
File: mlabpapers/adaptive/adaptive.tex

Adaptive Delta Modulation

Gary D. Knott, Ph.D.

Civilized Software, Inc.
12109 Heritage Park Circle
Silver Spring MD 20906
Tel.: (301)-962-3711

email: knott@civilized.com
URL: www.civilized.com

Given an analog signal f(t), for s0 ≤ t ≤ s1, we may wish to transmit
this curve to a remote site. For example, f may be a voice signal, or a
continuous time series measurement reading of some transducer. Digital
encoding generally allows data compression, permitting fewer bits per second
to be transmitted, and error-correcting codes can be used as desired to
further improve accuracy. We may transmit a train of rectangular pulses,
using repeaters as needed, or we may use any of the various amplitude,
frequency, or phase modulation methods for transmission as a band-limited
oscillating signal. Digital encoding for data compression is also a useful
device in storing digitally-encoded curves.

One common scheme is so-called delta-modulation encoding. This method
can be used for sound and/or video digital radio transmissions and record-
ings as well as other types of signals. If the signal, f , is to be digitized for
computational purposes, then delta-modulation encoding serves as a cheap
and efficient analog-to-digital converter.

The basic idea is quite simple. Given the initial value, h = f(s0), a sampling
interval, α, and an increment value, δ, we may interpret a string of bits b1,
b2, . . . , bn to obtain a specification of estimated signal values f̂(t1), f̂(t2),
. . . , f̂(tn), where ti = s0+ iα for 0 ≤ i ≤ n, as follows. Each bit bi indicates
adding the constant δ if bi = 1 and subtracting δ if bi = 0, so that

f̂(s0 + kα) = h+
k∑

i=1

(2bi − 1)δ.

For example, consider f(t) =if t ≤ 6 then sin(t) + 2 cos(3t) exp(−t) else
−.27614(1 − exp(−2(t − 6))). A graph of f on the interval [0, 11] is shown
below

1

Choosing the parameter values: s0 = 0, s1 = 11, δ = .1 and α = .1, we have
h = 2 and the binary digital sequence: 0000000000000011111100000000000
00000001000010101010111101111110101001 01010101010101010101010101010
10101010101. This sequence specifies f̂ as shown below, drawn with the
traditional step-function interpolation which would be seen on an oscillo-
scope. The smooth curve is the true signal, and the stepped curve is the
step-function form of f̂ . Thus the function f̂ on the interval 0 to 11 is
represented with 110 bits.

2

The encoding process computes the ith bit, bi, by predicting f(ti) to be
some value Pi, and then bi is taken as one if f(ti) > Pi and zero otherwise.
The choice of Pi used here is merely the previous estimate value f̂(ti−1).

In general, to obtain a reasonable estimate for f , the sampling interval, α,
must be such that (s1−s0)/α is greater than the Nyquist frequency, which is
twice the frequency of the highest-frequency component present in the signal
f , and δ must be small enough to track high-frequency oscillations without
undue shape distortion. A practical way to choose α and δ is to choose δ as
the largest absolute error by which f̂ may deviate from f , and then choose
α = δ/w, where w = maxs0≤t≤s1 |df(t)/dt|, the maximum absolute slope of
f . In the previous picture, α is clearly too large for the chosen δ; the result
is the large error in the initial part of the signal, called slope overload error,
where the slope is too large in magnitude for δ = .1 and α = .1 to track the
signal.

Even when the signal is being appropriately followed, the estimate oscillates
about it. This so-called granular noise is unavoidable, although its size is
controlled by δ. Note that the error characteristics of the estimator f̂ are
given by |f(t)− f̂(t)| < δ for s0 ≤ t ≤ s1, assuming α is small enough. This
is an absolute error criterion rather than a relative error criterion, and f̂
behaves like a Chebychev approximation to f .

Note that a delta-modulation signal is very sensitive to transmission error.

3

Changing a burst of a dozen bits or so during transmission can destroy the
validity of the remaining bits. However, higher sampling rates mean short
burst errors are less harmful, and methods to periodically restart the delta-
modulation process can be included in a practical transmission system. In
general, delta-modulation is a very efficient way to encode a signal. It is
not clear how to define the notion of the efficiency of an approximation (as
opposed to an exact encoding) in a precise information-theoretic manner,
but this is an intriguing direction for investigation.

We can elaborate on the basic idea of delta-modulation in several ways.
First, it has been proposed that the increment δ can assume various values,
depending upon the past tracking of the signal. If we output m ones or zeros
in a row (indicating a region of large absolute slope), we can increase δ, re-
placing δ with 3δ/2 for example. If we output m alternating ones and zeros,
we can then decrease δ, say to 2δ/3. The new value of δ is to apply to the
current bit being output which forms the mth bit of the change-triggering
pattern. This device is called adaptive delta-modulation. Changing δ, how-
ever, is not always an improvement. Indeed the signal may be such that a
closely-tracking, but lagging, estimate becomes an oscillating estimate with
greater absolute error when adaptive delta-modulation is employed. For ex-
ample, for the signal shown above, with α = .1 (too large), and δ varying
within the limits .05 to .28, based on m = 2, so that two zeros or ones
in a row increases δ, while two different values decreases δ, we obtain the
approximation shown below.

4

Another idea is to allow the sampling interval, α, to change. This is not
very useful for hardware, which is more conveniently designed to use a fixed
clock rate, but for data-compression for digital storage purposes, varying α
may allow fewer bits to be used to encode a given curve. We may increase
α when the previous m bits have alternated in value, but when m ones or
zeros in a row occur we reduce α to re-establish the fastest sampling rate.
This permits large steps in slowly-varying regions, but it allows relatively
large deviations in the estimate to occur at turning points where f changes
from being flat to sharply rising or falling. Choosing m = 2 minimizes this
effect, but it is still noticable. Lagging tracking at turning points is the
major flaw in most delta-modulation schemes. The step-function estimate
of our example signal is shown below where we have replaced α by 1.6α up
to a limit of .41 whenever the previous two bits were the same and reset α
to .05 otherwise. We have fixed δ = .1 (which is too small to be completely
reasonable for our range of α). Note we now have as our estimated points:
(s0, f(s0)), (t1, f̂(t1)), ..., (tn, f̂(tn))for some irregular meshs0 < t1 < ... <
tn ≤ s1.

5

If we allow δ and α to both vary as described above with δ in the interval
[.05, .28] and α in the interval [.05, .41], we obtain the following approxima-
tion.

In order to compute the bit bi which determines the point (ti, f̂(ti)) when en-
coding the signal, f , we form an estimate of f(ti), called Pi, where Pi predicts

6

f(ti) given the previous estimate points (t0, f̂(t0)), (t1, f̂(t1)), ..., (ti−1, f̂(ti−1)).
Then if Pi is less than f(ti) we output bi = 1 and otherwise for Pi ≥ f(ti),
bi is output as zero.

This same predictor must be used in decoding the bitstring, b, in order to
compute f̂ ; this is why Pi depends on f̂ -values, and not on f -values.

In the discussion above, we have used the simple predictor Pi = f̂(ti−1).
Other predictor schemes are possible, and may provide better performance,
allowing smaller δ and/or larger α values to be used. Of course other pre-
dictors do not necessarily have the property that bi = 1ifff̂(ti−1) < f(ti).

In general, then, our decoding calculation for obtaining f̂(ti)isf̂(ti) = Pi +
δi(2bi − 1)for1 ≤ i ≤ n, where δi is the particular value of the increment
used when bi is computed; δi is a function of b1, b2, ..., bi−1.

We could choose Pi to be determined by extrapolation on the linear or
quadratic curve passing through the previous two or three points of the
estimate, but experimentation shows the error in this form of predictor to
be worse than the simple constant form. A more promising idea is to use
an extrapolation on a polynomial which fits the previous k estimate points
in the least-squares (or better yet L1-norm) sense. This works adequately
although the predictor is slow to track f on turning intervals. A more
elaborate filter predictor might be worth exploring, but weighted averages
of the previous k points and weighted averages of the linear predictors based
on the k previous points taken two at a time also perform no better than the
simple constant predictor. Thus finding a better predictor seems difficult
and the constant form seems to be the best practical choice as well as the
simplest.

If a good predictor is used, however, the adaptive variation of δ and α be-
comes less useful. Indeed, with a perfect predictor Pi = f(ti), our output is
all zero bits, and α will foolishly stay at its minimum, while δ will stay at
its maximum. The resulting f̂ curve tracks below f with the maximum al-
lowable error. Even using merely a good predictor means we should sharply
decrease δ and perhaps increase α.

Algorithms for encoding and decoding an adaptive delta-modulation signal
are presented below, with m = 2 and with the simple constant predictor
function, Pi = f̂(ti−1), used above. The constants C, δmin, δmax, g, αmin,
and αmax are global parameters which may be “tuned” to the situation.
We have used c = 1.5, δmin = .05, δmax = .28, g = 1.6, αmin = .05, and
αmax = .41 in the example above.

7

ADMencode(s0, s1, d, a, f):

begin real x1,x2,t,h,b;

real procedure P: [h <-h+(2b-1)d; return(h)];

b,x2.5; ts0; hf(s0);

send (t0, h,d, a) to ADMdecode; "This send starts the decoder."

while t <= s1 do

[tt+a; x1x2; if f(t) > P then b1 else b0;

x2b; output(b);

if x1=x2 then (aamin; dmin(cd,dmax))

else (dmax(d/c,dmin); amin(ga,amax))

];

output(end-message); "This will stop the decoder."

end.

ADMdecode(t, h, d, a):

begin real x1,x2,h,b;

real procedure P: [hh+(2b-1)d; return(h)];

b,x2.5;

repeat

[output (t,P);

"Initially, the output point (t,P) is the point (s0,(s0));

then subsequent points on the -curve are output."

receive a bit in b, on end-message, goto exit;

x1x2; x2b; tt+a;

if x1=x2 then (aamin; dmin(cd,dmax))

else (dmax(d/c,dmin); amin(ga,amax))

];

exit: end.

There are many variations possible, based on different ranges for δ and α,
and different formulas for changing them. In our example, we actually do
about as well with even fewer bits than used above when we let δ assume
just the values .1 and .2 and let α assume just the values .1 and .2. Another
idea is to compute b by the test: iff(t) > P − a(log(1 + |f ′(t)|)/k)thenb ←
1elseb← 0. This use of slope information can perhaps be marginally useful,
even though it produces “lies” about the location of f . Some suggestions
have been made that an “intelligent” encoder could hold m signal values in

8

a memory, and carefully compute the best block of one or more output bits
based on this “look-ahead”. Perhaps just provisional output bits could be
held, so that we would hold m bits in a local memory and output each bit
based upon the m − 1 future bits which have been provisionally computed
and stored, but it seems difficult to make a useful scheme out of this idea.

Also, when we use m > 2 to adaptively change δ and/or α, we could use a
2m − bit decision tree to pick carefully-chosen δ and α modifications; this
scheme does work well, but at a high cost in complexity.

All the pictures in this example were produced with MLAB. The precise
statements needed to do such computer experiments with MLAB are shown
below. The following text is a do-file, which when invoked with an ap-
propriate MLAB do-command, is executed to produce matrices suitable for
graphing.

FUNCTION F(T)=IF T<=6 THEN SIN(T)+2*COS(3*T)*EXP(-T)

ELSE J-J*EXP(-2*(T-6));

J = -.27614;MINA = .05; MAXA = .41; MAXD = .28; MIND = .05;

T0 = 0; T1 = 11; D = MIND; A = MINA; G = 1.6; C = 1.5;

TYPE "SET T0,T1,A,D, ETC. AS DESIRED."; DO CON;

FUNCTION ADM(I)=

IF T+A<=T1 THEN (B_((PV_P(ME[I]_OLDP(ADM)))<=F(MT[I+1]_(T_T+A))))

+0*(A_NEWA(X1_X2,X2_B))+0*(D_NEWD()) ELSE 1000-I;

FUNCTION OLDP(B)=PV+D*(2*B-1);

FUNCTION P(H1)=H1;

FUNCTION NEWA(X1,X2)=IF X1=X2 THEN MINA ELSE MIN(G*A,MAXA);

FUNCTION NEWD()=IF X1=X2 THEN MIN(D*C,MAXD) ELSE MAX(D/C,MIND);

X2 = 1; ADM = .5; T = T0;

IF T1 <= T0 THEN TYPE ("null interval"); PV = F(T0);

"PRE-ALLOCATE THE ARRAYS MT, ME.";

MT = 0^^360; ME[360] = mt; MT[1] = T0;

MB = ADM ON 1:360;

N = MAXI(MB); IF N >=360 THEN TYPE "TOO MANY POINTS.";

ME(N) = OLDP(B); ME = ME ROW 1:N; MT = MT ROW 1:N; MB = MB ROW 1:(N-1);

9

SME = MESH(MT,MT)&’ROTATE(MESH(ME,ME),1); DELETE SME ROW (1,N+N);

ME = MT&’ME; MF = POINTS(F,MT);

"MB IS THE DELTA-MODULATION BIT-VECTOR, MF IS THE SAMPLED

SIGNAL POINTS, ME IS THE ESTIMATED SIGNAL POINTS, AND SME

IS THE STEP-FUNCTION ESTIMATE.";

It is worth observing that the step-function approximation form of drawing
f̂ is somewhat deceiving. A simple straight-line interpolation is a more
reasonable presentation. For example, the (δ, α)-varying estimate shown
above is seen again here using linear connecting segments.

Viewing a picture such as this suggests that we might estimate f more exactly
if we compute the midpoints of the line-segments in the graph of f which
cross the graph of f̂ . But this set of crossing points is only marginally
useful when filtering is used. Generally the input, f , should be prefiltered
to pass only frequencies below an appropriate cutoff point. In any event,
the output points, (t, f̂(t)), have both sampling and encoding error, and the
output should be filtered to remove some of the noise. The filtering can
be done with a distance-weighted smoothing transformation in software, or
with an appropriate low-pass filter in hardware.

The smoothed variable δ and α estimate is shown below. A doubly-smoothed
estimate would be even better in regions of slowly-changing slope.

10

11

