)k1 + k2]B + k1B

2.

Let

q0(t) = k1 · F0 ·G0

q1(t) = −[(F0 +G0) · k1 + k2]

q2(t) = k1.

Note q0 6= 0 and q2 6= 0 is assumed, and generally q1 6= 0 as well. (Note our ODE is well-defined
when k2 = 0. And if k1 = 0, we have a linear ODE.) We write q0(t), q1(t), q2(t) this first time
to indicate that, in general, the coefficents in our quadratic righthand-side can be functions of t,
although here they are trivial (constant) functions.

Thus we have B′ = q0 + q1B + q2B
2 with B(0) = B0 = 0.
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This means B′(0) = q0 + q1B0 + q2B
2
0 = q0.

This is a non-linear first-order ordinary differential equation known as a Riccatti equation. We
can convert this ODE to a linear second-order ODE and this second-order ODE will have constant
coefficients when, as here, our Riccatti equation has constant coefficents.

Let v = q2B. Then v′ = (q2B)′ = q′2B + q2B
′ = (q0 + q1B + q2B

2)q2 + q′2
v

q2
since

v

q2
= B. (Note

here q2 is constant, so q′2 = 0 and v′ = q2B
′.)

Thus

v′ = q0q2 + (q1q2 + q′2)B + q22B
2

= q0q2 + (q1q2 + q′2)
v

q2
+ v2

= q0q2 + (q1 +
q′2
q2
)v + v2.

Let s = q0q2 and r = q1 +
q′2
q2

= q1. Then v′ = s+ rv + v2.

Now let u(t) be a function such that −
u′

u
= v, i.e., v = (− log(u))′.

Then v′ = −(
u′

u
)′ = −(

u′′

u
) + (

u′

u2
)u′ = −(

u′′

u
) + v2, so v′ − v2 = −(

u′′

u
).

And thus −
u′′

u
= s+ rv = s+ r(−(

u′

u
)), so −u′′ = su+ r(−u′), or u′′ = −su+ ru′, or

u′′ − ru′ + su = 0.

And we have B =
v

q2
=

−u′

q2u
, so B0 =

−u′(0)

q2(0)u(0)
, and B′(0) = q0(0) + q1(0)B0 + q2(0)B

2
0 , and

with B0 = 0, we have B′(0) =: B′
0 = q0. And also −u′(0) = 0, i.e., u′(0) = 0.

And u′′ = ru′− su, so u′′(0) = ru′(0)− su(0), or u′′(0) = −su(0) where s = q0q2. Let u(0) = δ 6= 0.

Then u′′(0) = −q0q2δ and u(0) =
q0
B′

0

δ since
q0
B′

0

= 1.

So we have u(0) = δ = −u′′(0)/(q0q2) and u′(0) = 0 as the initial conditions needed for our
second-order linear ODE u′′ − ru′ + s = 0.

———————–

Now, let us consider how, in general, we may solve a second-order linear ODE: y′′ + a1y
′ + a0y = f

with the initial values y(0) and y′(0) given.

We may proceed as follows. First note that the general solution is given by y = yc + yp where yc is
the general solution of the homogeneous equation y′′ + a1y

′ + a0y = 0 containing two constants of
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integration to be determined, and yp is a particular solution of the equation y′′ + a1y
′ + a0y = f ,

i.e., yp satisfies y′′ + a1y
′ + a0y = f together with the initial conditions yp(0) = α and y′p(0) = β

with α and β chosen in any way we wish; yc is generally called the complementary solution of the
differential equation y′′ + a1y

′ + a0y = f .

This is because the linear operator [D2 + a1D + a0] applied to yc is 0, and [D2 + a1D + a0]
applied to yp is f , so [D2 + a1D + a0] applied to yc + yp is f and also y(0) = yc(0) + yp(0) and
y′(0) = y′c(0)+y′p(0), and these two equations can be used to determine the two unknown constants
in yc. Thus y(t) = yc(t) + yp(t) is the solution of our ODE. (This follows from the uniqueness of
solutions of well-formed initial-condition problems.)

Now [D2 + a1D + a0] = [D − λ1][D − λ2] where λ1 and λ2 are the roots of the quadratic equation
x2 + a1x+ a0 = 0. Since (x− λ1)(x− λ2) = 0, we have λ1λ2 = a0 and λ1 + λ2 = −a1.

Our ODE can be written in operator form as [D−λ2][D−λ1]y = f , and the associated homogeneous
ODE is [D − λ2][D − λ1]y = 0. This latter equation is equivalent to [D − λ2](y

′ − λ1y) = 0. Let
w = y′ − λ1y. Then [D − λ2]w = 0, or equivalently, w′ − λ2w = 0. But this first-order linear ODE
has the general solution w(t) = ceλ2t where c is a constant determinable by the initial condition

value w(0) = y′(0)− λ1y(0) as c = y′(0)− λ1y(0).

Now we have w = y′ − λ1y = ceλ2t. We can multiply by the “integrating factor” e−λ1t to obtain
y′e−λ1t − λ1ye

−λ1t = ce(λ2−λ1)t, or D(y(t)e−λ1t) = ce(λ2−λ1)t.

Thus, by the Fundamental Theorem of Calculus:

∫ t

0

d

du
g(u)du = g(u)

∣

∣

u=t
u=0 = g(t)− g(0), we have

∫ t

0
Ds(y(s)e

−λ1s)ds = (y(t)e−λ1t)− d =

∫ t

0
ce(λ2−λ1)sds

where d = y(0)e−λ1·0 = y(0).

Thus y(t) =

(
∫ t

0
ce(λ2−λ1)sds+ y(0)

)

/e−λ1t.

Now, for λ1 6= λ2,

∫ t

0
ce(λ2−λ1)u)du =

c

λ2 − λ1
e(λ2−λ1)t −

c

λ2 − λ1
, because

d

dt

[

c

λ2 − λ1
e(λ2−λ1)t

]

=
c

λ2 − λ1
(λ2 − λ1)e

(λ2−λ1)t = ce(λ2−λ1)t,

and, the Fundamental theorem of Calculus applies,
i.e.,

∫ t

0
ce(λ2−λ1)u)du =

∫ t

0

d

du

[

c

λ2 − λ1
e(λ2−λ1)u

]

du =
c

λ2 − λ1
e(λ2−λ1)t −

c

λ2 − λ1

when λ1 6= λ2.

Thus y(t)e−λ1t − y(0) =
c

λ2 − λ1
e(λ2−λ1)t −

c

λ2 − λ1
, or

y(t) =
c

λ2 − λ1

[

e(λ2−λ1)t − 1 +
λ2 − λ1

c
y(0)

]

eλ1t =

(

c

λ2 − λ1

)[

eλ2t +

(

λ2 − λ1

c
y(0)− 1

)

eλ1t

]

.
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And thus y(t) = c1e
λ2t + c2e

λ1t where c1 and c2 are determinable from the initial values y(0)

and y′(0); c1 =
c

λ2 − λ1
and c2 = y(0) −

c

λ2 − λ1
are constants depending on c which is, in turn,

resolvable from the initial condition values y(0) and y′(0) as c = y′(0)− λ1y(0).

If λ1 = λ2 then we have D
(

y(t)e−λ1t
)

= ce(λ2−λ1)t = c, and then

∫ t

0
D

(

y(s)e−λ1s
)

ds =

∫ t

0
cds,

so y(s)e(−λ1)s
∣

∣

s=t
s=0 =

∫ t

0
cds = cs

∣

∣

s=t
s=0 = ct, so y(t)e(−λ1)t − y(0) = ct, or y(t) = [ct+ y(0)]eλ1t

where c = y′(0)− λ1y(0).

We have thus determined our complementary solution to be yc(t) = c1e
λ2t + c2e

λ1t when λ1 6= λ2,
and yc(t) = [c3t + c4]e

λ1t when λ1 = λ2, with c1 and c2, or c3 and c4, determinable from the
initial-condition values y(0) and y′(0).

We must find our particular solution yp by “guessing”, although there are systematic ways to make
successful guesses when f is one of many simple functions. In particular, when f(t) is a constant

α, we can determine a particular solution of the equation y′′ + a1y
′ + a0y = α as yp(t) =

α

a1
t when

a0 = 0 and a1 6= 0, and yp(t) =
α

a0
when a0 6= 0. (And yp(t) =

sα

2
t2 when a0 = 0 and a1 = 0.)

———————–

For our particular case: u′′ − ru′ + su = 0, we have r 6= 0 and s 6= 0, and the right-hand-side
“forcing function” is equal to 0 so u(t) = uc(t) + up(t), and up(t) = 0, so u(t) = uc(t).

We have the differential operator D2−rD+s which corresponds to the quadratic equation x2−rx+

s = 0 whose roots are λ1 =
r − [r2 − 4s]1/2

2
and λ2 =

r + [r2 − 4s]1/2

2
where s = q0q2 = k21F0G0

and r = q1 = −[(F0 +G0)k1 + k2]. Note λ1λ2 = s and λ1 + λ2 = r.

Note we require r2 − 4s > 0, i.e., (F 2
0 − 2F0G0 + G2

0)k
2
1 + 2(F0 + G0)k1k2 + k22 > 4k21F0G0 which

always holds when F0 +G0 > 0 and k1 > 0 and k2 > 0, or when k1 > 0 and F0 6= G0. (If F0 = G0

and k2 = 0 then we have λ1 = λ2 = −F0k1 and the corresponding solution u = (ct+u(0))eλ1t holds
with c = 0.)

And when r2 > 4s, we have λ1 6= λ2 and u(t) = c1e
λ2t + c2e

λ1t where c1 =
c

λ2 − λ1
and c2 =

u(0)−
c

λ2 − λ1
with c = u′(0)−λ1u(0). And we have u′(0) = 0 and u(0) = δq0/B

′
0 = −u′′(0)/(q0q2),

so c = −λ1u(0) = −λ1δ
q0
B′

0

.
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And

q2B = −
u′

u

= −
c1λ2e

λ2t + c2λ1e
λ1t

c1e
λ2t + c2e

λ1t

= −
c1λ2e

(λ2−λ1)t + c2λ1

c1e
(λ2−λ1)t + c2

And λ2 − λ1 = [r2 − 4s]1/2, c1 =
c

λ2 − λ1
, c2 =

q0
B′

0

δ −
c

λ2 − λ1
and c = −λ1

q0
B′

0

δ.

With B(0) = B0 = 0, we have B′
0 = q0, so u(0) = δ and c = −λ1δ and c1 =

−λ1δ

λ2 − λ1
, and

c2 = δ −
−λ1δ

λ2 − λ1
=

λ2δ

λ2 − λ1
, and then

B = −

[

−λ1λ2δ

λ2 − λ1
e(λ2−λ1)t +

λ1λ2δ

λ2 − λ1

]

/

[

−λ1δ

λ2 − λ1
e(λ2−λ1)t +

λ2δ

λ2 − λ1

]

= −

[

−λ1λ2

λ2 − λ1
e(λ2−λ1)t +

λ1λ2

λ2 − λ1

]

/

[

−λ1

λ2 − λ1
e(λ2−λ1)t +

λ2

λ2 − λ1

]

= −

[

−λ1λ2e
(λ2−λ1)t + λ1λ2

−λ1e
(λ2−λ1)t + λ2

]

.

Thus B(t) =
λ1λ2e

(λ2−λ1)t − λ1λ2

−λ1e
(λ2−λ1)t + λ2

where λ1 =
r − [r2 − 4s]1/2

2
and λ2 =

r + [r2 − 4s]1/2

2
with

s = q0q2 = k21F0G0 and r = q1 = −[(F0 + G0)k1 + k2] such that λ1 6= λ2. (If λ1 = λ2, we have

F0 = G0 and k2 = 0 and then B(t) = F0 −
F0

F0k1t+ 1
= G0 −

G0

G0k1t+ 1
.)

0.5 Chemical Kinetic Modeling

Suppose we have specific kinetic data, time versus B-concentration, appearing as the rows of a
two-column matrix, BM . Note time vs. G-concentration or time vs. F -concentration can be easily
converted to time vs. B-concentration. In MLAB, if GM is a 2 column matrix of time vs. G-
concentration for example, we merely type

* BM = (GM COL 1)&’(G0-B0-(GM COL 2))

and BM is then the desired time vs. B-concentration matrix of data points.

We may use the curve-fitting facility of MLAB to compute estimates of k1 and k2, and even F0,
G0, and/or B0 if necessary.
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——————————————————————–

Given the kinetic data: (0, 0), (.2, .072), ... entered below with B0 = 0, F0 = 1 and G0 = 1, we can
estimate k1 and k2 as follows.

MLAB Mathematical Modeling System, Revision: June 12, 2013

Executing file: /usr/local/lib/mlab/mlab

Copyright: Civilized Software, Inc. (301)962-3711, email: csi@civilized.com

Web-site: WWW.CIVILIZED.COM

Wed Aug 20 16:00:26 2014

Your current working directory is: /home/knott/

Use FILEDIR to reach any other directory.

’* ’ is the command prompt

This copy of MLAB belongs to csi choptank

d col 1 = 0:4:.2

d col 2 = list(0, .072, .127, .168, .200, \

.170, .187, .205, .176, .197, .165, \

.228, .235, .212, .197, .215, .227, \

.221, .216, .204, .210 )

fct B’t(t) = k1*(F0-(B(t) -B0))*(G0-(B(t) -B0)) -k2*B

init B(0) = 0

F0 = 1; G0 = 1; B0 = 0

/* Guess k1 = initial slope. */

k1 = .072/.2; k2 = 2*k1

tv = 0:4.2!127

draw d, pointtype "+" linetype none

draw points(B,tv) linetype dashed

view
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constraints q = { k1 >0, k2>0, G0 >0, F0 >0, B0 >=0}

fit(k1,k2), b to d with weight ewt(d)

final parameter values

value error dependency parameter

0.4681184643 0.06528559617 0.9795234833 K1

1.371659988 0.201698861 0.9795234833 K2

4 iterations

CONVERGED

best weighted sum of squares = 3.156126e+01

weighted root mean square error = 1.288844e+00

weighted deviation fraction = 4.233717e-02

R squared = 9.098160e-01

draw points(B, tv) color red

view
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0.5.1 Estimating Initial Condition Values

Now suppose we have the same data, but F0 is unknown. Then we can estimate k1, k2, and F0 as
follows.

k1 = .072/.2; k2 = 2*k1; F0 = .5; G0 = 1

fit(k1,k2,F0), b to d with weight ewt(d), constraints q

final parameter values

value error dependency parameter

0.7380400592 9.696694591 0.9999969975 K1

1.176742194 6.870010323 0.999981958 K2

0.6406740748 8.475673511 0.9999984767 F0

10 iterations

CONVERGED

best weighted sum of squares = 3.148085e+01

weighted root mean square error = 1.322473e+00

weighted deviation fraction = 4.234152e-02

R squared = 9.100870e-01

no active constraints

draw points(B, tv) color yellow linetype alternate

view
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Note the extremely-high dependency values (greater than .99.) These are matched by very large
error values. This means the parameters with such high dependency values are dependent on one-
another. Changing one can be compensated by suitably changing the others, i.e., our estimates are
not unique.

Now let us look at estimating k1, k2, F0, and G0 using the same kinetic data.

k1 = .072/.2; k2 = 2*k1; F0 = .5; G0 = .5

fit(k1,k2,F0,G0), b to d with weight ewt(d), constraints q

final parameter values

value error dependency parameter

0.9528428531 10.11946107 0.9999944158 K1

1.106581655 4.324644348 0.9999520682 K2

0.7082117644 406.2857598 0.999999999 F0

0.7082117643 406.2207178 0.999999999 G0

6 iterations

CONVERGED

best weighted sum of squares = 3.141634e+01

weighted root mean square error = 1.359419e+00

weighted deviation fraction = 4.231069e-02

R squared = 9.102791e-01

no active constraints

draw points(B, tv) color pink linetype alternate
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view

Again we have very high dependency values. The values we obtain are not only not well-determined;
they depend on the initial guesses.

Finally let us assume k1 and k2 are known from prior modeling as k1 = .46812 and k2 = 1.37166,
and let us look at estimating F0, and G0 using the same kinetic data as above.

k1 = .46812; k2 = 1.37166; F0 = .5; G0 = .5

fit(F0,G0), b to d with weight ewt(d), constraints q

final parameter values

value error dependency parameter

1.577750772 1.090627947 0.9992427369 F0

0.6650012081 0.3499321856 0.9992427369 G0

4 iterations

CONVERGED

best weighted sum of squares = 3.172941e+01

weighted root mean square error = 1.292273e+00

weighted deviation fraction = 4.218845e-02

R squared = 9.102412e-01

no active constraints

draw points(B, tv) color green

view
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And yet again we have high dependency values, thus we can estimate k1 and k2, given F0, G0 and
B0, reasonably uniquely, but estimating F0 and G0 given k1 and k2 and B0 is problematic.

The following example shows that G0 can be well-estimated when k1, k2, and F0 are accurate.

k1 = .5; k2 = 1.5; F0 = 1; G0 = 2

fit(G0), b to d with weight ewt(d), constraints q

final parameter values

value error dependency parameter

1.015055099 0.01600248526 0 G0

4 iterations

CONVERGED

best weighted sum of squares = 3.199585e+01

weighted root mean square error = 1.264829e+00

weighted deviation fraction = 4.222580e-02

R squared = 9.096548e-01

no active constraints

draw points(B, tv) color red

view
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0.6 Chemical Equilibrium Modeling

The equilibrium constant, K, of the reaction F +G
k1
⇋

k2
B, is defined as K = k1/k2. At equilibrium

(say at time te where te is suitably large), we have dB/dt(te) = 0, and hence k1F (te)G(te) −
k2B(te) = 0. (Of course we may never be at equilibrium, so we understand we are simplifying the
circumstances.)

Thus,
k2
k1

·
B(te)

F (te)G(te)
= 1, so multiplying by

k1
k2

, we have

K = B(te)/(F (te)G(te)) = B(te)/((F0 +B0 −B(te))(G0 +B0 −B(te))).

Thus K(F0+B0−B(te))((G0+B0−B(te)) = B(te) or K
−1B(te) = (F0+B0)(G0+B0)−B(te)(G0+

F0 + 2B0) +B(te)
2.

So B(te)
2 − ((G0 + F0 + 2B0) + K−1)B(te) = (F0 + B0)(G0 + B0) = 0, and, using the quadratic

formula, we have 2B(te) = (G0+F0+2B0+K−1)±[(G0+F0+2B0+K−1)2−4(F0+B0)(G0+B0)]
1/2.

Now, to determine the sign + or −, consider the case where B0 > 0, F0 = 0, and G0 = 0;
in this case, B will dissasociate until equilibrium is reached. Then we have B(te) ≤ B0 and
2B(te) = (2B0 +K−1)± [(2B0 +K−1)2 − 4B2

0 ]
1/2. And, if the plus-sign applies, we have 2B(te) =

2B0 +K−1 + [(4B2
0 = 4B0K

−1 − 4B2
0 ]

1/2 = 2B0 +K−1 + 2[B0K
−1]1/2, so B(te) = B0 +

1

2
K−1 +

[B0K
−1]1/2 > B0. Therefore, the plus-sign cannot be the correct choice of sign, and we have

2B(te) = (G0 + F0 + 2B0 +K−1)− [(G0 + F0 + 2B0 +K−1)2 − 4(F0 +B0)(G0 +B0)]
1/2.
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Define Be(F0, G0, B0) = B(te), the amount of B at equilibrium or “saturation”. Then we have the
following equation, called the saturation equation.

Be(F0, G0, B0) = [(F0+G0+2B0+1/K)− ((F0+G0+2B0+1/K)2− 4(F0+B0)(G0+B0))
1/2]/2.

If we have data points for a so-called saturation curve consisting of pairs of F0 values with associated
Be values for fixed values of G0 and B0, then curve-fitting can be used with the above function
in order to estimate K. Indeed K can be estimated even when we have points (F0, G0, Be) from
the saturation surface in 3-space, where arbitrary values of F0 and G0 have been paired, and B0 is
fixed. (Usually, B0 = 0.)

Define Be = B(te), Fe = F (te), and Ge = G(te). Then from the basic relations: K = Be/(FeGe),
Fe +Be = F0 +B0, and Ge +Be = G0 +B0, we may write a number of equivalent relationships.

Michaelis-Menten Equation(1) (Be vs. Fe):

Be = K(G0 +B0)Fe/(1 +KFe)

Michaelis-Menten Equation(2) (Be/(B0 +G0) vs. Fe):

Be/(B0 +G0) = KFe/(1 +KFe)

Lineweaver-Burk Equation (1/Be vs. 1/Fe):

1/Be = (1/(K(G0 +B0)))(1/Fe) + 1/(G0 +B0)

Eadie-Wilkinson-Dixon Equation (Fe/Be vs. Fe):

Fe/Be = Fe/(G0 +B0) + 1/(K(G0 +B0))

Scatchard Equation (Be/Fe vs. Be):

Be/Fe = −KBe +K(G0 +B0)

Hill Equation (log [(Be/(G0 +B0))/(1−Be/(G0 +B0)] vs. log Fe):

log((Be/(G0 +B0)/(1−Be/(G0 +B0))) = log Fe + log K

(Also see the “direct linear plot” of Cornish-Bowden in Biochem. J. Vol 137, p. 143, 1974)

Some of these relationships are inspired by analogous relations for enzyme reactions where they
arise in different forms. Most are linear relations in K or 1/K for simple binding, and this accounts
for their popularity—they are easy to use as models with linear regression methods in order to
estimate K. For the non-linear Michaelis-Menten forms, constraints are often necessary. In spite of
their traditional use, however, the errors introduced when transforming data to the appropriate form
may limit the accuracy obtainable when using any of these models; and in general biased estimates
of K will result. See Rodbard, D., “Mathematics of Hormone-Receptor Interaction”, in Receptors
for Reproductive Hormones, Plenum Pub. Corp., NY, 1973.
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The saturation equation above may thus be preferred, although usually there is little difference. At
any rate, the values of K obtained using various models should be checked by computing theoretical
predicted values for Be vs. F0 and comparing them to the observed values. The major difficulty
for the various linear forms is that both the independent and the dependent-variable data values
have non-normally-distributed error. As a result, linear Euclidean curve-fitting (with appropriate
weights) should be employed with these models. The results should be checked in the saturation
equation. That value of K which yields the lowest sum-of-squares in the saturation model should
be used.

0.6.1 Curve-Fitting Equilibrium Models

Here is an example comparing the saturation equation model with the Michaelis-Menten (1) model
and the Scatchard model.

FCT B(F0)=((F0+G0+2*B0+1/K)-SQRT((F0+G0+2*B0+1/K)^2-4*(F0+B0)*(G0+B0)))/2

FCT BE(FE) = (G0+B0)*FE/(1/K+FE)

FCT BS(BE) = -K*BE+K*(G0+B0)

B0 = 0; G0 = 1;

/* M = F0 values, BE values */

M = read(data,100,2)

/* generate M1 = corresponding data (FE,BE) for the Michaelis-Menten model */

M1 = (M COL 1) - (M COL 2) + B0

M1 COL 2 = M COL 2

/* generate M2 = corresponding data (BE/FE,BE) for the Scatchard model */

M2 = (M COL 2)

M2 COL 2 = (M1 COL 2)/’(M1 COL 1)

K = 2

FIT(K), B TO M

final parameter values

value error dependency parameter

1.996602727 0.0420400256 0 K

1 iterations

CONVERGED

best weighted sum of squares = 1.446128e-02

weighted root mean square error = 1.925622e-02

weighted deviation fraction = 1.849765e-02

R squared = 9.691570e-01

KS = K
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FIT(K), BE TO M1

final parameter values

value error dependency parameter

2.0043749954 0.0397621839 0 K

1 iterations

CONVERGED

best weighted sum of squares = 1.769429e-02

weighted root mean square error = 2.130023e-02

weighted deviation fraction = 2.026365e-02

R squared = 9.622617e-01

KM = K

FIT(K), BS TO M2

final parameter values

value error dependency parameter

2.0008431423 0.0360417006 0 K

1 iterations

CONVERGED

best weighted sum of squares = 1.242737e-01

weighted root mean square error = 5.644913e-02

weighted deviation fraction = 8.426590e-02

R squared = 9.358569e-01

KC = K

/* draw MM model + data with the above K */

K = KS

TOP TITLE "Saturation Model"

DRAW M, LINETYPE NONE, POINTTYPE STAR

DRAW POINTS(B, 1:5!101)

K = KM

DRAW POINTS(B, 1:5!101) LINETYPE DASHED

K = KC

DRAW POINTS(B, 1:5!101) LINETYPE ALTERNATE

VIEW
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K = KS

TOP TITLE "Michaelis-Menten Model"

DRAW M1, LINETYPE NONE, POINTTYPE STAR

DRAW POINTS(BE, MINV(M1 col 1):MAXV(M1 col 1)!101)

K = KM

DRAW POINTS(BE, MINV(M1 col 1):MAXV(M1 col 1)!101) LINETYPE DASHED

K = KC

DRAW POINTS(BE, MINV(M1 col 1):MAXV(M1 col 1)!101) LINETYPE ALTERNATE

VIEW
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/* draw Scatchard model + data with the above K */

K = KS

TOP TITLE "Scatchard Model"

DRAW M2, LINETYPE NONE, POINTTYPE STAR

DRAW POINTS(BS, MINV(M2 col 1):MAXV(M2 col 1)!101)

K = KM

DRAW POINTS(BS, MINV(M2 col 1):MAXV(M2 col 1)!101) LINETYPE DASHED

K = KC

DRAW POINTS(BS, MINV(M2 col 1):MAXV(M2 col 1)!101) LINETYPE ALTERNATE

VIEW
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Note that for the data studied above, all the models give comparable results. Indeed the estimated
K-values are so close, the curves are almost superimposed.

The second Michaelis-Menten equation is useful when the amount, G0 + B0, is not known. Then
measuring a quantity proportional to Be/(G0 + B0) vs. Fe is commonly done, and K can be
determined in unknown units. Indeed, by introducing another parameter, D, to obtain Be/(B0 +
G0) = DKFe/(1+KFe) and computing D and K by fitting this model to data points (Fe, Be/(B0+
G0)), where Fe and Be are measured in moles and B0+G0 is measured in grams, then D(B0+G0)
has the unit moles, and so (B0+G0)/(D(B0+G0)) = 1/D is the molecular weight of a G molecule.
(This device for computing molecular weight assumes that B0 = 0 or that an F molecule is much
lighter than a G molecule.) Fitting the saturation equation to obtain both K and G0 +B0 may be
a better approach.

0.7 Cooperative Binding

Often the binding of F and G is complicated by cooperative effects. Namely, k1 and/or k2 appear
to be dependent upon the relative amount of B. This can be due to allosteric shape changes in the
molecules or sites G which occur during binding. Various other explanations, including multiple
classes of sites, are also possible. If k1/k2 increases as B increases, we have positive cooperativity;
if k1/k2 decreases as B increases we have negative cooperativity.

Suppose, then, that k1 and k2 are functions of B. Thus,

dB/dt(t) = k1(B(t)) · F (t) ·G(t)− k2(B(t)) ·B(t),
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with F (t) = F0 − (B(t)−B0), G(t) = G0 − (B(t)−B0), and B(0) = B0, as before.

Now suppose that all cooperative effects are due to changes in k2, in particular, suppose

k1(B) = k01, and k2(B) = k02(1 + p ·B/(G0 +B0)).

This is the same as saying k2(B)− k2(0) = pB/(G0 +B0). Thus we assume that the change in k2
from the “ground state” k2(0) = k02, is proportional to the fraction of occupied sites, B/(G0 +B0),
with the proportionality-constant p.

Note then, that dk2/dt(B(t)) = (p/(G0 +B0))dB/dt(t), so dk2/dB(B) = p/(G0 +B0).

There are of course many other functional relationships which could be postulated. For example,
we could assume that dk2/dt(B(t)) = A(dB/dt)h, or we could assume k1 and k2 vary together in
certain ways. Indeed, changes in k1 will give cooperative effects unobtainable by changes in k2
alone. k1 and k2 need not change monotonically; we may have variation which results in intervals
of positive cooperativity and other intervals of negative cooperativity.

Since cooperativity, without qualification as to its cause, is merely a mathematical description, and
not a structural description, the choice of how k1(B) and k2(B) are defined is dependent upon the
actual physical situation and the desired uses of the mathematical model. The particular choice
here has the same effect as that made by DeMeyts in his analysis of cooperativity (DeMeyts, P.,
Woebroeck, M., “The structural basis of insulin-receptor binding and cooperative interactions”, in
Membrane Proteins (ed. P.Nicholls et al.) FEBS 11th Meeting, Vol. 45 Symposium A4, Pergamon
Press, pp. 319–323, 1977).

Now let te be the time when equilibrium is approached, and let B(te) = Be, F (te) = Fe, and
G(te) = Ge. Then, at equilibrium, we have the equilibrium constant K as a function of Be,
K(Be) = k1(Be)/k2(Be) = Be/(FeGe). Thus, K(Be) = k01/(k

0
2(1 + pBe/(G0 + B0))), or, K(Be) =

k0/(1 + pBe/(G0 +B0)), where k0 = K(0).

Note for −1 < p < 0, we have positive cooperativity, for p = 0, we have no cooperativity (K(Be) =
K(0)), and for p > 0, we have negative cooperativity.

It is convenient to define p in terms of another parameter, a, called the F , G interaction factor, so
that p = (1 − a)/a, and hence a = 1/(1 + p). Note for 0 < a < 1, we have negative cooperativity,
for a = 1, we have no cooperativity, and for a > 1, we have positive cooperativity.

Indeed, if ∆G0 is the energy needed (or released) (i.e., the change in free energy) for binding
the first F molecule to a G molecule, and if ∆G1 is the energy used (or released) for binding
an F molecule to the last unoccupied G molecule (whereupon B = G0 + B0), then we have the
classical thermodynamic relations: ∆G0 = −RT log K(0), and ∆G1 = −RT log K(G0+B0), where
R is the gas constant (about 1.987 calories/degree/mole) and T is the absolute temperature. Thus,
K(G0+B0)/K(0) = exp(−(∆G1−∆G0)/RT ), and, by assumption, K(G0+B0)/K(0) = 1/(1+p) =
a, so a has the interpretation: a = K(B0 +G0)/K(0); it is the ratio of the equilibrium constant K
with all G-sites occupied, to K with no occupied G-sites.

DeMeyts has observed that the relation K(Be) = k0/(1 + ((1− a)/a) ·Be/(G0 +B0)) may be used
in the various equilibrium models given before to obtain the corresponding cooperative models.
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Thus, we substitute K(Be) for K to obtain models which now involve the parameters F0, G0, B0,
a, and k0. Curve-fitting which yields a value for a obviously different from one, should be followed
by fitting with a fixed to one. If the latter fit is clearly inferior, cooperative binding phenomena
may be present.

In particular, for a 6= 1, the cooperative Michaelis-Menten(2) relation is:

Be/(B0 +G0) = (−a(1 + k0Fe) + [a2(1 + k0Fe)
2 + 4a(1− a)k0Fe]

1/2)/(2(1− a)).

The cooperative Scatchard equation is:

Be/Fe = k0(B0 +G0 −Be)/(1 + (1− a)Be/(a(G0 +B0))).

The cooperative Hill equation is obtainable by substitution from the cooperative Michaelis-Menten
(2) equation above, however, it can be plotted in MLAB, without using explicit algebra, as follows,
assuming B0, G0, k0, and a are already set, with a 6= 1.

FCT BE(FE) = (B0+G0)*(-A*(1+K0*FE)+ \

SQRT(A*A*(1+K0*FE)^2+4*A*(1-A)*K0*FE))/(2*(1-A))

FUNCTION HILLT(BE) = LOG((BE/(G0+B0))/(1-BE/(G0+B0)))

LFEV = -12:2:.2

M = LFEV &’ (HILLT ON BE ON EXP ON LFEV)

DRAW M

The Hill-plot matrix M has rows which are points of the form:

log((Be/(G0 +B0))/(1−Be/(G0 +B0))) vs. log Fe.

Normally a Hill-plot, as defined above, is a straight line with slope 1, however, this is not the case
for a 6= 1. DeMeyts has shown that, in general, the slope

d(log((Be/(G0 +B0))/(1−Be/(G0 +B0))))/d(log Fe)

decreases when a decreases and increases when a increases, and attains its minimum value when
Fe = 1/k0, independently of a.


