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0.1 Duality in Linear Programming

Consider the following standard primal linear programming problem. (Here we impose n ≥ 1 and
m ≥ 1. Also note that in this section the symbol c is not reserved to be an (n + m)-covector; it
may have differing numbers of components in differing contexts.)

[Determine x ∈ (Rn)⊤ to maximize cTx subject to Aox ≤ b and x ≥ 0 where Ao is an m×n matrix,
and c ∈ (Rn)⊤, and b ∈ (Rm)⊤].

Now note that if y ≥ 0 with y ∈ (Rm)⊤ then Aox ≤ b implies yTAox ≤ yTb. This is because
yTAox ≤ yTb is just the sum of the non-negatively-scaled inequalities yi[(A

o row i, x) ≤ bi], i.e.,
∑

1≤i≤m yi(A
o row i, x) ≤

∑

1≤i≤m yibi.

Now let P = {x ∈ (Rn)⊤ | Aox ≤ b and x ≥ 0}. Suppose x is a feasible point for our primal linear
programming problem, so x ∈ P , i.e., Aox ≤ b and x ≥ 0. Also suppose we can choose y1, . . . , ym

defining an m-covector y such that (yTAo)i ≥ ci and yi ≥ 0 for i = 1, . . . , n. Then cTx ≤ yTAox,
and we have yTAox ≤ yTb, so altogether we have cTx ≤ yTAox ≤ yTb. We see that yTAox and
yTb are both upper-bounds of our primal objective function ζ(x) = cTx for admissible choices of
x and y, and yTb is independent of x, so for any admissible choice of y, yTb is an upper-bound of
cTx for all feasible points x ∈ P .

Exercise 0.1: Why must we assume both Aox ≤ b and x ≥ 0 to conclude that cTx ≤ yTAox ≤
yTb?

If we want to make yTb = bTy a close upper-bound for cTx, we will want to choose y, subject to
yTAo ≥ cT and y ≥ 0, to make bTy as small as possible. This is just a linear programming problem:

[determine y ∈ (Rm)⊤ to minimize bTy subject to (Ao)Ty ≥ c and y ≥ 0 where Ao is an m × n

matrix, and c ∈ (Rn)⊤, and b ∈ (Rm)⊤].
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This linear programming problem is called the standard dual problem associated with our standard
primal linear programming problem. If this dual problem has a feasible point then it has an optimal
point. Moreover, for every feasible point, y, of our dual problem, we have cTx ≤ bTy for all feasible
points x of the corresponding primal problem. (Note if this dual problem is non-empty, i.e., has
a feasible point, and the only optimal points for this dual problem are points at infinity, then the
value of the objective function bTy will be −∞ at such an optimal point and the primal problem
can have no solution. This is because bTy is minimized when y is an optimal point.)

Exercise 0.2: Suppose our dual problem has a feasible point. Why must bTŷ = −∞ when all
the optimal points of our dual problem are points at infinity? Hint: consider how we might go
from a finite feasible point to a point-at-infinity optimal point.

Exercise 0.3: If b = 0, is the standard dual problem guaranteed to have a solution?

Exercise 0.4: Show that the dual problem of the linear programming problem: [determine
y ∈ (Rm)⊤ to minimize bTy subject to (Ao)Ty ≥ c and y ≥ 0 where Ao is an m × n matrix,
and c ∈ (Rn)⊤, and b ∈ (Rm)⊤] is just our original primal programming problem: [determine
x ∈ (Rn)⊤ to maximize cTx subject to Aox ≤ b and x ≥ 0].

Solution 0.4: Constructing the dual problem of a given primal linear programming problem
is a syntactic process. When we state a given linear programming problem in the standard form:
[determine x ∈ (Rn)⊤ to maximize cTx subject to Aox ≤ b and x ≥ 0 where Ao is an m × n

matrix, and c ∈ (Rn)⊤, and b ∈ (Rm)⊤]. Then the dual problem is: [determine y ∈ (Rm)⊤ to
minimize bTy subject to (Ao)Ty ≥ c and y ≥ 0].

This dual problem is equivalent to the standard-form problem: [determine y ∈ (Rm)⊤ to maxi-
mize −bTy subject to (−Ao)Ty ≤ −c and y ≥ 0].

Syntactically, we replace cT with −bT, b with −c, and Ao with (−Ao)T in our standard primal
linear programming problem in order to construct its dual problem in standard form.

In array form, the array

[

Ao b

cT 0

]

describing our primal problem becomes the array
[

(−Ao)T −c

−bT 0

]

describing our dual problem. This is sometimes summarized by saying the

dual problem is the negative transpose of the primal problem.

Now note that the negative transpose of

[

(−Ao)T −c

−bT 0

]

is just

[

Ao b

cT 0

]

again. Thus the

dual of the dual of our primal problem is our primal problem itself.

Exercise 0.5: Show that the dual problem of the linear programming problem: [determine
x ∈ (Rk)⊤ to maximize cTx subject to Ax = b and x ≥ 0 where A is an m × k matrix, and
c ∈ (Rk)⊤, and b ∈ (Rm)⊤] is the problem: [determine w ∈ (Rm)⊤ to minimize bTw subject to
ATw ≥ c]. Note c and x are here k-covectors. This fluidity in the meanings of the symbols c

and x is a potential source of confusion herein; beware. (We shall sometimes write co to indicate
co ∈ (Rn)⊤, but this is not uniformly done because it is often counterproductive.)
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Solution 0.5: Put this problem is standard form by writing Ax = b as

[

A

−A

]

x ≤

[

b

−b

]

.

Then the primal problem array is





A b

−A −b

cT 0



 and the corresponding negative transpose array

for the dual problem is

[

−AT AT −c

−bT bT 0

]

, and this specifies the dual problem as: [determine
[

y1

y2

]

to maximize
[

−bT bT
]

[

y1

y2

]

subject to
[

−AT AT
]

[

y1

y2

]

≤ −c and

[

y1

y2

]

≥ 0

where y1 and y2 are m-covectors].

And this problem can be restated as: [determine w to minimize bTw subject to ATw ≥ c]. This
is because

max
y1,y2

[

−bT bT
]

[

y1

y2

]

= max
y1,y2

−bTy1 + bTy2

= max
y1,y2

bT[−y1 + y2]

= max
w

bT(−w)

= min
w

bTw

where w = y1 − y2. And
[

−AT AT
]

[

y1

y2

]

≤ −c and

[

y1

y2

]

≥ 0 is equivalent to AT(−y1 +

y2) ≤ −c and y1 ≥ 0 and y2 ≥ 0, which is equivalent to ATw ≥ c with w ∈ (Rm)⊤ otherwise
unrestricted. (Given w, we may determine y1 ≥ 0 and y2 ≥ 0 as follows. Take (y1)i = wi when
wi ≥ 0 and take (y1)i = 0 otherwise. And take (y2)i = −wi when wi < 0 and take (y2)i = 0
otherwise.)

Note if k = n+m and A = [Ao I] where Ao is an m×n matrix and c =

[

co

0

]

with co ∈ (Rn)⊤,

then this dual problem becomes [determine w ∈ (Rm)⊤ to minimize bTw subject to (Ao)Tw ≥ co

and w ≥ 0].

Exercise 0.6: Show that the linear programming problem: [determine w to minimize bTw

subject to ATw ≥ c] is equivalent to the linear programming problem: [determine z to maximize
bTz subject to ATz ≤ −c].

Exercise 0.7: Show that the dual problem of the slack-variable form of our primal linear pro-
gramming problem is equivalent to the standard problem dual to our standard primal problem.

Solution 0.7: Put the slack-variable form of our primal problem in standard form as: [de-

termine x to maximize [(co)T 0]

[

xo

t

]

subject to

[

A I

−A −I

] [

xo

t

]

≤

[

b

−b

]

]. Here t

represents the slack variables.

Then the corresponding array representation is





Ao I b

−Ao −I −b

(co)T 0 0



 and the corresponding neg-
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ative transpose array is





(−Ao)T (Ao)T −co

(−I)T IT 0
−bT bT 0



, and this specifies the dual problem: [deter-

mine

[

y1

y2

]

to maximize
[

−bT bT
]

[

y1

y2

]

subject to

[

(−Ao)T (Ao)T

(−I)T IT

] [

y1

y2

]

≤

[

−co

0

]

].

And this problem is equivalent to [determine

[

y1

y2

]

to maximize −bT(y1 − y2) subject to

(−Ao)Ty1 + (Ao)Ty2 ≤ −co and −y1 + y2 ≤ 0] which is in turn equivalent to [determine w

to maximize −bTw subject to (−Ao)Tw ≤ −co and −w ≤ 0] where w = y1 − y2, and finally, this
is equivalent to [determine w to minimize bTw subject to (Ao)Tw ≥ co and w ≥ 0].

Note the array form we used to introduce the negative transpose dual is not the form we use in the

tableau representation of the simplex algorithm. This is because we require

[

Ao

cT

]

to transform

to
[

(−Ao)T −c
]

corresponding to (Ao)T ≥ c, while we need

[

b

0

]

to transform to
[

−bT 0
]

;

if we were to change the sign of c, we would need to change the sign of b also.

0.1.1 The Strong Duality Theorem

Let P be the polyhedron of our primal linear programming problem: [determine x ∈ (Rn)⊤ to
maximize cTx subject to Aox ≤ b and x ≥ 0 where Ao is an m × n matrix, and c ∈ (Rn)⊤,
and b ∈ (Rm)⊤] and let Q be the polyhedron of the associated dual linear programming problem:
[determine y ∈ (Rm)⊤ to minimize bTy subject to (Ao)Ty ≥ c and y ≥ 0]. Thus P = {x ∈ (Rn)⊤ |
Aox ≤ b and x ≥ 0} and Q = {y ∈ (Rm)⊤ | (Ao)Ty ≥ c and y ≥ 0}.

We saw above that if x ∈ P and y ∈ Q, then cTx ≤ bTy. This is called the weak-duality theorem.
Thus if cTx = bTy with x ∈ P and y ∈ Q, then x must be an optimal point of P that maximizes
cTx and y must be an optimal point of Q that minimizes bTy. This is because bTy ≥ max{cTv |
v ∈ P}. And when bTy = cTx, bTy is the least possible upper-bound of {cTv | v ∈ P}, and thus
bTy = cTx = max{cTv | v ∈ P}, so x must be a solution of our primal linear programming problem.
Similarly, cTx is the greatest possible lower-bound of {bTw | w ∈ Q}, and thus y must be a solution
of our dual linear programming problem when cTx = bTy.

Also we have the following corollary of the weak duality theorem. If the polyhedron P of our primal
linear programming problem contains a point at infinity x for which the objective function value
cTx̂ = ∞, then, since bTy ≥ cTx̂ whenever y ∈ Q, bTy must also be ∞ for all y ∈ Q. But this
is impossible if Q is non-empty, since Q then contains a finite feasible point y′, i.e., Q cannot be
composed entirely of points at infinity, and then the dual objective function value bTy′ is finite and
the minimal value of bTy must be no greater than bTy′. Hence Q must be empty. Thus if our primal
linear programming problem is unbounded with an unbounded objective function value, then the
dual linear programming problem must be empty i.e., Q = ∅. Conversely, if Q is non-empty, our
primal problem must have a finite optimal point.

Similarly, if the polyhedron Q of our dual linear programming problem contains a point at infinity
ŷ as an optimal point for which the objective function vaue bTŷ = −∞, then the primal linear
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programming problem must be empty, i.e., P = ∅. And conversely, if P is non-empty, our dual
problem must have a finite optimal point.

Remember a linear programming problem may have an associated unbounded polyhedron without
its objective function being ±∞, but if the objective function is ±∞ then the associated polyhedron
is necessarily unbounded.

If either our primal or dual linear programming problem has a finite optimal point, then so does
the other problem. And in fact, the values of their respective objective functions must be identical!
This fact is called the strong-duality theorem.

Exercise 0.8: Give an example where P is unbounded but the dual problem is non-empty
and has a finite optimal point.

Exercise 0.9: Give an example where P = ∅ and Q = ∅.

Solution 0.9:

primal: [determine x to maximize x1 subject to

[

1 0
0 −1

]

x ≤

[

−1
0

]

and x ≥ 0].

dual: [determine y to minimize −y1 subject to

[

−1 0
0 1

]

y ≥

[

1
0

]

and y ≥ 0].

Altogether we have the following possiblities for our standard-form primal and dual problems.

1. Our primal problem has a finite optimal point x̂ and our dual problem has a finite optimal point
ŷ and cTx̂ = bTŷ. Also, if one problem has a face of finite solutions of dimension greater than 0,
then the finite solution of the other problem is an overdetermined vertex.

2. Our primal problem has a point-at-infinity optimal point x̂ and cTx̂ = ∞, and our dual problem
has no solution, (Q is empty.)

3. Our dual problem has a point-at-infinity optimal point ŷ and bTŷ = −∞, and our primal problem
has no solution, (P is empty.)

4. Neither our primal problem or our dual problem have solutions, (P is empty and Q is empty.)

Recall we have a criterion that specifies exactly when P = {x ∈ (Rn)⊤ | Aox ≤ b and x ≥ 0} is
empty, namely: P is empty exactly when b 6∈ K0 = {p ∈ (Rm)⊤ | p = [Ao I]x and x ≥ 0} which

is equivalent to the criterion: there exists y ∈ (Rm)⊤ such that

[

(Ao)T

I

]

y ≥ 0 and bTy < 0.

The possibilities above are somewhat subtle when P or Q is unbounded. For example, con-
sider the primal problem: [find x ∈ (R2)⊤ to maximize cTx subject to x ∈ P where

P = {x ∈ (R2)⊤ | Aox ≤ b and x ≥ 0} with Ao =

[

−1 1
0 −1

]

and b =

[

0
0

]

, i.e.,

P =

{

x ∈ (R2)⊤ |

[

−1 1
0 −1

] [

x1

x2

]

≤

[

0
0

]

and x ≥ 0

}

]. Note b =

[

0
0

]

means P is a cone

with apex 0. The dual problem is: [find y ∈ (R2)⊤ to minimize 0 subject to y ∈ Q where

Q =

{

y |

[

−1 0
1 −1

] [

y1

y2

]

≥

[

c1

c2

]

and y ≥ 0

}

].
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In the case where c =

[

0
0

]

, all the points in P , including points at infinity, are optimal points,

but cTx = 0 for x ∈ P ; and the polyhedron Q is the singleton set {(0, 0)T} so the solution of the
dual problem is the finite point ŷ = 0T0 = 0. Also note (0, 0)T is an overdetermined vertex of Q.
(And (0, 0)T is an overdetermined vertex of P as well.)

In the case where c =

[

1
0

]

, we have the set of points {(∞, x2)
T | x2 ≥ 0} ⊂ P as optimal points

of our primal problem with cTx = ∞ for x ∈ {(∞, x2)
T | x2 ≥ 0}; all these optimal points are

points at infinity. And the dual problem has Q = ∅.

In the case where c =

[

−1
0

]

, we have the set of points {(0, x2)
T | x2 ≥ 0} ⊂ P as optimal

points of our primal problem with cTx = 0 for x ∈ {(0, x2)
T | x2 ≥ 0}; all these optimal points

are finite (R2)⊤-points. And the dual problem has every point of Q as an optimal point, where
Q = {y ∈ (R2)⊤ | 0 ≤ y1 ≤ 1 and y1 ≥ y2 ≥ 0} and bTy = 0Ty = 0 for y ∈ Q. Note Q is bounded.

Exercise 0.10: With respect to the example discussed above, what is the set Q, and the
set of solutions of our primal problem, and the set of solutions of our dual problem, when
cT = (−1,−1)? What are the solution sets when cT = (−1, 1)?

The fact that, if x̂ ∈ P is a finite optimal point of our standard-form primal problem then there
exists ŷ ∈ Q such that ŷ is a finite optimal point of our standard-form dual problem, and conversely,
and moreover cTx̂ = bTŷ, can be proven as follows.

Suppose x̂ is a finite optimal point of our primal linear programming problem with x̂ a vertex of
P . Then the gradient covector c belongs to the normal cone of x̂ with respect to P .

Recall that P = H1 ∩ · · · ∩ Hn ∩ Hn+1 ∩ · · · ∩ Hn+m where Hi = {x ∈ (Rn)⊤ | (−eT
i , x) ≤ 0}

for i = 1, . . . , n, and Hn+j = {x ∈ (Rn)⊤ | (aT
j , x) ≤ bj} for j = 1, . . . , m where aj = Ao row j.

Here −eT
1 , . . . ,−eT

n , aT
1 , . . . , aT

m are all outwardly-directed normal vectors of the half-spaces whose

intersection defines the polyhedron P . Thus P =

{

x ∈ (Rn)⊤ |

[

Ao

−I

]

x ≤

[

b

0

]}

.

Let Hi−1, . . . , Hiq be the half-spaces whose boundaries contain the optimal vertex x̂; this means
the bounding hyperplanes ∂Hi1 , . . . , ∂Hiq intersect at the vertex x̂.

Let v1, . . . , vq denote the outwardly-directed normal vectors of the half-spaces Hi1 , . . . , Hiq . Because
∂Hi1 ∩ · · · ∩ ∂Hiq = {x̂}, we have q ≥ n and dim({v1, . . . , vq}) = n.

The normal cone at x̂ with respect to P is the polyhedral cone Nx̂ = cone0(v1, . . . , vq), and we
have seen that c ∈ Nx̂ because x̂ is an optimal vertex of P that maximizes (c, x). Thus c is a conic-
combination of the covectors v1, . . . , vq. (Remember a conic-combination is a linear combination of
vectors (or covectors) with non-negative scalar coefficients.) The covectors v1, . . . , vq all appear as
columns of the m × (n + m) matrix

[

(Ao)T −I
]

. (Recall Nx̂ is just the polar dual cone of the
0-apex cone Hi1 ∩ Hi2 ∩ · · · ∩ Hiq − x̂.)

Carathéodory’s theorem for polyhedral cones asserts that we can write c as a conic-combination of
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a subset of n of the covectors v1, . . . , vq. Thus we can write

c =
[

(Ao)T −I
]

[

y′

z

]

where y′ ∈ (Rm)⊤ and z ∈ (Rn)⊤ with y′ ≥ 0 and z ≥ 0, and at most n of the components of the

covector

[

y′

z

]

are positive and the rest are zero.

Exercise 0.11: Show that the columns of the matrix
[

(Ao)T −I
]

are the outwardly-
directed normal covectors aT

1 , . . . , aT
m,−eT

1 , . . . ,−eT
n .

Thus c = (Ao)Ty′ − z, and since y′ is a non-negative m-covector and z is a non-negative (n − m)-
covector, we have c ≤ (Ao)Ty′ and y′ ≥ 0. Note this is valid in the special case where c = 0.

Exercise 0.12: Explain why the relations c ≤ (Ao)Ty′ and y′ ≥ 0 are valid when P = {0}.
What if an entire facet of P is comprised of optimal points of P?

Exercise 0.13: Show that if x̂ 6= 0, then at least one facet of P containing x̂ lies in a non-
orthant-boundary hyperplane among ∂Hn+1, . . . , ∂Hn+m, i.e., at least one of the inequalities
Ax̂ ≤ b is tight and at least one component of y′ is positive.

The relations c ≤ (Ao)Ty′ and y′ ≥ 0 mean y′ ∈ Q (!) So our dual problem has y′ as a feasible point
and therefore our dual problem is not empty and hence has an optimal point ŷ with bTŷ ≤ bTy′.
And cTx̂ ≤ bTŷ by the weak duality theorem, so bTŷ > −∞ and hence ŷ is finite when x̂ is finite.

Suppose ŷ is a finite optimal point of our dual linear programming problem with ŷ a vertex of Q.
Then the dual problem gradient covector −b belongs to the normal cone of ŷ with respect to Q.

Since Q =

{

y ∈ (Rm)⊤ |

[

−(Ao)T

−I

]

y ≤

[

−c

0

]}

and the gradient vector of our dual problem is

−b, we may follow the same line of argument as used above to characterize −b ∈ Nŷ by writing

−b =
[

−Ao −I
]

[

x′

v

]

where x′ ∈ (Rn)⊤ and v ∈ (Rm)⊤ with x′ ≥ 0 and v ≥ 0 and at most m of the components of the

covector

[

x′

v

]

are positive and the rest are zero. Here the columns of
[

−Ao −I
]

are outward-

directed normals of the half-space boundaries whose intersection defines ŷ. Thus −b = −Aox′ − v

where x′ ≥ 0 and v ≥ 0, so b = Aox′ + v and x′ ≥ 0 and v ≥ 0, and thus Aox′ ≤ b with x′ ≥ 0.

The relations Aox′ ≤ b and x′ ≥ 0 mean x′ ∈ P so our primal problem has x′ as a feasible point
and therefore our primal problem is not empty and hence also has an optimal point x̂. And we
have cTx̂ ≤ bTŷ by the weak duality theorem, so cTx̂ < ∞ and hence x̂ is finite when ŷ is finite.

Now let us return to the representation of the gradient covector c as a conic combination of n

of the outwardly-directed covectors −eT
1 , . . . ,−eT

n , aT
1 , . . . , aT

m where aj = Ao row j. Let j1, . . . , jn

be the indices in {1, . . . , n + m} of the hyperplanes ∂Hj1 , . . . , ∂Hjn
from among the hyperplanes
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∂H1, . . . , ∂Hn+m such that ∂Hj1 , . . . , ∂Hjn
are linearly-independent hyperplanes that intersect at

{x̂}. The corresponding constraints are tight at x̂ and hence we may choose the covector

[

y′

z

]

so

that zero or more of the non-negative coefficients in the covector

[

y′

z

]

that multiply the outwardly-

directed normals of the hyperplanes ∂Hj1 , . . . , ∂Hjn
in the columns of [(Ao)T −I] will be positive.

and all the other components of

[

y′

z

]

will be zero.

Exercise 0.14: Show that {j1, . . . , jn} ⊆ {i1, . . . , iq}.

Exercise 0.15: Explain why we said ‘zero or more’ above.

Let p =

[

y′

z

]

, so that p row 1 : m = y′ and p row (m + 1) : (m + n) = z. Let t = b−Aox̂. Define

the sequence J = 〈j1, . . . , jn〉 and define the sequence K = 〈1, . . . , n+m〉−J . (The ordering of the
indices in J and K are not important.) We have p row J ≥ 0 and p row K = 0. The hyperplane
normals indexed by K include all the slack constraints. Thus [(Ao)T − I] col K contains all the
columns of [(Ao)T − I] where (Ao row i)Tx̂ < bi for 1 ≤ i ≤ m or −eT

i x̂ < 0 for 1 ≤ i ≤ n.

The components of p corresponding to these slack columns lie in p row K and are thus all zero.
The non-zero components of p all lie in p row J and correspond to tight columns of [(Ao)T − I]
where (Ao row i, x̂) = 0 or −x̂i = 0. This means [(b − Aox̂)T x̂T]p = 0! That is

[(b − Aox̂)T x̂T]

[

y′

z

]

= 0.

Thus (b − Aox̂)Ty′ + x̂Tz = 0.

Exercise 0.16: Show that tTy′+ x̂Tz = 0 where t = b−Aox̂, and hence tTy′ = 0 and x̂Tz = 0.

Recall we have c = (Ao)Ty′ − z. Thus

bTy′ = x̂T(Ao)Ty′ − x̂Tz

= x̂T((Ao)Ty′ − z)

= x̂Tc

= cTx̂.

Therefore, as we have seen above, y′ must be an optimal point of our dual problem and we have
bTŷ = cTx̂ where ŷ = y′. The conclusion that y′ is an optimal point of Q is a consequence of the
corollary of the weak duality theorem discussed above.

Similarly, we may follow the line of reasoning parallel to that used above to establish the identity

[((−Ao)Tŷ + c)T − ŷT]

[

x′

v

]

= 0.

Thus −ŷTAox′ + cTx′ − ŷTv = 0. But then cTx′ = ŷT(Aox′ + v) = ŷTb = bTŷ since we showed
that v + Aox′ = b above. Therefore x′ must be an optimal point of our primal problem and again
we have cTx̂ = bTŷ where x̂ = x′. (We also have t = v because x′ = x̂.) [QED]



9

We have cTx ≤ yTAox ≤ bTy when x ∈ P and y ∈ Q; and when x̂ ∈ P maximizes cTx subject to
x ∈ P and ŷ ∈ Q minimizes bTy subject to y ∈ Q, we have cTx̂ = ŷTAox̂ = bTŷ.

Now we can deduce ŷT(b − Aox̂) = 0 from ŷTAox̂ = bTŷ. And we can deduce x̂T((Ao)Tŷ − c) = 0
from cTx̂ = ŷTAox̂. The identities ŷT(b − Aox̂) = 0 and x̂T((Ao)Tŷ − c) = 0 are called the
complementary slackness conditions.

Exercise 0.17: We have already obtained the complementary slackness conditions above.
Identify where they are derived in the proof of the strong duality theorem.

Let t = b − Aox̂; we have t ≥ 0 because Aox̂ ≤ b. The elements of the m-covector t are the slack
variables of our primal linear programming problem. Similarly, Let z = (Ao)Tŷ − c; we have z ≥ 0
because (Ao)Tŷ ≥ c. The elements of the n-covector z are the slack variables of our dual linear
programming problem.

The complementary slackness conditions are then ŷt = 0 and x̂z = 0. Since ŷ ≥ 0, t ≥ 0, x̂ ≥ 0,
and z ≥ 0, these conditions imply that if ŷi 6= 0, ti = 0, and if ti 6= 0, ŷi = 0. And similarly, if
x̂i 6= 0, zi = 0, and if zi 6= 0, x̂i = 0. In fact, unless x̂ is an overdetermined vertex of P , exactly one
of x̂i and zi are zero, and unless ŷ is an overdetermined vertex of Q, exactly one of ŷi and ti are
zero

0.1.2 Computing a Solution of the Dual Problem

The simplex algorithm can be applied to our dual problem recast as: [determine y ∈ (Rm)⊤ to
maximize −bTy subject to (−Ao)Ty ≤ −co and y ≥ 0 where Ao is an m×n matrix, and co ∈ (Rn)⊤,
and b ∈ (Rm)⊤], but in fact the simplex algorithm applied to the corresponding primal problem,
(i.e., to the dual of this problem,) also produces an optimal point of this dual problem when our
primal problem has a finite optimal point (!) We can see this as follows.

Recall our primal problem is: [determine xo ∈ (Rn)⊤ to maximize (co)Txo subject to Aoxo ≤ b

and xo ≥ 0 where Ao is an m × n matrix, and co ∈ (Rn)⊤, xo ∈ (Rn)⊤, and b ∈ (Rm)⊤]. This
corresponds to the slack-variable form problem: [determine x ∈ (Rn+m)⊤ to maximize cTx subject
to Ax = b and x ≥ 0 where A = [Ao I] is an m × (n + m) matrix, and cT = [(co)T 0] ∈ Rn+m,
xT = [(xo)T tT] ∈ Rn+m, (the elements of the covector x row (n + 1) : m = t constitute our slack
variables,) and b ∈ (Rm)⊤].

When the simplex algorithm applied to our slack-variable primal problem halts with a finite optimal
point x̂ ∈ (Rn+m)⊤, we have a length-n basis sequence N and a corresponding orthant-boundary
constraint sequence Z = 〈1, . . . , n + m〉 −N , and x̂ row N = w and and x̂ row Z = 0 and Ax̂ = b.
We also have the reduced gradient covector d where dT = (cT col N)B−1A − cT and where B is
the non-singular m × m matrix A col N . And z = cTx̂. Recall w = B−1b.

Now dTx̂ = (cT col N)B−1Ax̂− cTx̂. We know d ≥ 0 since this is the termination condition in the
simplex algorithm for the discovery of a finite optimal point. Also d row N = 0. Moreover, cTx̂ =
(cT col N)B−1b since −dTx̂ = 0 and Ax̂ = b. Alternatively,

(cT col N)B−1b = (cT col N)(x̂ row N)
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= (cT col N)(x̂ row N) + (cT col Z)(x̂ row Z)

= cTx̂.

Exercise 0.18: Show that dTx̂ = 0. Hint: look at d row N , d row Z, x̂ row N , and x̂ row Z.

Thus we have cTx̂ = (cT col N)B−1b. Let ŷT = (cT col N)B−1. Then cTx̂ = ŷTb = bTŷ. So ŷ

might potentially be an optimal point of our dual problem: [determine y ∈ (Rm)⊤ to minimize bTy

subject to (Ao)Ty ≥ c and y ≥ 0 where Ao is an m × n matrix, and c ∈ (Rn)⊤, and b ∈ (Rm)⊤].
Indeed ŷ will be an optimal point if ŷ is a feasible point of our dual problem; this is a consequence
of the strong duality theorem.

But, we have the termination condition: 0 ≤ dT = ŷTA − cT, and A = [Ao I] and c =

[

co

0

]

, so

0 ≤ dT = [ŷTAo − co ŷT]. Thus 0 ≤ ŷTAo − (co)T and 0 ≤ ŷT, i.e., (Ao)Tŷ ≥ co and ŷ ≥ 0. Thus
ŷ is a feasible point of our dual problem, so ŷ is in fact an optimal point of our dual problem.

Note ŷT = dT col (n+1) : (n+m). Thus our terminal tableau exhibits not only x̂ (as x̂ row N = w

and x̂ row Z = 0,) but also ŷ (as ŷT = dT col (n + 1) : (n + m),) and the common value of the
primal and dual objective functions is given by z = cTx̂ = bTŷ.

Exercise 0.19: What are the values of the n slack variables associated with the dual problem?

Also, we can obtain a constructive proof of the strong duality theorem from the above specification
of ŷ. Given that x̂ is a finite optimal point of our primal problem and ŷ is a feasible point of our dual
problem and bTŷ = cTx̂, we may conclude that ŷ is an optimal point of our dual problem. Since the
weak duality theorem requires miny∈Q bTy ≥ maxx∈P cTx = cTx̂, and miny∈Q bTy ≤ bTŷ = cTx̂,
we see that miny∈Q bTy ≥ cTx̂ = bTŷ ≥ miny∈Q bTy so miny∈Q bTy = bTŷ. And when x̂ is a finite
optimal point of our primal problem, we see that ŷ = B−1T(c row N) is a feasible point of our dual
problem with the associated objective function value bTŷ = cTx̂, so ŷ is an optimal point of our
dual problem.

0.1.3 The Geometry of Duality

Recall our standard primal linear programming problem:

[determine x ∈ (Rn)⊤ to maximize cTx subject to Aox ≤ b and x ≥ 0 where Ao is an m×n matrix,
and c ∈ (Rn)⊤, and b ∈ (Rm)⊤].

We may introduce m slack variables t1, . . . , tm defined in terms of x by t = b − Aox, necessarily
with t ≥ 0.

Now consider the following slack-variable formulation of our primal linear programming problem.
(Recall we assume n ≥ 1 and m ≥ 1.)

[Determine x ∈ (Rn+m)⊤ to maximize cTx subject to Ax = b and x ≥ 0 where A is an m× (n+m)
rank m matrix, and c ∈ (Rn+m)⊤, and b ∈ (Rm)⊤].
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Here we have redefined x to be an (n + m)-covector with the m added slack-variable components
xn+1 = t1, . . ., xn+m = tm, and we have redefined c to be an (n + m)-covector by extending it
with c row (n + 1) : (n + m) = 0, and we define A to be the m × (n + m) matrix [Ao I]. The
corresponding polyhedron is P ∗ = {x ∈ (Rn+m)⊤ | Ax ≤ b and x ≥ 0}. (In fact the following
results do not depend on the matrix A being of the form [Ao I]; the following is valid when A is
an arbitrary m × (n + m) rank m matrix.)

The corresponding dual linear programming problem is:

[determine y ∈ (Rm)⊤ to minimize bTy subject to ATy ≥ c where A is an m × (n + m) rank m

matrix, and c ∈ (Rn+m)⊤, and b ∈ (Rm)⊤].

Let k = n + m so that A is an m × k matrix. The slack-variable primal problem above can be
written as:

[determine x ∈ (Rk)⊤ to maximize cTx subject to A(x−d) and x ≥ 0 where d ∈ (Rk)⊤ and satisfies
Ad = b].

Note when A = [Ao I], we can choose d =

[

0
b

]

. When there is no covector d such that Ad = b,

our slack-variable primal problem has no solution; otherwise the m equations Ax = Ad specify a
(k−m)-dimensional flat F in (Rk)⊤. Even if d exists such that Ad = b, our problem will only have
a solution if d can be chosen such that d ≥ 0. Let us assume our slack-variable primal problem has
a feasible point, i.e., the corresponding polyhedron P ∗ = F ∩ O+

k is non-empty.

Prabhakaran [Pra02] gives a way to “lift” the dual problem from (Rm)⊤ to (Rk)⊤. The basic idea
is that the m-dimensional polyhedron Q∗ = {y ∈ (Rm)⊤ | ATy ≥ c} of the dual problem can be
mapped one-to-one into an m-dimensional flat G in (Rk)⊤ orthogonal to the (k − m)-dimensional
flat F ⊆ (Rk)⊤ where F = {x ∈ (Rk)⊤ | Ax = b} = {x ∈ (Rk)⊤ | Ax = Ad} is the flat associated
with the slack-variable formulation of our primal linear programming problem.

First introduce k slack variables s1, . . . , sk to write the dual problem as:

[determine s ∈ (Rk)⊤ and y ∈ (Rm)⊤ to minimize bTy subject to s = ATy − c and s ≥ 0].

Note that the constraints s = ATy − c define s in terms of y ∈ (Rm)⊤ and thus confine s to an
m-dimensional flat in (Rk)⊤. The map y → ATy − c is the map that carries Q∗ into the flat
G orthogonal to F . When there are no covectors s and y such that ATy = c + s with s ≥ 0,
our dual problem has no solution. Let us assume our dual problem has a feasible point, i.e., the
corresponding polyhedron Q∗ is non-empty.

Exercise 0.20: Show that if our primal slack-variable form problem has a feasible point and
our dual slack-variable form problem also has a feasible point, then both our primal and our
dual problem have finite optimal points.

Now recall k − m = n and define A⊥ as a n × k rank n matrix whose rows form a basis of
rowspace(A)⊥. Note A⊥AT = On×m. (When A = [Ao Im×m], A⊥ can be taken as [In×n −
(Ao)T].) The dual problem constraint s + c = ATy can now be transformed to yield A⊥(s + c) = 0
because A⊥(s + c) = A⊥ATy and A⊥AT = On×m and A⊥ has rank n.



12

Exercise 0.21: Show that when Q∗ 6= ∅, s+c ∈ rowspace(A)⊤. And then, since rank(A) = m,
there exists a unique m-covector y such that ATy = s + c.

Exercise 0.22: Show that ATQ∗ = {ATy ∈ (Rk)⊤ | ATy ≥ c} = {s + c ∈ (Rk)⊤ | s =
ATy − c and s ≥ 0} = {s + c ∈ (Rk)⊤ | A⊥(s + c) = 0 and s ≥ 0}.

Also the dual problem objective function bTy can be written as dT(c + s) since we have assumed
there is a covector d ∈ (Rk)⊤ such that bT = dTAT, so bTy = dTATy, and we have c + s = ATy.
And thus bTy = dT(c + s) and we see that choosing y to minimize bTy is equivalent to choosing s

to minimize dTs.

Thus our dual problem is transformable to:

[determine s ∈ (Rk)⊤ to minimize dTs subject to A⊥(s + c) = 0 and s ≥ 0].

The n equations A⊥s = −A⊥c specify an m-dimensional flat G in (Rk)⊤ where G = {s ∈ (Rk)⊤ |
A⊥s = −A⊥c}. Recall F = {x ∈ (Rk)⊤ | Ax = Ad}. Note −c ∈ G and d ∈ F . When our
slack-variable primal and dual problems both have feasible points, we have ldim(F ) = k − m = n

and ldim(G) = m, and in fact F ⊥ G.

Exercise 0.23: Show that G = flat(ATQ∗) − c.

Since the rows of A⊥ are normal to the rows of A, the (Rk)⊤-flats F and G are orthogonal, and
since the subspaces F − d and G + c are likewise orthogonal and their dimensions sum to k, they
are complementary to one-another in (Rk)⊤, and (F − d)∩ (G + c) = {0}. Hence there is a unique
(Rk)⊤-point a such that F ∩ G = {a}. The point a is computable as the unique solution of the k

equations

[

A

A⊥

]

a =

[

Ad

−A⊥c

]

. (Note

[

A

A⊥

]

is a k × k non-singular matrix.)

Exercise 0.24: Is the point a necessarily a feasible point of either the slack-varible form of our
primal linear programming problem or of the slack-varible form of our dual linear programming
problem? That is, does a ≥ 0 necessarily hold?

Now, A(x − d) = A((x − a) − (d − a)) = A(x − a) since A(d − a) = 0, (because a ∈ F .) And
A⊥(s+c) = A⊥((s−a)−(−c−a)) = A⊥(s−a) since A⊥(−c−a) = 0, (because a ∈ G.) Moreover, the
k-covector x̂ that maximizes cTx subject to A(x− a) = 0 and x ≥ 0 also minimizes aTx subject to
the same constraints. This is because cTx = (c−a+a)T(x−d+d) = −aTx+(c+a)T(x−d)+(c+a)Td,
and A(x−d) = 0 and A⊥(c+a) = 0 implies x−d and c+a are perpendicular, so (c−a)T(x−d) = 0.
Thus cTx = −aTx + (c + a)Td, so the covector x̂ that yields a constrained minimum of aTx is the
same as the covector that yields a constrained maximum of cTx.

In the same way, the k-covector ŝ that minimizes dTs subject to the constraints A⊥(s + c) =
A⊥(s − a) = 0 and s ≥ 0 also minimizes aTs subject to the same constraints.

Exercise 0.25: Show that dTs = aTs + (d − a)Ta.

Thus the above transformations produce the modified primal problem:

[determine x ∈ (Rk)⊤ to minimize aTx subject to A(x − a) = 0 and x ≥ 0].
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And the modified dual problem:

[determine s ∈ (Rk)⊤ to minimize aTs subject to A⊥(s − a) = 0 and s ≥ 0].

Suppose that one of our modified primal and modified dual problems has a finite optimal point.
Then the strong-duality theorem implies that both have finite solutions. Note if a ≥ 0, both our
modified primal and modified dual problems have a as a feasible point. Let x and s denote feasible
points of our modified primal and modified dual problems respectively. We have x ∈ F ∩ O+

k and
s ∈ G∩O+

k . This means x−d ∈ F −d and s+c ∈ G+c, so (x−d, s+c) = 0 = xT(s+c)−dT(s+c).
And then bTy = dT(c + s) = xT(c + s) ≥ cTx since x ≥ 0 and s ≥ 0. This is the weak-duality
theorem.

Exercise 0.26: Assume there is a covector y ∈ (Rm)⊤ such that ATy ≥ c. Given s ∈ (Rk)⊤

such that A⊥(s − a) = 0 and s ≥ 0, explain how to compute the corresponding feasible point y

such that ATy ≥ c. Hint: the affine transformation that maps Q∗ into G is given by v → ATv−c

Solution 0.26: Recall A⊥a = −A⊥c. Thus we have A⊥(s + c) = 0, so s + c ∈ rowspace(A)⊤,
i.e., there exists a unique m-covector y such that ATy = s + c. (Note rtnullspace(A⊥) =
rowspace(A).) Thus y = (AT)+(s + c). The k equations ATy = s + c are “overdetermined”,
but s is defined exactly so that these equations have a (unique) solution. And since s ≥ 0,
ATy = s + c ensures that ATy ≥ c.

The modified primal and modified dual problems obtained above have a geometrical interpretation
where the solution to our modified primal problem, if it exists, is an (Rk)⊤-covector x̂ such that x̂ is
an extreme point of the (k−m)-dimensional degenerate polyhedron F ∩O+

k lying in the intersection
of some distinguished collection of m (and possibly more) of the hyperplanes defining the boundary
of O+

k , while the solution to our modified dual problem, if it exists, is an (Rk)⊤-covector ŝ such that
ŝ is an extreme point of the m-dimensional degenerate polyhedron G∩O+

k lying in the intersection of
the other k−m hyperplanes defining the boundary of O+

k , and possibly more such ∂O+

k -hyperplanes
as well. And the connection between duality and orthogonality is clearly seen since the flats F and
G are orthogonal.

Exercise 0.27: Show that (x̂ − a, ŝ − a) = 0.

If we “start” at the point a common to F and G, and move in F to the extreme point x̂ and also
move in G to the extreme point ŝ, then as we move, the distance between the two moving points
gets steadily larger until we reach the “semi-corners” of the boundary of O+

k where the optimal
points x̂ and ŝ are found. Note that the motion of these two points need not be consistent with
the two gradient directions obtained from the common gradient direction a projected in F and in
G; this is because a need not lie in O+

k , and if so, both points will move from outside O+

k to the
boundary of O+

k .

Exercise 0.28: Under what conditions does the angle between these two moving points also
grow steadily larger, or at least not diminish, as we move until the maximum possible separating
distance is attained at the two optimal points?

Exercise 0.29: Let α, β ∈ R+ and let p, q, a ∈ R2 with p 6= 0 and q 6= 0 and p 6= q. Let C

denote the cone cone0(p, q). Show that when a ∈ C ∪ (−C), the “full”-angle in [0, 2π) between
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the two vectors αp + a and βq + a increases as α and β increase, unless a = 0. (We need to
admit full-angles greater than π for this to be generally true for a ∈ C.)
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