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0.1 Minimal Models for Insulin-Glucose Interaction

Mathematical models describing glucose and insulin blood levels have been developed and used
by Dr. Richard N. Bergman and co-workers since the 1970’s. These models are designed to “fit”
frequently-sampled intravenous glucose tolerance data (FSIGT) in humans (and other species, e.g.
dogs). (See references 1-5.) The basic blood glucose model consists of a pair of coupled ordinary
differential equations that describe the decay back to “equilibrium” of blood glucose following an
injection of glucose. The blood insulin level curve is described either by an empirical curve based
on measurements starting at peak blood insulin level and decaying, or by an additional auxillary
differential equation describing this decay; in this latter case, we have a combined blood glucose,
blood insulin model. The blood insulin differential equation by itself (with a numerically-defined
blood glucose function) is called the blood insulin model. Thus we have three models: the blood
glucose model, the blood insulin model, and the combined blood glucose-insulin model.

These models are called “minimal models” by their authors, since they are very simple “phe-
nomenological” models. None of these minimal models are physiologically realistic; they are purely
descriptive. They do not incorporate any of the knowledge about the hormones and biochemical
pathways involved in glucose-insulin interaction and the metabolic uptake of glucose thus enabled.
Nevertheless, these models can be valuable as a descriptive research tool and also as a diagnostic
tool, where the characterization of observations is desired, as opposed to a description of mecha-
nisms.

In a typical FSIGT test, blood samples are taken from a fasting subject at regular intervals of time,
following a single intravenous injection of glucose. (Although samples irregularly spaced in time
can be accomodated as well.) The blood samples are then analyzed for glucose and insulin content.
The figure below shows a typical response from a normal subject.
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The situation being modeled starts shortly after an injection of glucose. We ignore the fast initial
rise of glucose and suppose the glucose level in blood starts at an elevated level occuring shortly
after the injection, and then generally drops to a minimum which is usually below the basal (pre-
injection) glucose level; then the glucose level gradually rises back to the basal level as glucose is
produced in the liver.
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Depending on the state of the subject, there can be wide variations in these responses; for example,
the glucose level may not drop below basal level, the first peak in insulin level may have different
amplitudes, there may be no secondary peak in insulin level, or there may be more than two peaks
in insulin level.

The glucose and insulin minimal models provide a quantitative and parsimonious description of
the glucose and insulin concentrations in the blood following the glucose injection. The glucose
minimal model involves two physiologic “compartments”: a blood compartment and an interstitial
tissue compartment; the insulin minimal model involves only the blood compartment. In the
blood compartment, functions G and I giving the blood glucose level and blood insulin level in the
compartment are defined, and in the interstitial compartment, a function X defining the interstitial
insulin level is defined.

Similarly, whether numerically-defined or not, the blood insulin level function is also a decaying
function – it does not describe the initial rise in insulin due to the glucose injection.

The following diagram summarizes the minimal model for glucose kinetics:

We write ∼ p3 and ∼ p1 to indicate that these parameters are multiplied by terms which may
“switch sign” to effect “bi-directional flow”.

We assume insulin enters the interstitial tissue compartment from the blood compartment, or leaves
the interstitial tissue compartment and goes into the blood compartment, at a rate proportional to
the difference between the blood insulin level, I(t), and the basal blood insulin level, Ib; if the blood
insulin level falls below the basal level, insulin leaves the interstitial tissue compartment, and if the
blood insulin level rises above the basal level, insulin enters the interstitial tissue compartment.
Insulin also disappears from the interstitial tissue compartment via a second pathway at a rate
proportional to the amount of insulin in the interstitial tissue compartment; this represents the
insulin taken up in cells and not returned to the interstitial compartment.



4

Thus with X(t) denoting the interstitial insulin concentration at time t, we have the rate of change

of X,
dX(t)

dt
, given by:

dX(t)

dt
= p3 · (I(t)− Ib)− p2 ·X(t)

Here t is time, X(t) is the interstitial insulin concentration at time t, I(t) is the blood insulin
concentration at time t, and Ib is the basal blood insulin concentration. We assume X(0) = 0 at
the start of the response to the challenge glucose injection.

The non-negative rate parameters p3 and p2 are the proportionality constants of the flow of insulin
from or to the blood compartment and from the interstitial compartment into cells. Note when
I(t) − Ib is negative, the term p3 · (I(t) − Ib) is negative and insulin flows back into the blood
compartment.

Let G(t) denote the blood glucose concentration at time t. We assume glucose leaves or enters the
blood compartment at a rate proportional to the difference between the blood glucose level, G(t),
and the basal blood glucose level, Gb; if the blood glucose level falls below the basal level, glucose
enters the blood compartment, and if the glucose level rises above the basal level, glucose leaves the
blood compartment. The source or destination of this glucose is unspecified; there is no attempt
in this model to account for the distribution of “mass” among compartments.

Glucose also disappears from the blood compartment via a second pathway at a rate proportional to
the amount of insulin in the interstitial tissue. This pathway represents the uptake and utilization
of glucose in cells enabled by insulin there.

Thus we have:

dG(t)

dt
= p1 · (Gb −G(t))−X(t) ·G(t)

Here t is time, G(t) is the blood glucose concentration at time t, and Gb is the basal blood glucose
concentration. We assume G(0) = G0, where G0 is the blood glucose concentration at the peak
level obtained after the challenge glucose injection; G0 is generally determined directly from the
measured data, although it can instead be a fitting parameter. As before the function X(t) is the
interstitial insulin concentration at time t.

The non-negative rate parameter p1 is the proportionality constant of the flow of glucose from or
to the blood compartment. Note when Gb −G(t) is negative, the term p1 · (Gb −G(t)) is negative
and glucose flows back into the blood compartment (presumably from the liver).

Basal blood concentrations of glucose and insulin are typically measured either before, or 180
minutes after, administration of glucose; these measurements determine the values of Gb and Ib.
There are three unknown parameters in this model: p1, p2, and p3, or four unknown parameters if
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G0 is not determined from the data, but is treated as an unknown parameter to be estimated, just
like p1, p2, and p3.

The blood concentration of insulin in the glucose model as described by the function I(t) is generally
given by a data table, i.e., I(t) is empirically-defined and computed with interpolation in a table
of observation values. (We can also posit a differential equation model for I(t), i.e., we can employ
the minimal insulin model in combination with the glucose model as mentioned before.)

The glucose minimal model thus consists of two ordinary differential equations defining the functions
G(t) and X(t), and involving the auxillary function I(t), given either by numerical data, or by a
third differential equation.

Note that in the differential equation for G, glucose is utilized at the constant rate p1, when
we neglect feedback effects due to the “flow” of interstitial insulin as represented by the term
−X(t) ·G(t). However, an additional amount of blood insulin will cause the amount of interstitial
insulin to change, which in turn, will cause the rate of glucose utilization to change.

Fitting the glucose minimal model to FSIGT test data gives us estimates of the parameters p1, p2,
and p3, and we can then compute two metabolic indices:

• SI = insulin sensitivity: the dependence of fractional glucose disappearance on blood insulin
level, (SI is given in the unit: (milliliter minute / micro-insulin unit)).

• SG = glucose effectiveness: the fractional ability for blood glucose concentration to decrease
independent of increased insulin, (SG is given in the unit: 1/minutes);

The insulin sensitivity is defined as SI = p3/p2 and the glucose effectiveness is defined as SG = p1.
Glucose effectiveness measures how rapidly glucose leaves the blood, and insulin sensitivity measures
how the utilization of glucose increases in response to changes in the blood insulin level.

Fitting the Glucose Minimal Model with MLAB

Now we will demonstrate the use of the mathematical modeling computer program MLAB to fit
the glucose minimal model described above to observed insulin and glucose levels in blood resulting
from a FSIGT test and use the obtained parameters to determine values of the metabolic indices
for the given data.

Bergman, et. al., [3] provide the following FSIGT test data (also shown in the graphs above) from
a normal individual:
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time (minutes) glucose level (mg/dl) insulin level (µU/ml)

0 92 11
2 350 26
4 287 130
6 251 85
8 240 51
10 216 49
12 211 45
14 205 41
16 196 35
19 192 30
22 172 30
27 163 27
32 142 30
42 124 22
52 105 15
62 92 15
72 84 11
82 77 10
92 82 8
102 81 11
122 82 7
142 82 8
162 85 8
182 90 7

Using MLAB, or a spreadsheet program, or a text-editor program, (including the editor invoked
by the MLAB “edit file” command), these numbers can be entered and stored in an ASCII text file
named "minmod1.dat", and we assume this is the case. (Note the sampling times are not uniformly
spaced here.)

We want to fit the glucose model discussed above to this data to estimate the unknown parameters
p1, p2, p3, and later to improve our estimates of G0 and Gb.

We will fit the glucose minimal model to our data, using the given time-course blood insulin data
to define the empirical insulin function I with linear interpolation. In this case we will estimate the
unknown parameters p1, p2, p3, taking G0 to be the maximum value seen in the data and taking
Gb and Ib to be the basal levels seen in the data; and then we will fit the glucose minimal model to
our data again, to estimate the unknown parameters p1, p2, p3, G0, and Gb, using the maximum
value seen in the data as our initial guess for G0, and the basal glucose level seen in the data as
the initial guess for Gb. We shall see that for the given data, there is not much difference in the
data-defined values of G0 and Gb and the values estimated by curve-fitting.

The following MLAB commands compute estimate values for the parameters p1, p2, p3, and G0

given the time course of blood glucose and insulin. The values of the parameters found minimize,
in the least squares sense, the weighted difference between the measured time course of blood
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glucose and the parameter-dependent solution to the glucose minimal model differential equations.
The blood insulin concentration function I(t) is obtained by linear interpolation of the time-insulin
values listed in "minmod1.dat". This is done by employing the MLAB linear-interpolation function
"LOOKUP" where LOOKUP(idat, t) is the value v obtained by linear interpolation in the two-column
data matrix idat whose first column corresponds to the time value t and whose second column
contains the corresponding measured blood-insulin level, i.e., the rows of idat are data points
on the empirical I(t) curve, and “missing” data is obtained by linear interpolation. (Note, text
delimited by /* and */ are explanatory comments and ignored by MLAB.)

MLAB is an interpreter that provides means to read data, define functions and ordinary differential
equations with initial conditions, and estimate values of parameters appearing in the functions and
derivatives, possibly specified by ordinary differential equations, to minimize the difference between
data and the corresponding functions. Thus, we run MLAB, in order to enter MLAB commands,
as shown below. (In practice, we would put these commands in a text-file called a “do-file”, and
command MLAB to execute this do-file; this use of an MLAB “program” allows easy correction of
errors and reuse whenever desired.)

We begin by reading the data file minmod1.dat consisting of time values in column 1, blood glucose
levels in column 2, and blood insulin levels in column 3. The argument ‘50’ specifies that there are
at most 50 rows of data.

data = read(minmod1,50,3)

Then we set the variable n to the number of time values (i.e., the number of rows in the data),
and we set the two-column array gdat to the (time,glucose level) ordered pairs and the two-column
array idat to the (time,insulin level) ordered pairs.

m = nrows(data);

gdat = data col (1,2);

idat = data col (1,3);

Next we define the glucose minimal-model involving the following functions, variables, and param-
eters:

• t is time.

• g(t) is the blood-glucose level function, and g(0)=g0 is the initial value of g at time 0.

• g’t(t) is the derivative (rate-of-change) of the blood glucose level.

• x(t) is the interstitial insulin level function, and the initial value of x, x(0) is 0.

• x’t(t) is the derivative (rate-of-change) of the interstitial insulin level.

• i(t) is the blood insulin level, empirically-defined by interpolation in the array idat.
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• gb is the basal (180 minute fasting blood glucose level).

• ib is the basal (180 minute fasting blood insulin level).

• g0 is the initial maximal blood glucose concentration (just after glucose bolus is input and
mixed).

• p1 is the rate of glucose transport from or to the blood compartment.

• p2 is the rate of insulin transport from the interstitial compartment.

• p3 is the rate of insulin transport between the blood and the interstitial compartment.

The following MLAB commands define the model:

fct g’t(t) = -p1*(g(t) -gb) - x(t)*g(t)

fct x’t(t) = p3*(i(t) -ib) - p2*x(t)

fct i(t) = lookup(idat,t) /* define i(t) by interpolation of data */

init g(0) = g0; /* initial condition required to integrate g’t */

init x(0) = 0.0 /* initial condition required to integrate x’t */

gb = gdat(m,2) /* Here we get the constants gb and ib from the input data. */

ib = idat(m,2)

/* Assign g0 the initial amount of injected glucose.*/

g0 = 287;

/* give initial estimates for parameters p1,p2,p3 */

p1 = .0399; p2 = .02; p3 = .00004;

Next, we define weights and constraints, guess parameters and do the fit. The early time glucose
data is weighted as 0 because mixing in early time is not complete. We use a reciprocal proportion
of each glucose data value. (This is essentially assuming the error in each data value is proportional
to the observed value.)

/* define weights for glucose level data, censoring data up to time t = 8 */

fct wf(i) = if gdat(i,1) < 8 then 0 else (1/(.015*gdat(i,2)))

ws = wf on 1:m

/* define constraints for p1, p2, p3, and g0 */

constraints q = {p1>0,p2>0,p3>0,g0>0}

/* fit the model to the weighted data with defined constraints */

fit (p1,p2,p3), g to gdat with weight ws constraints q
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We obtain the following output, with the parameters p1, p2, and p3, reset to the indicated values:

final parameter values

value error dependency parameter

0.03139866193 0.00247080549 0.8747052697 P1

0.01877500745 0.007483039124 0.9275506889 P2

9.491576611e-06 3.029515132e-06 0.9622345353 P3

12 iterations

CONVERGED

best weighted sum of squares = 2.070259e+02

weighted root mean square error = 3.139805e+00

weighted deviation fraction = 2.542746e-02

R squared = 6.760559e-01

no active constraints

Now we graph our data and the corresponding estimated or fitted functions that make up the
minimal model for the individual with the given blood glucose and insulin levels. To display graphs
of (1) the fitted glucose level function G and the blood glucose data versus time, with a horizontal
dashed line shown at the basal level, (2) the fitted interstitial insulin function X versus time, and
(3) the blood insulin level function I defined by interpolated data versus time,

The following commands display the estimated blood glucose curve that fits the blood glucose
data, together with the blood glucose data. Here tstart:tend!200 is the column vector (list)
of 200 numbers starting with tstart, and ending with tend, with the equally-spaced step-size
(tend-tstart)/200.

The expression points(g,tstart:tend!200) constructs a 2-column matrix (table) of points (t,g(t))
for t ranging through the values in the list (vector) tstart:tend!200. Note, constructing this table
of points for drawing requires MLAB to solve our system of ordinary differential equations!

The expression list(tstart,gb,tend,gb) is the list (column vector) of the four numbers tstart,
gb, tend, gb, and the shape operation shape(2,2,list(tstart,gb,tend,gb)) re-forms this 4-
element list into the 2-row, 2-column table:

tstart gb

tend gb

which represents the two points (tstart,gb) and (tend,gb); these two points are drawn with the
pointtype circle of size .01, and a connecting dashed-line is also drawn.

/* Draw the estimated blood glucose curve and the blood glucose data */

tstart = gdat(1,1); tend = gdat(m,1)

draw points(g, tstart:tend!200)

draw gdat lt none pt circle ptsize .01

draw shape(2,2,list(tstart,gb,tend,gb)) lt dashed pt circle ptsize .01
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left title "glucose level (mg/dl)"

bottom title "time (min)"

top title "GLUCOSE DATA and FITTED CURVE"

window adjust wslack

view

Now, hitting any key will resume MLAB, allowing further commands to be given. We remove the
picture from the screen with the command unview. Then we discard the default-window w (so we
can reuse it without “adding” to it) with the command delete w. (We can write del w for short.)

unview

del w

Here is the graph of the interstitial insulin curve X:

/* Draw the estimated interstitial insulin curve */

draw points(x, tstart:tend!200)

left title "interstitial insulin"

bottom title "time (min)"

top title "INTERSTITIAL INSULIN CURVE"

window adjust wslack

view
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Again, hitting any key will resume MLAB, and we remove the picture from the screen and delete
the default-window.

unview

del w

Here is the blood insulin level function I defined by interpolated data versus time:

/* Draw the blood insulin data curve */

draw idat lt none pt circle ptsize .01

draw shape(2,2,list(tstart, ib, tend, ib)) lt dashed pt circle ptsize .01

left title " insulin level (’15Tm’RU/ml)"

bottom title "time (min)"

top title "INTERPOLATED BLOOD INSULIN CURVE"

window adjust wslack

view
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Again, hitting any key will resume MLAB. The picture is removed from the screen and the window
is deleted with the following commands:

unview

del w

Now we compute and type-out the derived descriptive measures: glucose effectiveness and insulin
sensitivity.

type "glucose effectiveness:", p1

And we obtain the result:

glucose effectiveness:

P1 = 3.13986619E-2

type "insulin sensitivity:", p3/p2

And we obtain the result

insulin sensitivity:

= 5.05543161E-4
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Note again, all the above MLAB commands can be “encapsulated” in a text-file called an MLAB

do-file suitable for multiple uses that can be invoked with the MLAB DO-command.

Now we will fit our glucose data again using the empirical LOOKUP-defined insulin data as above,
but adding the two additional parameters g0 and gb corresponding to the initial and basal glucose
levels, respectively; previously, these two parameters were “manually” estimated from the data.

fit (p1,p2,p3,g0,gb), g to gdat with weight ws constraints q

to which MLAB responds:

final parameter values

value error dependency parameter

0.02119053799 0.01088355415 0.9956186342 P1

0.01446844628 0.02553591482 0.9996188937 P2

1.631449439e-05 8.098939899e-06 0.997963305 P3

260.2693961 6.71727314 0.9006147807 G0

113.3638794 37.87515246 0.9988722492 GB

13 iterations

CONVERGED

best weighted sum of squares = 1.096825e+02

weighted root mean square error = 2.402658e+00

weighted deviation fraction = 2.137497e-02

R squared = 7.140117e-01

no active constraints

Note that this fit using the additional parameters g0 and gb changed our estimates of p1 from 0.034
to 0.021; p2 from 0.0188 to 0.0145; and p3 from 9.5e-6 to 1.6e-5. However, the quality of the fit is
not very different.

Computing the derived descriptive measures, glucose effectiveness and insulin sensitivity for these
parameter estimates yields:

type "glucose effectiveness",p1

glucose effectiveness:

P1 = .021190538

type "insulin sensitivity",p2/p3

insulin sensitivity:

= 1.12759132E-3
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These values differ from before by factors of ∼ 100 percent, so these measures may not be reliably
estimatible based on the results of curve-fitting.

The Minimal Model for Insulin Kinetics:

The following diagram summarizes the minimal model for insulin kinetics; here we define the
concentration of insulin in the blood as being increased at a rate proportional to the concentration
of glucose in excess of the basal concentration multiplied by the time since the glucose bolus
injection, and decreased at constant rate η.

We write ∼ γ to indicate that γ is not a simple proportionality constant, but is used to provide a
modified-flow term which may be bi-directional, as seen below.

The differential equation for insulin kinetics is the following equation; we can employ this equation
defining the blood insulin level I in place of using the empirical function obtained by interpolation
and replace the differential equation definition of G with a LOOKUP-defined numerical definition.
When we do this, we have the two unknown parameters γ and η, and, if we need to treat the
introduced parameters I0 and/or h as unknown parameters to be estimated, they become additional
unknown parameters. These parameters can then be determined by curve-fitting the blood insulin
data: this is the insulin minimal model. (When we fit both the insulin and the glucose data to
ODE-defined functions having all 8 parameters, we have the combined minimal model.)

We have

dI(t)

dt
=

{

−η · I(t) + γ · (G(t)− h) · t, if G(t) > h
−η · I(t), otherwise.

with I(0) = I0. Here t is time, I(t) is the blood insulin level at time t, η is the insulin clearance
fraction, γ is a measure of the secondary pancreatic response to glucose, and h is roughly the basal
blood glucose level; thus it would be appropriate to replace h by the variable Gb introduced earlier,
however, we keep these two variables distinct following Pacini, et.al.

In the above differential equation, insulin enters the blood compartment at a rate proportional to
the product of time and the concentration of glucose above a threshold amount. Here, as before,
time is the interval, in minutes, from the glucose injection. If the blood glucose level drops below the
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threshold amount, the rate of insulin entering the blood compartment is zero. Insulin is cleared from
the blood compartment at a rate proportional to the amount of insulin in the blood compartment.

Note particularly the rate of change of insulin due to the amount of glucose present at time t is
not a constant; it is the linear function of t: −γ(G(t)− h)t. Presumably Bergman et.al. found this
non-standard formulation descriptively effective.

We may take the differential equation above defining the function I for insulin decay following
a glucose injection by itself to be the insulin minimal model. In this insulin minimal model, the
function G(t) giving the course of blood glucose in time may be defined by interpolation of measured
time-glucose values, just as blood insulin was treated in the minimal model for glucose kinetics.

Fitting the insulin minimal model, provides estimates for η, γ, and h and we can then compute
two more metabolic indices:

• φ1 = first phase pancreatic responsiveness: a measure of the size of the first peak in blood in-
sulin due to the glucose injection, (φ1 is given in the unit: (micro-insulin unit) minute/milligram).

• φ2 = second phase pancreatic responsiveness: a measure of the size of the second peak of
blood insulin which follows the first peak and the refractory period, (φ2 is given in the unit:
(micro-insulin unit) / milligram).

The first phase pancreatic responsiveness is defined as φ1 =
Imax − Ib

η · (G0 −Gb)
where Imax is the maxi-

mum insulin value seen in response to the glucose injection (often, Imax = I0). The second phase

pancreatic responsiveness is defined as φ2 = γ × 104.

Fitting the Insulin Minimal Model with MLAB

Below we show the use of MLAB to fit the insulin minimal model to our data, using the given
time-course blood glucose data to define the glucose function G as an empirical function defined
with linear interpolation via the MLAB LOOKUP function. In this case we will estimate the unknown
parameters η and γ, taking h = Gb as estimated before, and taking I0 to be the maximum value
seen in the data.

Thus we replace the function i (defined above via the LOOKUP function) with an initial condition
and define the corresponding ODE. Note we use the MLAB variable cf as a synonym η.

delete i

init i(0) = i0

fct i’t(t) = -cf*i + gama*t*(if g(t) < gb then 0 else (g - gb) )

Also, we replace the initial condition g(0) we defined above with the LOOKUP-defined blood level
glucose function that computes glucose levels by interpolation. Note the ODE g’t is still defined
as before. Of course it is now of no use, and would be of no value in computing the derivative of
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g, but, it is harmless to have g’t left in memory, and it may be convenient if we restore g to be an
initial conditon again.

/* Define g(t) empirically. */

fct g(t) = lookup(gdat, t)

Redefining G

Note MLAB warns us we are redefining the extant symbol G.

The variables, parameters, and functions thus defined are:

• t is time.

• g(t) is blood glucose level (estimated by interpolation).

• i(t) is blood insulin level..

• x(t) is interstitial insulin.

• gb is basal (180 min) blood glucose level h (measured, not estimated).

• g0 is the initial ”maximum” blood glucose level after bolus input.

• ib is basal (180 min) blood insulin level.

• p1 is the rate of glucose transport from or to the blood compartment.

• p2 is the rate of insulin transport from the interstitial compartment.

• p3 is the rate of insulin transport between the blood and the interstitial compartment.

• cf is the insulin clearance fraction η.

• gama is a measure of secondary pancreatic response.

• i0 is the initial blood insulin concentration.

The basal blood glucose level gb occurs in the ODE for i(t). We may want a separate parameter
here - say gb1, as well as gb, so their values can be different; we would then have 8 parameters.
Otherwise, we have the 7 unknown parameters: p1, p2, p3, g0, cf, gama, and i0. However, p1, p2,
p3, and g0 have been provisionally determined in our first curve-fit.

Now we will fit the ODE-defined function i to the insulin data to determine the two parameters
cf and gama, using a LOOKUP-defined function to give the glucose data.

As usual, we must assign our parameters initial “guess” values (this is already done for p1, p2, p3,
and g0), and we must also assign all other parameters appropriate values as well. Also weights for
the insulin data and constraints for our fitting paramenters must be defined prior to fitting.
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/* define weights for blood insulin data, censoring data up to time t = 3 */

fct wfi(i) = if idat(i,1) < 3 then 0 else if idat(i,1) <= 8 then 10 else 1

wsi = wfi on 1:m

/* define constraints for cf, gama, and i0 */

constraints qi = {cf>0, gama>0, i0>0, gb >0}

/* give initial estimates for parameters cf, gama, and i0 */

cf = .3; gama = .003349; i0 = 410.4; /* gb = 89.5 */

/* fit the model to the weighted data with defined constraints. */

fit (cf, gama), i to idat with weight wsi constraints qi

final parameter values

value error dependency parameter

0.3007110142 0.005198555363 0.5025318792 CF

0.007499870853 0.0008084458361 0.5025318792 GAMA

2 iterations

CONVERGED

best weighted sum of squares = 1.700473e+03

weighted root mean square error = 8.791713e+00

weighted deviation fraction = 3.696547e-02

no active constraints

Now we may compute the insulin minimal model phase-1 pancreatic responsiveness and the phase-2
pancreatic insulin responsiveness:

type "phase 1 pancreatic responsiveness", \

(maxv(idat col 2) -ib)/(cf*(g0 -gb))

phase 1 pancreatic responsiveness

= 2.78431054

type "phase 2 pancreatic responsitiveness", 10000*gama

phase 2 pancreatic responsiveness

= 74.9987085

Now we will display the insulin minimal model function i specifying the estimated blood insulin
curve and the corresponding data. Also, as above, we will display the interstitial insulin curve and
the LOOKUP-defined glucose level function and data versus time. The basal levels are graphed with
horizontal dashed lines.
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/* Draw the blood insulin data curve */

draw idat lt none pt circle ptsize .01

draw points(i, tstart:tend!200)

draw shape(2,2,list(tstart, ib, tend, ib)) lt dashed pt circle ptsize .01

left title " insulin level (’15Tm’RU/ml)"

bottom title "time (min)"

top title "INSULIN DATA AND INTERPOLATED CURVE"

window adjust wslack

view

as before, the following commands remove and delete the default-window from the screen:

unview

del w

/* Draw the estimated interstitial insulin curve */

draw points(x, tstart:tend!200)

left title "interstitial insulin"

bottom title "time (min)"

top title "INTERSTITIAL INSULIN CURVE"

window adjust wslack

view
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unview

del w

/* Draw the LOOKUP-estimated blood glucose curve

based on the glucose data */

draw points(g, tstart:tend!200)

draw gdat lt none pt circle ptsize .01

draw shape(2,2,list(tstart,gb,tend,gb)) lt dashed pt circle ptsize .01

left title "glucose level (mg/dl)"

bottom title "time (min)"

top title "GLUCOSE DATA AND INTERPOLATED CURVE"

window adjust wslack

view
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Now we will add the parameters i0 and gb, representing the initial insulin level and basal glucose
level, respectively, and see if this improves our parameter estimates, i.e., improves our fit. We
will note the trade-off that introducing more estimatible parameters results in a better fit, but
likewise more uncertain estimates; we must take care not to over-fit our data, i.e., introducing so
many parameters in a suitably-compliant model that a good-fit is virtually guaranteed, without
any descriptive value – this no better than “data-smoothing”.

fit (cf, gama, gb, i0 ), i to idat with weight wsi constraints qi

final parameter values

value error dependency parameter

0.2693951062 0.01660485288 0.9639201396 CF

0.004294623142 0.0007351212032 0.7511264202 GAMA

86.20282248 2.824407014 0.2385684391 GB

366.1383092 27.37151538 0.9492837435 I0

5 iterations

CONVERGED

best weighted sum of squares = 1.284440e+03

weighted root mean square error = 8.013863e+00

weighted deviation fraction = 2.792236e-02

no active constraints

We note that in this case, while CF has changed by ten percent, GAMA has changed by more than
forty percent from the values CF = 0.3007 and γ = .0075, obtained earlier from fitting the insulin
model with the LOOKUP-defined glucose curve.

At this point we have estimates for cf, gama, i0, and gb. When these parameters have been
estimated for a given data set, as they have here, we can then compute:
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• φ1 = phase 1 pancreatic responsiveness defined as (Imax−Ib)
η·(G0−Gb)

as introduced on page 15. This

may be computed in MLAB as (maxv(idat col 2) -ib)/(cf*(g0 -gb)) (Here g0 is the
maximum glucose level and gb is the basal glucose level, and maxv(idat col 2) is the maxi-
mum blood insulin level and ib is the basal blood insulin level. The maxv(m) function returns
the maximum value in the matrix or vector m.)

[Note rather than computing the maximum value of the insulin data in idat, we could use the
maximum value of the i function in the study interval.]

• φ2 = phase 2 pancreatic responsiveness = 10000 · gama

Now we may again compute φ1 and φ2 based on these changed parameter values.

type "phase 1 pancreatic responsiveness", \

(maxv(idat col 2) -ib)/(cf*(g0 -gb))

phase 1 pancreatic responsiveness

= 2.6230105

type "phase 2 pancreatic responsiveness", 10000*gama

phase 2 pancreatic responsiveness

= 42.9462314

The Combined Minimal Model

Note we can combine the insulin minimal model and the glucose minimal model to obtain the
combined minimal model with the parameters η, γ, h, I0, p1, p2, p3, Ib, Gb, and G0. Recall cf is the
synonym for η that is used in our MLAB commands. In this case, we do not use any data-defined
functions. The combined model allows us to simultaneously estimate all 8 parameters by fitting
two ODE-defined functions to corresponding data. We can then characterize the FSIGT test data
in terms of all four metabolic parameters: SI , SG, φ1, and φ2.

The combined minimal model is:

dG(t)

dt
= p1 · (Gb −G(t))−X(t) ·G(t)

dX(t)

dt
= p3 · (I(t)− Ib)− p2 ·X(t)
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dI(t)

dt
=

{

−η · I(t) + γ · (G(t)− h) · t, if G(t) > h
−η · I(t), otherwise.

with the initial conditions G(0) and I(0); the two baseline values Gb and Ib; the four rate parameters
p1, p2, p3, and η; and the time coefficient γ, to be assigned values or estimated by fitting. (Note,
X(0) is assumed to be 0.)

In order to fit the combined minimal model, we restore the initial condition g and the ode g’t

(note it is unneccesary to re-specify g’t).

fct g’t(t) = -p1*(g(t) -gb) - x(t)*g(t)

Redefining G DIFF T

init g(0) = g0

This results in the following notification by MLAB:

Redefining G

all derivatives of G have been deleted

Note, each time the FIT command is executed, MLAB defines and evaluates derivatives of the
objective function with respect to the parameters. Although we have explicitly defined only the
derivative of g with respect to t, MLAB has defined the derivatives of g’t with respect cf, gama,
gb, and i0.

A set of constraints limiting each of the parameters to positive values is specified with the constraints
command:

constraints q1 = {cf>0,gama>0,gb>0,p1>0,p2>0,p3>0,i0>0,g0>0}

As before, the following MLAB FIT command will invoke the MLAB ODE solver as it seeks model
parameter values. The ODE solver is a multi-method algorithm that is controlled by several
pre-defined system variables. For example, derivatives of the function to be fit with respect to
the parameters whose values we seek–i.e., the Jacobian matrix, will be computed symbolically
or numerically, based on the value of the system-control variable jacsw. Another system-control
variable disastersw controls to what extent errors during ODE solving–such as truncation error,
are reported. The method control-variable is used to select the method used; here the stiff-solver
implementing a second-order implicit Gear’s method is appropriate. The following system variable
values have been found to be appropriate for this application:

jacsw = 1; /* use symbolic derivatives when computing Jacobian matrix elements */

disastersw = -2; /* do not report tolerance errors */

method = gear; /* use Gear’s ODE solving method */
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With these control variables set, we proceed with the FIT command:

fit (cf,gama,gb,p1,p2,p3,i0,g0), i to idat with weight wsi, \

g to gdat with weight ws constraints q1

final parameter values

value error dependency parameter

0.2723679397 0.01331368503 0.9765325721 CF

0.004247946093 0.0005221003783 0.8287921659 GAMA

80.26707677 2.223166601 0.309390387 GB

0.01352582347 0.0110378567 0.9961323864 P1

0.06124157093 0.01727076606 0.9642794685 P2

2.302478892e-05 1.342490057e-05 0.9954685655 P3

373.0904137 49.86853519 0.9936606778 I0

294.8682961 24.3393896 0.9650664307 G0

9 iterations

CONVERGED

best weighted sum of squares = 1.054870e+03

weighted root mean square error = 5.135343e+00

weighted deviation fraction = 2.710210e-02

R squared = 3.740108e-01

no active constraints

Now we may compute SI , SG, φ1 and φ2:

type "insulin sensitivity", p3/p2

insulin sensitivity

= 37.59667

type "glucose effectiveness", p1

glucose effectiveness

= 0.0135258

type "phase 1 pancreatic responsiveness", \

(maxv(idat col 2) -ib)/(cf*(g0 -gb))

phase 1 pancreatic responsiveness

= 2.10434499
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type "phase 2 pancreatic responsiveness", 10000*gama

phase 2 pancreatic responsiveness

= 42.4794609

Now, we will graph the g function and the corresponding data, the i function and the corresponding
data, and the x function resulting from fitting the combined minimal model.

/* Draw the blood insulin data curve */

draw points(i, tstart:tend!200)

draw idat lt none pt circle ptsize .01

draw shape(2,2,list(tstart, ib, tend, ib)) lt dashed pt circle ptsize .01

left title " insulin level (’15Tm’RU/ml)"

bottom title "time (min)"

top title "COMBINED MINIMAL MODEL: INSULIN"

window adjust wslack

view

unview

del w

/* Draw the estimated interstitial insulin curve */

draw points(x, tstart:tend!200)

left title "interstitial insulin"

bottom title "time (min)"
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top title "COMBINED MINIMAL MODEL: INTERSTITIAL INSULIN"

window adjust wslack

view

unview

del w

/* Draw the estimated blood glucose curve and the blood glucose data */

draw points(g, tstart:tend!200)

draw gdat lt none pt circle ptsize .01

draw shape(2,2,list(tstart,gb,tend,gb)) lt dashed pt circle ptsize .01

left title "glucose level (mg/dl)"

bottom title "time (min)"

top title "COMBINED MINIMAL MODEL: GLUCOSE"

window adjust wslack

view
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These results show that, as is common, there is not a unique set of parameters that characterize
a FSIGT test data set. The combined minimal model is seen to generate slightly lower values for
glucose effectiveness and insulin sensitivity than the glucose minimal model, and slightly higher
values for phase 1 and 2 pancreas responsiveness than the insulin minimal model.

There are various devices that could be explored in order to improve the family of models studied
here. First, these models employed the MLAB operator "LOOKUP" to linearly interpolate blood
glucose and insulin time course data. Alternatively, the MLAB operator "SMOOTHSPLINE" could
be used to provide blood glucose and insulin time course curves that are not only continuous, but
also have continuous first and second derivatives.

Second, several authors have augmented the insulin minimal model to account for blood levels of
C-peptide (see references 7-9). It is a straightforward exercise to implement the C-Peptide minimal
model using MLAB.

This paper has shown how MLAB can be used to calculate diagnostically important metabolic
indices which arise in the glucose and insulin minimal models from frequently-sampled intravenous
glucose tolerance test data. The MLAB program is an excellent tool for the study of compartmental
models. See www.civilized.com for further examples in neurophysiology and pharmacology.
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