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abstract: An inflated balloon that is shrinking due to loss of inside-air due to
diffusion across the balloon wall is modeled with the MLAB mathematical
modeling system.

At time 0, we are given a spherical balloon, initially of interior radius r(0)
inches (and interior volume v(0)) and containing m(0) pounds of air (at a
higher density than that of the outside air.) The thickness of the rubber
wall of the balloon at time 0 is h(0) inches. The air in the balloon diffuses
uniformly across the rubber balloon wall at a rate directly proportional
to the pressure difference between the inside air and the outside air, and
inversely proportional to the thickness of the rubber balloon wall. [Is it
true that the diffusion rate is simply directly proportional to the pressure
difference?] At time t, the interior radius is r(t), the interior volume is v(t),
the inside-air mass is m(t), and the balloon wall thickness is h(t).

The ideal gas law states that pressure is proportional to temperature times
density, and, in our case, temperature may be assumed to be constant, so
then pressure and density are proportional, where density equals mass/volume.
Thus p(t) = γm(t)/v(t), where p(t) is the inside pressure at time t.

As the inside air diffuses out of the balloon, the balloon shrinks in size.
This loss of air reduces the amount, and hence the mass, of the inside air
remaining, and, together with the shrinking, also affects the inside pressure,
p(t). The shrinking of the balloon is governed by the reduction of stress in
the balloon wall due to the lower pressure causing it.
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We wish to know the time-course values of the balloon radius function, r(t),
as the balloon shrinks to its equilibrium state, and we also want to know
the functions p(t), m(t), and h(t).

Let h0 be the thickness of the unstressed balloon wall and let r0 be the
inside radius of the unstressed balloon. Then, assuming the density of the
rubber material remains unchanged under stress, the thickness, h(t), at time
t satisfies 4

3π[(r(t) + h(t))3 − r(t)3] = 4
3π[(r0 + h0)

3
− r3

0]. (It may be more
realistic to assume the density of the rubber wall material decreases as it is
stressed, and it would be straightforward to accomodate this extension.)

Thus we have:
inside mass of air at time t: m(t)
inside radius of balloon at time t: r(t)
balloon wall thickness at time t: h(t)
inside balloon volume at time t: v(t) = 4

3πr(t)
3

inside balloon surface area at time t: s(t) = 4πr(t)2

outside balloon surface area at time t: 4π(r(t) + h(t))2

inside pressure at time t: p(t) = γm(t)/v(t)
constant outside pressure: u
net pressure difference: d(t) = p(t)− u
unstressed balloon inside radius: r0
unstressed balloon inside surface area: s0 = 4πr

2
0

unstressed balloon wall thickness: h0

diffusion coefficient per unit area: αd(t)/h(t)

The net diffusion rate is: dm(t)
dt = −α(d(t)/h(t))s(t)m(t), with m(0) = m0.

Note we could replace s(t) in our diffusion differential equation with the more
correct “midway” surface area that lies between the inside surface area and
the outside surface area; this would accomodate the slightly greater escape
probability compared to the case of diffusion across a planar membrane.

A small nearly-rectangular patch of unstressed balloon wall can be modeled
by a vertical spring and a horizontal spring, so that, by Hooke’s law, the
force needed to stretch an L×L unstressed patch horizontally to size x×L
is approximately ε(x−L)/L, and independently, the force needed to stretch
such a patch vertically to height x is also approximately ε(x−L)/L, where ε
is the non-directional modulus of elasticity of our rubber membrane material.
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The total force FL(x) needed to stretch an unstressed L × L patch to an
x × x patch is thus FL(x) = 2ε(x − L)/L. (In real situations, the modulus
of elasticity may appear to be a function of x, especially as x becomes large
and our material approaches its elastic limit.) Now for a complete spherical
balloon having the unstressed inside surface area s0 = 4πr

2
0, a uniformly-

applied force of 2ε(s1/2
−s

1/2
0 )/s

1/2
0 will stretch the balloon to have the inside

surface area s.

The force F on the entire rubber membrane is just the inside area times
the inside pressure minus the outside area times the outside pressure; this is
approximately the inside area times the pressure difference F = 4πr(t)2d(t).
This can be obtained by an alternate approach due to Jay Lindau. Consider
half our inflated balloon, i.e. a hemisphere, placed in coodinatized space so
that the hemisphere rests on the xy-plane and spherically bulges in the z-
direction. The disk in the xy-plane defined by the hemisphere will be called
the base of the hemisphere. If we consider outward vectors of force normal to
the hemisphere surface representing the forces due to the pressure difference
that is keeping our rubber balloon membrane stretched, then the sum of all
these vectors cancel all components of these vectors except the components
normal to the z-direction. Thus the area of the base of the hemisphere
times the pressure difference equals the z-component force, and hence the
total force, on the hemisphere rubber membrane, i.e. Fz = d(t)2πr(t)2. The
force on the entire rubber membrane is thus again F = 4πr(t)2d(t).

Since “stress” is (approximately) proportional to “strain” in a slowly-deflating
balloon, we may write:

2ε(s(t)1/2
− s

1/2
0 )/s

1/2
0 = 4πr(t)2d(t) = s(t)d(t).

Thus, 2εs(t)2 = s
1/2
0 (2ε+s(t)d(t)). And s(t) = 4πr(t)2 and d(t) = γm(t)/( 43πr(t)

3)−
u, so:

r(t)4 − s
1/2
0 [

3γ

2ε(4π)2
m(t)

r(t)
−

ur(t)2

2ε4π
+

1

(4π)2
] = 0.

Note the dynamic behavior of our balloon depends on the constants r0, h0,
ε, α, u, γ, and either p0 or m0 (since they are related.)

If we have time-course information about r and/or m and/or p, we may
estimate parameters such as ε, α, γ, or u by curve-fitting. Indeed, estimating
u is equivalent to calibrating a barometer. (Note we have a particularly nice
barometer when α ≈ 0.)
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Below is an MLAB do-file for computing and graphing the time-course dy-
namics of a fictional balloon obeying the above equations.

/* file: balloon.do - define and compute the time-course dynamics

of a slowly-deflating balloon. */

reset

echodo=3

p0=28; u=14; r0=1; h0=.01; g=.5; a=.0001; e=.1

fct v(r)=4*pi*r^3/3

fct s(r)=4*pi*r^2

ml=v(r0)*p0/g; s0=s(r0)

/* mh()= inside-air mass for pressure p0 */

fct mh() = root(m0,ml,100*ml,g*m0/v(r(m0))-p0)

/* m’t(t) = differential-equation for inside-air mass which changes

due to diffusion. */

fct m’t(t) = -a*f(r(m),m)*m

init m(0) = m0

/* r(m) = balloon radius for inside-air mass m */

fct r(m) = root(b,r0/1.2,m*r0/u,b^4-c1*m/b+c2*b^2-c3)

c1=sqrt(s0)*3*g/(2*e*(4*pi)^2)

c2=sqrt(s0)*u/(2*e*4*pi)

c3=sqrt(s0)/(4*pi)^2

/* p(m,r) = pressure for inside-air mass m in a sphere of radius r */

fct p(r,m) = g*m/v(r)

fct f(r,m) = ((p(r,m)-u)*s(r))/h(r)

/* h(r) = balloon wall thickness for a balloon of radius r */

fct h(r) = root(z,0,r0,(r+z)^3-r^3-hv)

hv=(r0+h0)^3-r0^3

m0=mh() /* compute initial value of m */
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tv=0:6!160 /* table of time values */

q=points(m,tv) /* q= values of m on tv paired with these tv-values */

rv=r on (q col 2) /* rv= radius values for given inside-air masses */

draw tv&’rv lt dashed /* r */

frame 0 to .5, 0 to .5

top title "r vs. t"

w1=w

draw q /* m */

frame 0 to .5, .5 to 1

top title "m vs. t"

w2=w

draw tv&’(p on (rv&’(q col 2))) color red /* p */

frame .5 to 1, 0 to .5

top title "p vs. t"

w3=w

draw tv&’(h on rv) color green /* h */

frame .5 to 1, .5 to 1

top title "h vs. t"

w4=w

view
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problem: Model the dynamics of an inflated spherical balloon that is punc-
tured with a pin. Why does a punctured balloon make a ’pop’ sound? Why
does the balloon sometimes rupture into torn pieces?
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