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Since the 1950’s, many devices have been discovered which produce co-
herent, monochromatic, electromagnetic radiation by irradiating a sample
of solid, liquid, or gas that is contained in a chamber having dimensions
equal to some multiple of the radiation’s wavelength. Known as MASERs
or LASERs, these devices can be modelled in terms of chemical reactions
where photons, atoms, and molecules occupying different energy states are
the reactants and products. In this paper we use the MLAB mathematical
modelling program to model the chemical kinetics of systems that amplify
electromagnetic radiation by stimulated emission.

0.1 The Three State Model

This section refers to a system of atoms which can undergo transitions be-
tween three states (energy levels). Figure 1 shows the energy levels of the
three-state atom, and the types of transitions that can occur between them.
The states, in order of increasing energy, are designated A, B, and C. The
energies of the states are designated EA, EB, and EC , respectively.
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Figure 1

Three types of reactions are seen to occur: absorption reactions, sponta-
neous emission reactions, and induced (also known as stimulated) emission
reactions. The three spontaneous emission reactions are:
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Ks
CA

C → A+ ωCA

Ks
BA

B → A+ ωBA

Ks
CB

C → B + ωCB

The three absorption reactions are:

Ka
AC

A+ ωCA → C

Ka
AB

A+ ωBA → B

Ka
BC

B + ωCB → C

The three induced emission reactions are:

Ki
CA

C + ωCA → A+ 2ωCA

Ki
CB

C + ωCB → B + 2ωCB

Ki
BA

B + ωBA → A+ 2ωBA

In these reactions, ω represents a photon; its subscript specifies its fre-
quency. For example, ωCA is a photon with frequency (EC −EA)/h̄ where h̄
is Planck’s constant. We use K to represent the rate constant for the reac-
tion. The superscripts a, s, and i on K identify whether the rate constant
is for an absorption, spontaneous emission, or induced emission reaction,
respectively. The subscripts on K identify the reactant and product states
involved in the reaction. For example Ki

BA is the rate constant for the in-
duced emission reaction in which an atom in state B reacts with a photon
to produce an atom in state A and two photons.
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In a collection of N three-state atoms at equilibrium, the number of atoms
in the jth atomic state is given by the Boltzmann distribution,

Nj = N
e−Ej/kT

∑C
i=A e−Ei/kT

where j is the state label A,B, or C; T is the temperature in degrees Kelvin;
N is the total number of atoms in all states; and k is Boltzmann’s constant.
At room temperature and with the energies we are considering here, the
populations of states B and C are negligible when the system is at equilib-
rium.

In order to generate monochromatic, electromagnetic radiation of frequency
ωBC by stimulated emission, the collection of three-state atoms must get
energy in the form of photons of frequency (EC − EA)/h̄. This pumping of
the system disrupts the equilibrium distribution of states and creates a pop-

ulation inversion; the number of atoms in state C becomes greater than the
number of atoms in state B. When this condition exists, the presence of a
photon of frequency ωBC catalyzes the transition from C to B and produces
another coherent photon. If the population inversion can be maintained,
significant numbers of coherent photons can be produced.

Spontaneous emission reactions follow rate laws that depend only on the
number of atoms in the reactant state. Absorption and induced emission
reactions follow rate laws that depend on both the number of atoms in the
reactant state and the number of reactant photons. From these rules and
the nine reactions listed above, we can write six coupled chemical rate equa-
tions; one for the population of each of the three states and one for the
number of photons at each of the three different frequencies. Using NA(t),
NB(t), and NC(t) as the populations of states A, B, and C, respectively,
and NAB(t), NBC(t), and NAC(t) as the number of photons having fre-
quency (EB −EA)/h̄, frequency (EC −EB)/h̄, and frequency (EC −EA)/h̄,
respectively, the equations are:

dNA

dt
= −Ka

ACNAC(t)NA(t)−Ka
ABNAB(t)NA(t) +Ks

CANC(t) +Ks
BANB(t) +

Ki
CANAC(t)NC(t) +Ki

BANAB(t)NB(t)

dNB

dt
= −Ka

BCNBC(t)NB(t) +Ka
ABNAB(t)NA(t) +Ks

CBNC(t)−Ks
BANB(t) +

Ki
CBNBC(t)NC(t)−Ki

BANAB(t)NB(t)
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dNC

dt
= −

dNA

dt
−

dNB

dt
dNAB

dt
= −kaABNAB(t)NA(t) + ksBANB(t) + kiBANAB(t)NB(t)− kdABNAB(t)

dNAC

dt
= pumpAC(t)− kaACNAC(t)NA(t) + ksCANC(t) + kiCANAC(t)NC(t)− kdACNAC(t)

dNBC

dt
= −kaBCNBC(t)NB(t) + ksCBNC(t) + kiCBNBC(t)NC(t)− kdBCNBC(t)

The function pumpAC(t) represents the number of photons per second that
are put into the system to pump the ground state A atoms to the state C.
The terms kdABNAB(t) and kdACNAC(t) represent the number of photons per
second that are lost due to destructive interference in the chamber and the
term kdBCNBC(t) represents the number of ωBC photons per second that
escape from the chamber.

Using MLAB, we can assign values to the different rate constants, com-
pute the initial Boltzmann distribution of states, define the rate equations,
and integrate the rate equations for a continuous wave (CW) laser by exe-
cuting a script containing the following commands (comments are delimited
by /* and */):

/* assign values for constants */

k = 1.3806E-16 /* Boltzmann’s constant in erg/degree Kelvin */

h = 6.6261E-27 /* Planck’s constant in erg sec */

EA = 0.1E-11 /* energy of state A in ergs */

EB = 1.05E-11 /* energy of state B in ergs */

EC = 1.06E-11 /* energy of state C in ergs */

N = 1000 /* total number of A,B,C, state atoms */

Np = 10^10 /* total number of photons per second pumped into system */

tmp = 293 /* initial temperature in degrees Kelvin */

kaAB = 1.1e7 /* A->B absorption rate constant in 1/(second*photon) */

kaBC = 1.1e7 /* B->C absorption rate constant in 1/(second*photon) */

kaAC = 1.1e7 /* A->C absorption rate constant in 1/(second*photon) */

ksCA = 1.1e7 /* C->A spontaneous emission rate constant in 1/second */

ksCB = 1.1e7 /* C->B spontaneous emission rate constant in 1/second */

ksBA = 1.1e7 /* B->A spontaneous emission rate constant in 1/second */

kiCA = .1e7 /* C->A induced emission rate constant in 1/(second*atom) */

kiCB = .2e7 /* C->B induced emission rate constant in 1/(second*atom) */

kiBA = .3e7 /* B->A induced emission rate constant in 1/(second*atom) */
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kdAB = 1e9 /* B->A photon loss from chamber in 1/second */

kdBC = 1e7 /* C->B photon loss from chamber in 1/second */

kdAC = 1e9 /* C->A photon loss from chamber in 1/second */

/* initial A,B, and C populations from Boltzmann distribution */

fct g(e) = exp(-e/(k*tmp))

bf = g(EA)+g(EB)+g(EC)

init NA(0) = N*g(EA)/bf /* atoms */

init NB(0) = N*g(EB)/bf /* atoms */

init NC(0) = N*g(EC)/bf /* atoms */

/* initial BA, CB, and CA numbers of photons */

init NAB(0) = 0 /* photons */

init NBC(0) = 0 /* photons */

init NAC(0) = 0 /* photons */

/* photon rate due to pumping A->C transition */

fct pumpAC(t) = Np /* photons/second */

/* rate equations */

fct NA’t(t) = -kaAC*NAC(t)*NA(t)-kaAB*NAB(t)*NA(t)+ksCA*NC(t)\

+ksBA*NB(t)+kiCA*NAC(t)*NC(t)+kiBA*NAB(t)*NB(t)

fct NB’t(t) = -kaBC*NBC(t)*NB(t)+kaAB*NAB(t)*NA(t)+ksCB*NC(t)\

-ksBA*NB(t)-kiBA*NAB(t)*NB(t)+kiCB*NBC(t)*NC(t)

fct NC’t(t) = -NA’t(t)-NB’t(t)

fct NAB’t(t) = -kaAB*NAB(t)*NA(t)+ksBA*NB(t)+kiBA*NAB(t)*NB(t)-kdAB*NAB(t)

fct NAC’t(t) = pumpAC(t)-kaAC*NAC(t)*NA(t)+ksCA*NC(t)+kiCA*NAC(t)*NC(t)\

-kdAC*NAC(t)

fct NBC’t(t) = -kaBC*NBC(t)*NB(t)+ksCB*NC(t)+kiCB*NBC(t)*NC(t)-kdBC*NBC(t)

/* integrate the kinetics equations for 1 microsecond */

p = integrate(NA,NB,NC,NAC,NBC,NAB,0:.000001!250)

/* columns of p are t NA NA’ NB NB’ NC NC’ NAC NAC’ NBC NBC’ NAB NAB’ */
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Here the number of atoms, number of photons, and rate constants have
been conveniently chosen so that population inversions are achieved in the
allotted time scale. The time dependent population levels of each state
and the number of photons at each frequency are graphed by the following
commands:

/* draw the time dependence of the number of A’s, B’s, and C’s */

draw p col 1:2

draw p col (1,4) color green

draw p col (1,6) color red

no framebox

top title "population vs. time for CW laser"

title t1 = "N’1DA’1U(t)" at (.8,.275) ffract size .01

title t2 = "N’1DB’1U(t)" at (.8,.19) ffract color green size .01

title t3 = "N’1DC’1U(t)" at (.8,.7) ffract color red size .01

frame 0 to 1, .5 to 1

w1=w

draw p col (1,8)

draw p col (1,10) color green

draw p col (1,12) color red

no framebox

top title "photons vs. time for CW laser"

title t5 = "N’1DAC’1U(t)" at (.8,.25) ffract size .01

title t6 = "N’1DBC’1U(t)" at (.8,.75) ffract color green size .01

title t7 = "N’1DAB’1U(t)" at (.85,.16) ffract color red size .01

frame 0 to 1, 0 to .5

view

Figure 2 shows the resulting graph.
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Figure 2

Note that the populations reach steady state after 4×10−7 seconds and that
the steady state populations are then greater for state C than state B; this
is the expected population inversion in a laser.

The MLAB commands above model a laser that operates in a continuous
mode; the pump function is constant in time. We can model a pulsed laser
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by using the previous MLAB commands but with the following definition of
the pumping function:

/* define the pulsed input pump function */

fct pumpAC(t) = if (t*10000000-floor(t*10000000) < .5) then 10^10 else 0

This effectively modulates the input so that the pump alternates between 0
and 1× 1010 photons per second 107 times a second. The resulting popula-
tions and numbers of photons are graphed in Figure 3.
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Figure 3

In this figure, the population inversion is seen to be modulated at the fre-
quency of the pump pulses.

An important feature of this three-state model is that one can easily in-
vestigate how the population levels change with variations in any of the
input constants: N , Np, T , Ka

AB, Ka
BC , Ka

AC , Ks
CA, Ks

CB, Ks
BA, Ki

CA,
Ki

CB, K
i
BA, K

d
AB, K

d
BC , and Kd

AC . This makes the model given above an
important pedagogical tool.

0.2 The Atomic Hydrogen Laser

Another model is based on the lowest 10 energy/angular-momentum levels of
basic hydrogen. These 10 lowest energy/angular-momentum levels of basic
hydrogen are the 1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p, 4d, and 4f levels one learns
about in beginning and intermediate chemistry and physics courses. Note,
the atomic hydrogen laser is not a hydrogen MASER, which operates on the
two hyperfine levels of the 1s state. Hydrogen MASERs have been known
experimentally since the late 1950’s and are described in Reference 1.
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Figure 4

Figure 4 shows the lowest 10 levels of atomic hydrogen and the transitions
that are allowed by dipole selection rules. Each line connecting two states
represents three reactions: an absorption reaction, a spontaneous emission
reaction, and an induced emission reaction.
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The spontaneous emission rate constants for this system are calculated ex-
actly from equations (59.11), (63.1), (63.2), and (63.3) of Reference 2. The
absorption and induced emission rate constants are calculated from the val-
ues of the spontaneous emission rate constants and equations (8.5-1), (8.5-9),
and (8.5-10) of Reference 3.

In this computational model, we assume only the ground state is initially
populated (Boltzmann factors are not computed); and we continuously pump
the 1s → 4p transition. The decay rate constants, number of photons, and
number of atoms, are conveniently selected so that lasing occurs at a fre-
quency of (E4 − E3)/h̄. Here are the MLAB commands:

/* assign values for constants */

hb = 1.0546E-27 /* Planck’s constant divided by 2 pi in erg sec */

c = 2.9979E10 /* speed of light in vacuum (cm/sec)*/

ep = 4.8029E-10 /* proton charge in esu */

em = 9.1096E-28 /* mass of electron in grams */

a0 = 5.2917E-9 /* radius of 1st Bohr orbit in cm */

Z = 1 /* nuclear charge of hydrogen atom */

epau = 4.360E-11 /* ergs per atomic unit of energy */

N = 1e3 /* total number of atoms */

Np = 1e10 /* total number photons per second pumped */

mlt = 1E-15 /* volume proportionality constant relating

spontaneous to induced processes */

/* function for evaluating energy of n-th atomic level in ergs */

fct E(n) = -epau*(Z^2)/(2*(n^2))

/* function for evaluating the degeneracy of state with l-orbital angular

momentum */

fct g(l) = 2*l+1

/* functions for evaluating spontaneous emission rate constants */

fct f(a,b,c,d) = fact(c-a-b-1)*fact(c-1)*sum(k,max(0,1-c),min(-a,-b),\

hgeomd(k,-a,c-a-b-1,-b)*d^k)/(fact(c-b-1)*fact(c-a-1))

fct R(n1,n2,l) = (-1)^(n1-l)*sqrt(fact(n2+l)*fact(n1+l-1))*(4*n1*n2)^(l+1)*\

(n2-n1)^(n2+n1-2*l-2)*(f(-n2+l+1,-n1+l,2*l,-4*n2*n1/(n2-n1)^2)-\

(((n2-n1)/(n2+n1))^2)*f(-n2+l-1,-n1+l,2*l,-4*n2*n1/(n2-n1)^2))/\

((4*fact(2*l-1))*sqrt(fact(n2-l-1)*fact(n1-l))*(n2+n1)^(n2+n1))

fct ks(ni,li,nf,lf) = 4*ep^2*((E(ni)-E(nf))/hb)^3*\
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((a0*(if (lf>li) then R(ni,nf,lf) else R(nf,ni,li)))^2)/(3*hb*g(li)*c^3)

/* spontaneous emission rate constants */

ks2p1s = ks(2,1,1,0); ks3p1s = ks(3,1,1,0); ks4p1s = ks(4,1,1,0)

ks3p2s = ks(3,1,2,0); ks4p2s = ks(4,1,2,0); ks4p3s = ks(4,1,3,0)

ks3s2p = ks(3,0,2,1); ks4s2p = ks(4,0,2,1); ks4s3p = ks(4,0,3,1)

ks3d2p = ks(3,2,2,1); ks4d2p = ks(4,2,2,1); ks4d3p = ks(4,2,3,1)

ks4p3d = ks(4,1,3,2); ks4f3d = ks(4,3,3,2)

/* induced emission rate constants */

pch = mlt*PI^2*c^3*hb^2

ki2p1s = pch*ks2p1s/(E(2)-E(1))^3; ki3p1s = pch*ks3p1s/(E(3)-E(1))^3

ki4p1s = pch*ks4p1s/(E(4)-E(1))^3; ki3p2s = pch*ks3p2s/(E(3)-E(2))^3

ki4p2s = pch*ks4p2s/(E(4)-E(2))^3; ki4p3s = pch*ks4p3s/(E(4)-E(3))^3

ki3s2p = pch*ks3s2p/(E(3)-E(2))^3; ki4s2p = pch*ks4s2p/(E(4)-E(2))^3

ki4s3p = pch*ks4s3p/(E(4)-E(3))^3; ki3d2p = pch*ks3d2p/(E(3)-E(2))^3

ki4d2p = pch*ks4d2p/(E(4)-E(2))^3; ki4d3p = pch*ks4d3p/(E(4)-E(3))^3

ki4p3d = pch*ks4p3d/(E(4)-E(3))^3; ki4f3d = pch*ks4f3d/(E(4)-E(3))^3

/* absorption rate constants */

ka1s2p = ki2p1s*g(1)/g(0); ka1s3p = ki3p1s*g(1)/g(0)

ka1s4p = ki4p1s*g(1)/g(0); ka2s3p = ki3p2s*g(1)/g(0)

ka2s4p = ki4p2s*g(1)/g(0); ka3s4p = ki4p3s*g(1)/g(0)

ka2p3s = ki3s2p*g(0)/g(1); ka2p4s = ki4s2p*g(0)/g(1)

ka3p4s = ki4s3p*g(0)/g(1); ka2p3d = ki3d2p*g(2)/g(1)

ka2p4d = ki4d2p*g(2)/g(1); ka3p4d = ki4d3p*g(2)/g(1)

ka3d4p = ki4p3d*g(1)/g(2); ka3d4f = ki4f3d*g(3)/g(2)

/* decay rate constants */

kd12 = 1e12 /* 1<->2 photon loss from resonator in 1/second */

kd13 = 1e12 /* 1<->3 photon loss from resonator in 1/second */

kd14 = 1e12 /* 1<->4 photon loss from resonator in 1/second */

kd23 = 1e12 /* 2<->3 photon loss from resonator in 1/second */

kd24 = 1e12 /* 2<->4 photon loss from resonator in 1/second */

kd34 = 1e4 /* 3<->4 photon loss from resonator in 1/second */

/* initial 1s,2s,2p,3s,3p,3d,4s,4p,4d, and 4f populations */

init N1s(0) = N; init N2s(0) = 0; init N2p(0) = 0

init N3s(0) = 0; init N3p(0) = 0; init N3d(0) = 0

init N4s(0) = 0; init N4p(0) = 0; init N4d(0) = 0
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init N4f(0) = 0

/* initial 1<->2, 1<->3, 1<->4, 2<->3, 2<->4, and 3<->4 photons */

init N12(0) = 0; init N13(0) = 0; init N14(0) = 0

init N23(0) = 0; init N24(0) = 0; init N34(0) = 0

/* photon rate due to pumping A->C transition */

fct pump14(t) = Np /* photons/second */\

*(if t<0 then 0 else (1-(gaussd(t,0,1e-9)/gaussd(0,0,1e-9))))

/* define the rate equations */

fct N1s’t(t) = -ka1s2p*N1s*N12-ka1s3p*N1s*N13-ka1s4p*N1s*N14\

+ki2p1s*N2p*N12+ki3p1s*N3p*N13+ki4p1s*N4p*N14\

+ks2p1s*N2p +ks3p1s*N3p +ks4p1s*N4p

fct N2s’t(t) = -ka2s3p*N2s*N23-ka2s4p*N2s*N24\

+ki3p2s*N3p*N23+ki4p2s*N4p*N24\

+ks3p2s*N3p +ks4p2s*N4p

fct N2p’t(t) = +ka1s2p*N1s*N12-ka2p3s*N2p*N23-ka2p4s*N2p*N24\

-ka2p3d*N2p*N23-ka2p4d*N2p*N24\

-ki2p1s*N2p*N12+ki3s2p*N3s*N23+ki4s2p*N4s*N24\

+ki3d2p*N3d*N23+ki4d2p*N4d*N24\

-ks2p1s*N2p +ks3s2p*N3s +ks4s2p*N4s\

+ks3d2p*N3d +ks4d2p*N4d

fct N3s’t(t) = +ka2p3s*N2p*N23-ka3s4p*N3s*N34\

-ki3s2p*N3s*N23+ki4p3s*N4p*N34\

-ks3s2p*N3s +ks4p3s*N4p

fct N3p’t(t) = +ka1s3p*N1s*N13+ka2s3p*N2s*N23-ka3p4s*N3p*N34-ka3p4d*N3p*N34\

-ki3p1s*N3p*N13-ki3p2s*N3p*N23+ki4s3p*N4s*N34+ki4d3p*N4d*N34\

-ks3p1s*N3p -ks3p2s*N3p +ks4s3p*N4s +ks4d3p*N4d

fct N3d’t(t) = +ka2p3d*N2p*N23-ka3d4p*N3d*N34-ka3d4f*N3d*N34\

-ki3d2p*N3d*N23+ki4p3d*N4p*N34+ki4f3d*N4f*N34\

-ks3d2p*N3d +ks4p3d*N4p +ks4f3d*N4f

fct N4s’t(t) = +ka2p4s*N2p*N24+ka3p4s*N3p*N34\

-ki4s2p*N4s*N24-ki4s3p*N4s*N34\

-ks4s2p*N4s -ks4s3p*N4s

fct N4p’t(t) = +ka1s4p*N1s*N14+ka2s4p*N2s*N24+ka3s4p*N3s*N34+ka3d4p*N3d*N34\

-ki4p1s*N4p*N14-ki4p2s*N4p*N24-ki4p3s*N4p*N34-ki4p3d*N4p*N34\

-ks4p1s*N4p -ks4p2s*N4p -ks4p3s*N4p -ks4p3d*N4p

fct N4d’t(t) = +ka2p4d*N2p*N24+ka3p4d*N3p*N34\

-ki4d2p*N4d*N24-ki4d3p*N4d*N34\
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-ks4d2p*N4d -ks4d3p*N4d

fct N4f’t(t) = +ka3d4f*N3d*N34-ki4f3d*N4f*N34-ks4f3d*N4f

fct N12’t(t) = -ka1s2p*N1s*N12+ki2p1s*N2p*N12+ks2p1s*N2p-kd12*N12

fct N13’t(t) = -ka1s3p*N1s*N13+ki3p1s*N3p*N13+ks3p1s*N3p-kd13*N13

fct N14’t(t) = pump14(t)-ka1s4p*N1s*N14+ki4p1s*N4p*N14+ks4p1s*N4p-kd14*N14

fct N23’t(t) = -ka2s3p*N2s*N23+ki3p2s*N3p*N23+ks3p2s*N3p\

-ka2p3s*N2p*N23+ki3s2p*N3s*N23+ks3s2p*N3s\

-ka2p3d*N2p*N23+ki3d2p*N3d*N23+ks3d2p*N3d-kd23*N23

fct N24’t(t) = -ka2s4p*N2p*N24+ki4p2s*N4p*N24*ks4p2s*N4p\

-ka2p4s*N2p*N24+ki4s2p*N4s*N24+ks4s2p*N4s\

-ka2p4d*N2p*N24+ki4d2p*N4d*N24+ks4d2p*N4d-kd24*N24

fct N34’t(t) = -ka3s4p*N3s*N34+ki4p3s*N4p*N34+ks4p3s*N4p\

-ka3p4s*N3p*N34+ki4s3p*N4s*N34+ks4s3p*N4s\

-ka3p4d*N3p*N34+ki4d3p*N4d*N34+ks4d3p*N4d\

-ka3d4p*N3d*N34+ki4p3d*N4p*N34+ks4p3d*N4p\

-ka3d4f*N3d*N34+ki4f3d*N4f*N34+ks4f3d*N4f-kd34*N34

/* integrate the kinetics equations for .001 seconds */

disastersw = -1

p = integrate(N1s,N2s,N2p,N3s,N3p,N3d,N4s,N4p,N4d,N4f,N12,N13,N14,N23,N24,\

N34,0:.001!250)

/* cols p: T N1s N1s’T N2s N2s’T N2p N2p’T N3s N3s’T

N3p N3p’T N3d N3d’T N4s N4s’T N4p N4p’T

N4d N4d’T N4f N4f’T N12 N12’T N13 N13’T

N14 N14’T N23 N23’T N24 N24’T N34 N34’T */

Here is the graph of the total populations of the N = 4 and N = 3 levels
versus time:

15



Figure 5

The population inversion is seen to occur after .0005 seconds.

Mathematical models of molecular lasers can be implemented in a man-
ner similar to that used here to model an atomic laser. Additional terms
in the rate equations may be introduced that account for various radiation-
less relaxation processes, such as rotational-to-vibrational relaxation and
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electronic-to-vibrational relaxation. A computational limitation does arise
in such mathematical models when there are many coupled rate equations;
the equations become difficult to integrate without numerical errors accru-
ing at each time step. Such systems of equations are referred to as ill-

conditioned and one can see erroneous exponential growth in one or more of
the quantities of interest. Although MLAB employs several ordinary differ-
ential equation-solving algorithms, including Gear’s method for integrating
stiff equations, solving ill-conditioned differential equations over too large
an interval will produce unreliable results.
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