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A 10 foot rope hangs in the form of a catenary with one end attached to a
pier at a point 3 feet above the water’s surface, and the other end attached
at the same height to a boat. If the lowest point on the catenary just touches
the water, how far is the boat from the pier? Another question is: if the
distance from the boat to the pier is fixed, does the lowest point on the
catenary submerge or clear the surface of the water as the tide ebbs? as the
tide rises?

Figure 1: A rope fixed to a pier and a boat. The lowest point on the
suspended rope touches the water’s surface.

1



It has been known since Leibnitz and Huygens’ time, circa 1691, that a rope
or chain tethered at each end hangs in a vertical plane in the shape of a
catenary curve. Symon[1971] gives the mathematical equation of a catenary
curve as:

y(x) = β + γ cosh(
x

γ
+ α)

where cosh(t) is the hyperbolic cosine function, cosh(t) = et+e−t

2
.

To describe our situation, the parameters α, β, and γ must be chosen so
that the catenary passes through both the fixed fastening point on the pier
and the vertically-changeable point representing the bow of the boat, and
such that the length of the catenary has the fixed value 10.

The length of the catenary with abscissae (x-coordinates) in the interval
[x0, x1] is given by:

L(x0, x1) = γ [sinh(
x1

γ
+ α)− sinh(

x0

γ
+ α)]

where sinh(t) is the hyperbolic sine function, sinh(t) = et−e−t

2
. The length

of the catenary curve satisfies this equation because the length of any dif-
ferentiable curve y(t) between the points (t0, y(t0)) and (t1, y(t1)) is:

∫ t1

t0

(1 + (
dy

dt
)2)

1

2dt

We choose a coordinate system in which the origin is at the point halfway
between the two fastening points of our catenary when the water level is 3
feet below the fastening point on the pier. Take x̄ to be the distance between
the boat and the pier in this situation. The minimum of the catenary is at
the point (0,−3), the suspension point on the pier is at (− x̄

2
, 0), and the

suspension point on the bow of the boat is ( x̄
2
, 0). The following equations

must be satisfied: y(− x̄
2
) = 0, y( x̄

2
) = 0, y(0) = −3, and L(− x̄

2
, x̄
2
) = 10.

Then we have:

y(0) = −3 = β + γ cosh(α)

y(
x̄

2
) = 0 = β + γ cosh(

x̄

2γ
+ α)

y(−
x̄

2
) = 0 = β + γ cosh(−

x̄

2γ
+ α)
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L(
−x̄

2
,
x̄

2
) = 10 = γ [sinh(

x̄

2γ
+ α)− sinh(−

x̄

2γ
+ α)]

where x̄ is the distance separating the pier and the boat. Here we have four
equations with the four unknowns α, β, γ, and x̄. We want to solve for the
value x̄, and this requires determining α, β, and γ as well.

The MLAB mathematical modeling program provides several ways of solv-
ing a set of equations such as this. Here we describe two methods: one using
the ROOT operator and the other using the MINIMIZE operator.

To begin, we reduce our four equations in four unknowns to one equation
in the unknown variable γ. Setting the expression for y( x̄

2
) equal to the ex-

pression for y(− x̄
2
) and cancelling common terms, one finds cosh( x̄

2γ
+ α) =

cosh(− x̄
2γ

+α). Writing the cosh functions in terms of exponential functions
and multiplying the resulting equation by 2, one finds:

e
x̄

2γ · eα + e
−

x̄

2γ · e−α = e
−

x̄

2γ · eα + e
x̄

2γ · e−α

This condition is satisfied if α = 0.

Next, substituting α = 0 into the equation for y(0) and solving for β, one
finds β = −(γ + 3). Then substituting α = 0 and β = −(γ + 3) in the
equation for L(−x̄

2
, x̄
2
) we obtain

10 = γ[sinh(
x̄

2γ
+ α)− sinh(−

x̄

2γ
+ α)]

and solving for x̄, one finds x̄ = 2γ sinh−1( 5
γ
), where sinh−1(t) is the inverse

hyperbolic sine function.

Finally, substituting α = 0, β = −(γ + 3), and x̄ = 2γ sinh−1( 5
γ
) into

the equation for y( x̄
2
), one obtains the following equation for γ:

0 = −3 + γ [cosh(sinh−1(
5

γ
)− 1)].

The MLAB ROOT operator finds a value of a variable within a specified inter-
val where a given function of that variable equals zero. The form of the ROOT
operator is ROOT(X,A,B,E) where X is the name of the unknown variable,
A and B are numbers or expressions that specify the range of values within
which the root-value lies, and E is a mathematical expression involving the
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unknown variable. Thus ROOT(X,A,B,E) = v such that v is a number in
the interval [A,B] and E(v) = 0. The ROOT operator employs a hybrid algo-
rithm that mixes bracketing, secant, Newton, and bisection methods. These
methods are described in Press[1992].

The equation given above involving γ can be solved and the other unknowns
evaluated, with the following MLAB commands:

FCT F() = ROOT(G,0,100,-(3+G)+G*COSH(ASINH(5/G)))

A = 0; C = F(); XB = 2*C*ASINH(5/C); B = -(C+3);

TYPE A,B,C,XB

Here, COSH and ASINH are built-in MLAB functions that evaluate the hyper-
bolic cosine and inverse hyperbolic sine, respectively. The TYPE command
prints the following results to the screen:

A = 0

B = -5.66666667

C = 2.66666667

XB = 7.39356993

Another method of solving the four equations consists of using the MLAB
MINIMIZE operator to find the values of α, β, γ, and x̄ that make a least-
squares objective function evaluate to the minimum value of 0. The least-
squares objective function in this problem is given by:

obj() = [10− L(−
x̄

2
,
x̄

2
)]2 + [0− y(

x̄

2
)]2 + [0− y(−

x̄

2
)]2 + [3 + y(0)]2.

Here are the MLAB commands that use the MINIMIZE operator to solve the
problem:

FCT Y(X) = B+C*COSH((X/C)+A)

FCT L(X0,X1) = C*(SINH((X1/C)+A)-SINH((X0/C)+A))

FCT OBJ() = (10-L(-XB/2,XB/2))^2+(Y(XB/2))^2+(Y(-XB/2))^2+(3+Y(0))^2

A = 1; C = 1; XB = 1; B = 1

MINIMIZE(OBJ,XB,A,B,C)

TYPE A,B,C,XB

With the first 3 commands, we define Y(X) to be the general form of the
catenary function, L(X0,X1) to be the distance between the endpoints along
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the catenary, and OBJ() to be the least-squares objective function for the
system of equations. The assignment statements provide initial guesses for
the parameters A, B, C, and XB that appear in the definitions of the functions.
Then the MINIMIZE operation does a variable metric method search (as
described in Press[1992]) of the (α,β,γ,x̄)-parameter space, starting from
the point (1,1,1,1). The first argument to MINIMIZE is the name of the
function for which a minimum is to be found; the remaining arguments are
the names of the parameters to be varied. The MINIMIZE operator changes
the values of the parameters listed in the argument list. The results printed
to the screen by the last TYPE command are:

A = 8.86949601E-10

B = -5.66666669

C = 2.66666669

XB = 7.39356995

Both the ROOT and MINIMIZE methods determined the separation of the pier
and the boat to be approximately 7.39 feet.

The MLAB FIT and MINIMIZE operators can now be used to investigate how
the lowest point on the catenary changes as the right endpoint moves down
or up vertically, i.e. as the tide lowers or rises. Although the lowest point of
the catenary shifts to the right or left of the y-axis as the boat rises or falls
with the tide, we continue to use the coordinate system described above in
which the y-axis passes through the minimum of the catenary formed when
the boat and the pier are at the same level. Note that the bow of the boat
is always three feet above the water level.

Now suppose the water level changes in the coordinate system by δ feet,
so that the boat vertically-rises or falls to place the bow of the boat at ( x̄

2
, δ)

or ( x̄
2
,−δ). δ is constrained to be less than or equal to

√

100− ( x̄
2
)2 by the

Pythagorean theorem.

Thus we can compute the minimum point on the catenary by determin-
ing the catenary curve such that y(− x̄

2
) = 0, y( x̄

2
) = δ, and L(− x̄

2
, x̄
2
) = 10.

/* Compute MH to be the maximum height above (below) the fastening

point on the pier that the boat can attain if the rope is 10 feet

long and the pier and boat are separated by XB feet. */

MH = SQRT(100-XB^2);
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/* Compute a vector of 21 equally-spaced height values ranging from

-MH to MH, excluding MH and -MH */

D = -MH:MH!23

DELETE D ROW (1,23)

/* L(-XB/2,XB/2) = 10, and ML = the corresponding data point */

ML = LIST(-XB/2,XB/2,10)’

/* define linear constraints for XMIN, B, C */

CONSTRAINTS Q1 = {B<0,C>0}

CONSTRAINTS Q2 = {XMIN >= -XB/2, XMIN <= XB/2}

XMIN = 0; /* initial guess at minimum’s abscissa */

/* loop over 21 different heights, D[J], J = 1,2,...,21 */

FOR J = 1:21 DO {

/* MC = 2X2 matrix containing endpoints of the catenary

when the boat is at (XB/2,D[J]) */

MC = SHAPE(2,2,LIST(-XB/2,0,XB/2,D[J]));

/* adjust (A,B,C) to fit the catenary to the endpoints and length */

FIT (A,B,C), Y TO MC, L TO ML, CONSTRAINTS Q1;

/* find the minimum point (XMIN,YMIN) on the catenary, leaving

A,B, and C fixed, constraining (-XB/2)<=XMIN<=(XB/2) */

YMIN = MINIMIZE(Y,XMIN,Q2);

/* store the results in the matrix MRES */

MRES ROW J = LIST(D[J],XMIN,YMIN,A,B,C)’;

}

The MLAB FIT operator uses a “tuned” version of the Marquardt-Levenberg
curve-fitting method described in Marquardt[1963] and Smith[1970]. The
quadratic programming algorithm, which the curve-fitting algorithm needs
to converge within linear constraints is described in Shrager[1972].

Five of the resulting catenaries are graphed via MLAB in Figure 2.
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Figure 2: Catenaries for 5 different tide levels. The minimum of each
catenary is marked with × and connected to a horizontal dash mark which

represents the water level.

The computed minimum of each of the 21 catenaries and the corresponding
water levels are shown in Figure 3.
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Figure 3: The minima of 21 catenaries marked with × connected to
horizontal dash marks which represent water level.

If the tide ebbs, thereby lowering the boat with respect to the pier, the rope
clears the water. If the tide rises, thereby raising the boat with respect to
the pier, the rope is partially submerged.

This paper has demonstrated the ROOT, MINIMIZE, and FIT operators in
MLAB within the context of a catenary problem. MLAB can be used for
studying many other problems in physics and engineering.
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