
Computing Radioimmunoassay Analysis Dose-Response
Curves

Gary D. Knott, Ph.D.
Civilized Software, Inc.

12109 Heritage Park Circle
Silver Spring MD 20906
Tel.: (301)-962-3711

email: csi@civilized.com
URL: www.civilized.com

Introduction

The study of how a ligand material, such as a hormone or antigen, binds

to one or more kinds of molecular complexes, called sites, is of fundamental

importance in biochemistry. Sites are often embedded in cell membranes,

and the binding may serve to control the behavior of the cell itself. Typically

we are interested in the number of distinct kinds of sites and their frequency

of occurrence, and also the equilibrium constants for each ligand-site binding

reaction which indicates the absolute strength of each such binding reaction.

For example, quantitative analysis of ligand-receptor binding can be easily

performed using appropriate software such as the MLAB system discussed

in this paper. MLAB is a computer program whose name is an acronym for

“modeling laboratory”; it is an interactive system for mathematical model-

ing, originally developed at the National Institutes of Health. MLAB can

fit multiple non-linear models to data points. We are interested here in

designing standard displacement assays. Typically such assays involve mea-

suring the competition between radiolabelled and cold ligand in detergent-

solubilized membrane preparations or on whole cells. Affinity constants and

1

limit values of binding protein concentrations for single or multiple sites

can be computed by fitting saturation curves in MLAB. Output can include

Scatchard plots obtained by a suitable transformation.

One specific elaboration of the study of simple binding equilibrium states

arises in radioimmunoassay analysis. Suppose P is a substance (a ligand

or antigen) to be assayed which binds with a material Q (possibly, but not

necessarily, an antibody) to form a complex B, and suppose further that H

is a radioactive material which competes with P in binding to Q molecules.

H is called the labeled or “hot” ligand. Thus, we have:

H +Q
K1⇀↽
K2

L

P +Q
K3⇀↽
K4

B.

Let P0, H0, and Q0 be the initial amounts of P , H, and Q. If a number

of experiments with different values of P0, but with H0 and Q0 fixed, are

done, and the bound labeled material L is measured, we obtain a set of data

points (P0, L) which, except for error, define a so-called dose-response curve.

Generally, L falls as P0 increases, because more P is competing with the hot

ligand, so more B and less L are formed. Given such a dose-response curve,

we can mix an unknown amount (possibly zero) of P (the dose) with H0

moles of H and Q0 moles of Q and measure L (the response) at equilibrium,

and then read off from our dose-response curve how much P there must

have been. This is an assay for the material P . The radioactivity is merely

a device that allows us to measure the amount of L that is formed. Any

other method that allows the amount of L to be determined can alternately

be used.

Developing an assay entails providing a suitably-accurate dose-response curve.

Thus, we wish to refine our dose-response curve by curve-fitting the experimentally-

obtained data points (P0, L).

2

Let the equilibrium constant A1 = K1/K2 = L/(HQ), and let the equi-

librium constant A2 = K3/K4 = B/(PQ), with all species measured at

equilibrium. Then Q0 = Q+B +L, H0 = H +L, and P0 = P +B, so with

some manipulation, we have:

L = A1H0Q/(1+A1Q), and Q0 = Q(1+A2P0/(1+A2Q)+A1H0/(1+A1Q)).

We can define this model in MLAB as follows:

*FUNCTION L(P0) = LV(Q(P0))

*FUNCTION LV(QV) = A1*H0*QV/(1+A1*QV)

FUNCTION Q(P0) = ROOT(Z,0,Q0,Z(1+A1*H0/(1+A1*Z)+A2*P0/(1+A2*Z))-Q0)

These commands exemplify the MLAB FUNCTION statement, which is

used to define a function or differential equation. Note that arguments of

functions must be explicitly specified. Variables, such as /A1/ and /A2/,

which appear in the body of a function, but not in its argument

list, are called parameters. Parameters must be assigned values

before an associated function can be evaluated.

ROOT is an operator which is built-in in MLAB. /ROOT(Z,A,B,E)/ is

a value between /A/ and /B/ which, when taken as the value of the

dummy variable, /Z/, makes the expression, /E/, which involves /Z/,

equal to zero. Thus /ROOT(Z,A,B,E)/ is a solution of E(Z) = 0.

The model given above, involving a so-called implicit function,

deserves careful study.

Now we can use MLAB to fit L to the (P0, L)-data by adjusting A1

and A2 (and even H0 and Q0 if desired). Often we assume A1 =

A2, but this is not necessary. This model demands that the data

points be taken at equilibrium, and that the reaction is adequately

3

described by the simple competitive scheme given above. In practice

this model is very sensitive to the initial guesses, and constraints

are often required. Usually H0 is fixed at 1 and the L-data is

expressed as a percent of total H. The P0 data should then be

in percent of total H units, as well.

The MLAB Mathematical Modeling System

MLAB has hundreds of useful functions, e.g., the discrete Fourier

transform function dft and the parametric spline interpolation function

splinep. One of the central components of the system is a curve

fitting program which will adjust the parameters of a model function

to minimize the weighted sum of the errors raised to a specified

power. A repertoire of mathematical operators and functions, routines

for solving differential equations, a collection of routines for

onscreen drawing and for hardcopy plotting, and mechanisms for saving

data between sessions provide a powerful and convenient environment

for data manipulation, arithmetic calculations, and for building

and testing models.

The user communicates with MLAB by typing commands which are executed

at once or by providing a script to be executed. Should the user

have questions, typing /HELP/ will put the on-line system documentation

at his disposal. The MLAB language is defined in the MLAB reference

manual.

One of MLAB’s main uses is to fit models to data. Curve-fitting

is a useful analytical tool in many diverse disciplines. The basic

notion is easily described. Given data, say various points in the

plane (x1, y1), (x2, y2),, (xn, yn), and a function y = f(x) where

f involves some parameters, say a and b, as for example f(x) = axb+

4

1, we may wish to calculate values for the parameters a and b so

that the function f well-predicts the observed data, that is, so

that f(xi) = yi for 1 ≤ i ≤ n. In this case, we say we have fit

the model f to the data by estimating the parameters a and b. The

end result is merely the values obtained for the initially unknown

parameters. The same principles apply in higher dimensions with

arbitrarily many parameters. MLAB can simultaneously fit multiple

non-linear model functions, some or all of which may be implicit

functions, or may even be defined by a system of differential equations.

The curve-fitting and graphics display facilities of MLAB make it

an ideal tool for the estimation of equilibrium constants from data,

which typically consists of observed amounts of ligand bound for

various specified amounts of ligand provided for binding.

Dose-Response Curve Computation in MLAB

Here is an example showing the calculation of the dose-response

curve for certain data which is read-in-below.

To begin we introduce the appropriate constraints (which should

always be used for this particular model), guess the equilibrium

constants A1 and A2, and then estimate them, as follows.

* CONSTRAINTS N ={A1>0,A2>0}

The /CONSTRAINTS/ statement permits the user to specify successive

linear inequalities or equations involving the parameters (or potential

parameters). Now we may specify values for the parameters, guessing

when necessary.

5

A1 = 1; A2 = 2; H0 = 2; Q0 = 4

Here the /ASSIGNMENT/ statement is exemplified. In this case all

the above assignments are assigning values to scalar variables,

but the /ASSIGNMENT/ statement is used to assign values to matrices

as well. This can be seen in the next /ASSIGNMENT/ statement which

defines a matrix, M.

M = READ(assay,21,2)

The /READ/ operator takes optional array size arguments; in this

case a 21 row by 2 column matrix is specified, and reads in numbers

from the specified file to construct an appropriately-dimensioned

matrix as the result. This matrix is then, in this case, assigned

to /M/.

We have established a model function, L, and entered data, M. We

expect that L(M [i, 1]) ≈M [i, 2] would hold, if only the parameters

A1 and A2 were set to their ‘‘correct’’ values. The following /FIT/

statement requests MLAB to estimate A1 and A2 by assigning them

values which minimize the sum-of-squares objective function S(A1, A2) =
∑8

i=1 (L(M [i, 1])−M [i, 2])2.

FIT(A1,A2), L TO M WITH WEIGHT EWT(M), CONSTRAINTS N

final parameter values

value error dependency parameter

6.1567727039 0.9593487946 0.7470305183 A1

60.5719353014 12.2219429924 0.7470305183 A2

6 iterations

6

CONVERGED

best weighted sum of squares = 9.870322e+01

weighted root mean square error = 2.279234e+00

weighted deviation fraction = 5.480005e-02

R squared = 9.873349e-01

no active constraints

The behavior of the /FIT/ statement depends upon the supplied constraints

as well as upon the MLAB control variables: /MAXITER/, the maximum

number of iterations and /TOLSOS/, the requested convergence factor.

MLAB uses a carefully-tuned version of the Marquardt-Levenberg magnified-diagonal

algorithm which is, in turn, a form of the Gauss-Newton procedure

for minimizing a function which is in the form of a sum-of-squares.

This process estimates the value of the parameter vector (b = (A1, A2)

in our case) by successive approximations b(0), b(1), ..., b(n), where

b(0) is the vector of initial guesses for A1 and A2, and b(j+1) =

b(j) + β(j), where

β(j) = (X ′V −1X + εG)−1X ′V −1(y − (f(x1; b
(j)), . . . , f(x8; b

(j)))′), with

Xst = ∂f(xs; b
(j))/∂bt and

Gst = if s = t then (X ′V −1X)st else 0 and

xs = M [s, 1] for 1 ≤ s ≤ 8, and

y = (M [1, 2], . . . ,M [8, 2])′,

where V is the estimated covariance matrix of the observations.

In our example, V = I, the identity matrix. In general V is determined

from weight-values supplied by the user.

7

An iteration consists of computing b(j+1) from b(j). Note that this

requires the partial derivatives of the model function with respect

to the parameters evaluated at b(j), since these values form the

matrix X. In MLAB, these derivatives are automatically computed

symbolically and evaluated to form X. The convenience thus obtained

is considerable and the parameter estimation process is provided

with more accurate derivative values. For example the derivative

of L with respect to A1 can be explicitly displayed in MLAB as follows.

* TYPE L’A1, LV’A1, Q’A1

FUNCTION L’A1(P0) = LV’A1(Q(P0))+LV’QV(Q(P0))*Q’A1(P0)

FUNCTION LV’A1(QV) = (H0*QV*(1+A1*QV)-QV*A1*H0*QV)/((1+A1*QV)*(1+A1*QV))

FUNCTION Q’A1(P0) = EVAL(Z,ROOT(Z,0,Q0,

Z*(1+(A1*H0)/(1+A1*Z)+(A2*P0)/(1+A2*Z))-Q0),

-(((H0*(1+A1*Z)-Z*A1*H0)/((1+A1*Z)*(1+A1*Z)))*Z)/

((1+(A1*H0)/(1+A1*Z)+(A2*P0)/(1+A2*Z))-((A2*A2*P0)/

((1+A2*Z)*(1+A2*Z))+(A1*A1*H0)/((1+A1*Z)*(1+A1*Z)))*Z))

Indeed derivatives are full-fledged members of the class of functions

and can be used in graphics or curve-fitting in MLAB just as can

any other user-defined function.

A sub-iteration consists of computing b(j+1) with a particular value

of ε which specifies the amount of diagonal magnification. At each

iteration, the value ε starts at 10−9 and is increased until the

corresponding value of b(j+1) results in a smaller sum-of-squares

value, whereupon this vector is taken to be the final b(j+1) iterate.

The parameter estimation process stops when the limit of the number

of iterations is reached or, more usually, when the decrease in

the sum-of-squares value between successive iterations is less than

8

a specified fractional amount determined by the user-specified convergence

factor in /TOLSOS/. For /TOLSOS/ = .001, the sum-of-squares must

change by less than .1 percent for the curve-fitting process to stop

based on this criterion.

When the estimation process does stop, the parameters are reset

to their computed estimates, and they and their estimated standard

deviations are typed out. Associated values called dependency values,

which lie between 0 and 1, are also typed out. It suffices here

to remark that large dependency values above .99 usually indicate

a non-unique solution; that is, other parameter estimates exist

which would provide a nearly equally-small sum-of-squares.

MLAB also types-out the root-mean-square error which is the estimate

of the standard deviation in each observation, given that they are

identically distributed. This quantity should roughly equal the

experimental error in the data. There are, of course, many caveats

and restrictions which must hold to insure the validity of the supporting

statistics provided.

The material typed out above shows that the vector of parameters

(A1, A2) has been estimated to be (6.15677±0.95935, 60.5719±12.2219),

with reasonably small dependency values, and with an RMS error of

about .987, which should be comparable with the experimental error

in our data, M. The sum-of-squares was reduced to 98.7 at the final

parameter values.

In order to visually see how our model with its parameters set to

their best-estimated values corresponds to the data, we may draw

a graph of the data points and the model function. Although we

are drawing only the simplest and most direct kind of picture here,

it should be noted that MLAB provides facilities for many types

9

of point-symbols and types of lines, axes with arbitrarily-placed

numeric labels in various formats, titles in the form of text strings

in arbitrary sizes and various fonts with subscripts and superscripts,

color, and a number of other special features. It is quite possible

to prepare more or less elaborate publication-quality graphs with

a modest amount of effort. Indeed this is one of MLAB’s most-used

facilities. The desired graph can be constructed as follows.

* DRAW M, LINETYPE NONE,POINTTYPE STAR

* DRAW C2 = POINTS(L,0:8:.2)

* VIEW

The first /DRAW/ command above plots the data points, while the

second /DRAW/ command constructs a curve called /C2/, which is a

graph consisting of solid straight-lines connecting the points which

10

are the rows of the 2-column matrix which is the value of the expression

/POINTS(L,0:8:.2)/. This matrix has the values 0 through 8 in steps

of .2 in its first column and corresponding values of the function

L evaluated at 0 through 8 in steps of .2 in the second column.

The /POINTS/ operator is very useful for graphing functions. Both

these curves are drawn in the default MLAB 2D-window called /W/

(since no other window is specified) which has predefined labeled

axes already present. The picture finally appears when its display

is requested with a VIEW statement and a plot can be obtained if

desired using the /PLOT/ statement.

Often a ‘‘phenomenological’’ model for dose-response curves is preferred.

Experience has shown that the function L(P0) = (a−d)/(1+(P0/c)
b)+

d, where b is the ‘‘slope-factor’’ approximately equal to 1, a is

the zero dose response, d is the infinite dose response, and c is

the dose for a 50 percent response, often fits well. In either

case, the fitting should be done with weights (usually the MLAB

estimated weights, /ewt(m)/, where M is the (P0, L) data matrix,

suffices).

Now let us fit the phenomenological model and draw the comparison

below.

FCT EL(p) = (a-d)/(1+(p/c)^b)+d

a = 2; b = 2.5; c = 3.0; d = 0;

FIT(a,b,c,d), EL TO M WITH WEIGHT EWT(M)

final parameter values

value error dependency parameter

1.9589377175 0.0253123625 0.6168286269 a

11

2.300705405 0.1574645119 0.8828919509 b

3.176751857 0.0979352743 0.8541792257 c

-0.0773479916 0.0539555619 0.9449998881 d

3 iterations

CONVERGED

best weighted sum of squares = 2.767049e+01

weighted root mean square error = 1.275804e+00

weighted deviation fraction = 2.149476e-02

R squared = 9.958668e-01

DRAW M LT NONE, PT STAR

DRAW POINTS(L,0:8!101) LT DASHED

DRAW POINTS(EL,0:8!101)

TOP TITLE "DASHED = 2-SITE BINDING, SOLID = PHENOMENOLOGICAL"

VIEW

Both the direct second-order competitive binding model and the phenomenological

model fit well here. In other cases, however, the second-order

12

competitive binding model is inferior to the phenomenological model

as is demonstrated in the example below. The reasons for this include

the likelyhood that the actual binding reactions are more complex

than the simple competitive binding scheme postulated above.

Once the dose-response function L is determined, the assay value

for P0, given an observed amount, L1, of the material L, is just

V (L1), where in MLAB, we have:

*FUNCTION V(L1) = ROOT(X,0,PMAX, L(X)-L1).

Finally, as another approach, the function L can be determined entirely

empirically from the data matrix M as follows, where the L-unit

is fraction of total H.

13

*G = SMOOTH(M,3)

*G = INTERPOLATE(G,0:8:.04)

*DRAW M LT NONE PT STAR

*DRAW G

*VIEW

Any of a number of non-parametric regresion schemes can be used;

here we have used a weighted moving average smoothing function.

A confidence interval for P0 can be established, at least approximately,

by following the scheme for so-called calibrated estimation. A

useful reference in this regard, as well as for other purposes,

is: ‘‘The Application of Robust Calibration to Radioimmunoassay’’

by James Tiede and Marcello Pagano in Biometrics, Vol. 35, pp. 567:574,

Sept. 1979.

14

