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abstract: Drug-combination analysis is discussed and demonstrated.

Suppose we have a set of drugs (or other treatments which we misclassify as “drugs” for the purpose
of our analysis.) These drugs are supposed to be treatments for some disease, e.g., HIV infection.
Our goal is to assess whether, and to what extent, treatment with a particular combination of these
drugs is more or less effective than some other such combination treatment. Such combination
treatments include the case of treatment with a single drug, so we can also compare the efficacy of
two distinct single drugs with our method.

For each treatment with a combination of drugs D1, . . . , Dk, the data we have is a set of k + 1
dimensional points of the form (d1, . . . , dk, y), where dj is the dose of drug Dj (measured in any
desirable units) and y is the response observed in the subject represented by the point at hand.

The observed response is always non-negative, and is generally a value in the interval [0, 1]. Such
a value y denotes the relative amount or level of disease present after the drug treatment. Thus
a small response value indicates a better response than does a larger response value. Crudely, a
response value y should be measured such that 100(1− y) is the percent improvement observed.

For example, let w0 denote a subject’s white blood cell count before HIV treatment and let w1 denote
that subject’s white blood cell count after HIV treatment; then the response for that subject might
be 1− (w1−w0)/w0 which is 1 minus the fractional improvement observed. The value 1 or greater
denotes no suppression of disease, and values near 0 indicate substantial suppression of disease.
Here a subject’s white blood cell count is inversely related to the amount of disease. Another
example is that where we measure a quantity that is directly related to the level of disease present,
such as the concentration of PSA present, normalized to lie in the interval [0, 1], although here,
as in most cases, a percentage response is more appropriate, since the amount of disease present
prior to treatment can vary greatly. The issue of defining the observed response y is delicate.
Generally, y must be computed with a “normalization” established for each patient separately, and
often subjective evaluations may be involved.

The issue of defining the observed response is complex. Generally we have some marker which is
either directly or inversely related to the “amount of disease”. The white-cell count in an HIV
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patient is inversely related, while the PSA level in a prostate cance patient is directly related.
However these marker measurements are often non-linearly related to the amount of disease, and
they are individual-specific so that a blood-pressure of 140 indicates no disease in some patients
and indicates the presents of disease in another patient.

Finally, taking 1 to mean “no response” and 0 to mean 100% response means there is no way to
indicate a negative response; a treatment which makes a patient worse is treated the same as a
treatment which has no effect. The usual dose-response models and the drug-combination analysis
method presented here is blind to such situations and may not be applicable to studying treatments
that have common and substantial negative effects.

For a single drug, a so-called logistic dose-response curve often provides an adequate description of
the effect of treatment with that drug. We assume that such a model for single drugs is appropriate

here. (Although, see the remarks below on a non-parametric approach.) The general logistic dose-
response function for a single drug is:

y(d) = (a− h)/(1 + (d/c)b) + h.

Here y(d) is the response to treatment with a drug-dose of size d (remember a smaller response
value is better than a larger response value.) The parameter a is the predicted response to a 0-dose
(presumably, this response indicates no suppression of disease.) The parameter h is the predicted
response to an infinite drug dose (ignoring toxicity and other practical issues.) The parameter c is
the “mid-effect” dose, which is that dose that yields the response (a + h)/2. Often c is called the
IC50 dose and is denoted by the symbol PC50. The parameter b is called the slope parameter; it
controls the shape of the dose-response curve defined by the function y.

In our case, we assume that a = 1 (i.e., we have no suppression of disease at 0 dose) and that h = 0
(i.e., we approach complete suppression of disease as the dose becomes sufficiently large.) Thus,
y(d) = 1/(1 + (d/c)b). This dose-response curve generally “decays” sigmoidally from the value 1
to the value 0 as the dose d increases. If b > 1, we have faster decay, if 0 < b < 1, we have slower
decay, if b = 0, y(d) is the constant value .5, and if b < 0, our dose-response curve inceases instead
of decaying.

We may construct a single drug dose-response model for given dose-response data (d1, v1), . . . , (dm, vm)
by estimating the parameters c and b that fit the model function y to our data via weighted least-
squares minimization. An example showing the use of the MLAB mathematical and statistical
modeling system[1] to read-in the dose-response data, define the single-drug logistic dose-response
model function, provide initial guesses for the parameters c and b, fit our model to the data to ob-
tain the least-squares estimates of c and b, and finally, to graph the results, is given below. (Often
it is necessary to impose constraints on the parameters c and b in order to get a successful fit. This
can be done in MLAB, but it is not needed in the example given here.)

* dv=read(d1data,100,2)

* fct y(d) = 1/(1+(d/c)^b)

* c = 3; b = 1
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* fit (b,c), y to dv

final parameter values

value error dependency parameter

4.166513485 0.3632194177 0.05378619542 B

2.886642188 0.06692784189 0.05378619542 C

6 iterations

CONVERGED

best weighted sum of squares = 2.664797e-02

weighted root mean square error = 4.921934e-02

weighted deviation fraction = 5.824418e-02

R squared = 9.833524e-01

* draw points(y,0:6!100)

* draw dv lt none pt circle ptsize .02

* left title "response" font 18

* bottom title "drug dose" font 18

* top title "fit of y(d) = 1/(1+(d/c)’.5ub’.5d)" font 7

* title "c = "+c at (.5,.8)

* title "b = "+b at (.5,.75)

* view

Now let us consider a two-drug combination treatment. The dose-response model in this situation is
a function of two arguments, y(d1, d2), that predicts the response to the combination dose (d1, d2).
Let us suppose that drug D1 and drug D2 have no interaction. Moreover, we postulate that
y(d1, 0) = 1/(1+(d1/c1)

b1) and y(0, d2) = 1/(1+(d2/c2)
b2). We assume that the parameters c1, b1,

c2, and b2 are known due to fitting the single-drug logistic dose-response model to given single-drug
dose-response data for drug D1 and separately for drug D2. In analogy to the terminology used
with multivariate distribution functions, we may call the single-drug logistic functions y(d1, 0) and
y(0, d2) the marginal dose-response functions for the two-argument dose-response function y.
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Let δ1 be the value such that our non-interaction two-drug dose-response model satisfies y(δ1, 0) = r,
and let δ2 be the value such that y(0, δ2) = r. Now based on our no-interaction hypothesis, we can
follow Bunow and Weinstein [2], and geometrically define y(d1, d2) by postulating that y(d1, d2) = r
for (d1, d2) on the line-segment connecting (δ1, 0) and (0, δ2). Note it would not be appropriate to
define y(d1, d2) = y(d1, 0) + y(0, d2) since drug D1 and drug D2 compete to suppress the disease,
even if they act independently; that is, when drug D1 has acted to suppress some of the disease,
there is less “disease” present for drug D2 to apply to, and conversely. The line-segment connecting
(δ1, 0) and (0, δ2) is Lr := {(d1, d2) | (d1, d2) = α(δ1, 0) + (1− α)(0, δ2), 0 ≤ α ≤ 1}, and we specify
that y(d1, d2) = r for (d1, d2) ∈ Lr. This is appropriate because, when drug D2 is the same as
drug D1, the predicted response to a combination dose (d1, d2) must be the same as the predicted
response to a dose of size d1+ d2 of drug D1 (or D2) alone! Any drug-interaction model which fails
to satisfy this condition cannot be a statistically-correct model.

Now note that, if z = 1/(1 + (d/c)b), then 1 = (1z − 1)−1/b(d/c).

Recall that y(δ1, 0) = r = 1/(1 + (δ1/c1)
b1). Thus 1 = (1r − 1)−1/b1(δ1/c1), so α = (1r −

1)−1/b1(αδ1/c1). Also y(0, δ2) = r = 1/(1 + (δ2/c2)
b2), so 1 = (1r − 1)−1/b2(δ2/c2), and thus

1− α = (1r − 1)−1/b2((1− α)δ2/c2).

But then, when (d1, d2) ∈ Lr, d1 = αδ1 and d2 = (1 − α)δ2 for some value α ∈ [0, 1], and we have
specified that y(d1, d2) = r. Next, note that

1 = (
1

r
− 1)−1/b1(αδ1/c1) + (

1

r
− 1)−1/b2((1− α)δ2/c2).

Therefore y(d1, d2) can be defined as the value z such that (1z−1)−1/b1(d1/c1)+(1z−1)−1/b2(d2/c2) =
1 for any non-negative values of d1 and d2. Note this construction insures that y(d1, d2) = r for
(d1, d2) ∈ Lr.

This Bunow-Weinstein two-argument dose-response function for non-interacting drugs is a logically-
correct generalization of a single-drug logistic dose-response function. This implicit function can
be defined in MLAB as shown below. Note the care that is taken to avoid division by zero and
raising zero to a negative power.

function y1(d1)=1/(1+(d1/c1)^b1)

function y2(d2)=1/(1+(d2/c2)^b2)

function y(d1,d2)=if d1=0 then y2(d2) else \

if d2=0 then y1(d1) else \

if y1(d1)<.00001 and y2(d2)<.00001 then 0 else \

if y1(d1)>.99990 and y2(d2)>.99990 then 1 else \

root(z,1e-11,1-1e-11,(d1/c1)*(1/z-1)^(-1/b1)+(d2/c2)*(1/z-1)^(-1/b2) -1)

The MLAB commands used to produce a picture of the “response-surface” defined by our model
function y for two non-interacting drugs with identical marginal curves defined by c1 = c2 = 4.1665
and b1 = b2 = 2.8866 are given below. We assume the commands defining the functions y1, y2, and
y have been executed.
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/* define c1=c2=2.8866 and b1=b2=4.1665 */

c1=2.8866; c2=c1; b1=4.1665; b2=b1

/* draw a 3D perspective view of the non-interaction drug response

surface for two drugs having the same marginal single drug

dose-response curves. */

s = cross(0:6!20,0:6!20)

s col 3 = y on s

draw s linetype net

cmd3d("axes")

view

The produced picture is shown below.

We may continue the above MLAB dialog to produce a contour map corresponding to the function
y with c1 = c2 = 4.1665 and b1 = b2 = 2.8866 corresponding to the surface shown above. The
contour map shows some level lines where y(d1, d2) is constant.

delete w3

/* draw a contour map corresponding to the surface above. */

draw contour(s) linetype vmarker

left title "drug-1 dose"

bottom title "drug-2 dose"

top title "c1=c2="+c+" b1=b2="+b

view

5



We may further continue the above MLAB dialog to produce a contour map corresponding to the
function y in the case where c1 = 2.08325, c2 = 4.1665 and b1 = b2 = 2.8866.

delete w

/* draw a contour map of the non-interaction combination drug

response surface where c1 is reduced to half of c2. */

c1 = c1*.5

s = cross(0:6!20,0:6!20)

s col 3 = y on s

draw contour(s) linetype vmarker

left title "drug 1 dose"

bottom title "drug 2 dose"

top title "c1="+c1+" c2="+c2+" b1=b2="+b1

view
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Finally, we may further continue the above MLAB dialog to produce a contour map corresponding
to the function y in the case where c1 = c2 = 4.1665, b1 = 1.4433 and b2 = 2.8866.

delete w

/* draw a contour map of the non-interaction combination drug

response surface where b1 is reduced to half of b2. */

c1 = c2; b1 = b1*.5

s col 3 = y on s col 1:2

draw contour(s) linetype vmarker

left title "drug 1 dose"

bottom title "drug 2 dose"

top title "c1=c2="+c+" b1="+b1+" b2="+b2

view
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Note that the Bunow-Weinstein non-interacting two-drug dose-response function can be immedi-
ately generalized to the case of k non-interacting drugs. In general we have:

y(d1, . . . , dk) = root0≤z≤1[−1 +
k∑

i=1

(
1

z
− 1)−1/bi(di/ci)].

Now we may consider drug combination treatments where the drugs involved may interact synergis-
tically or antagonistically. To analyze such treatments, we need to have estimated the parameters
c1, b1, . . ., ck, bk appearing in the marginal single-drug dose-response functions for the k drugs
under consideration, so that the Bunow-Weinstein non-interaction model is specified.

Given the data (di1, di2, . . . , dik, vi) for i = 1, . . . ,m, we may compute the predicted non-interaction

response values ri = y(di1, di2, . . . , dik). If we have no interaction, each ri value should be approx-
imately the same as the corresponding observed response value vi. If not, then we can conclude
there is evidence for a synergistic or antagonistic effect, and the size and direction of this effect
can be estimated from the response differences vi − ri. (Note that for the same combination of
drugs, we might have both synergistic effects for dose-pairs in some regions and antagonistic effects
in different dose-pair regions.)

It may be convenient to consider the fractional differences pi := 1 − vi/ri; 100pi is the percent
change from the non-interaction predicted response ri that is observed in the actual response vi. If
vi < ri, the disease was suppressed more than the non-interaction model would predict and pi > 0.
If vi > ri, the disease was suppressed less than the non-interaction model would predict and pi < 0.
Crudely, we might say that our drug-combination exhibits a 100(p1 + . . . + pm)/m percent mean
synergy interaction effect.

It is interesting to plot the pi-values, the vi-values and/or the ri-values versus the associated
equivalent single-drug-dose of drug D1 (or any other of the drugs involved) as determined by the
Bunow-Weinstein non-interaction model y. If (d1, . . . , dk) is the vector of dose values corresponding
to the data-value vi and the predicted non-interaction value ri, then the equivalent drug D1 dose
is the value e such that y(e, 0, . . . , 0) = ri; An MLAB function involving the root-operator can be
defined to compute such equivalent dose values, but e can be directly computed as c1/(

1

ri
− 1)−1/b1

(with due care for ri = 0 and for ri = 1.) Such plots may be useful in seeing how the synergy effect
varies with dose.

Now one way to decide if the ri-values are, over all, sufficiently greater than the vi values to conclude
that we have statistically-significant synergy is to test the hypothesis that the mean of the pi-values
is less than or equal to 0 versus the alternate hypothesis that the mean of the pi-values is greater
than 0. A similar test can be used to assess whether we have statistically-significant antagonism.

It is probably most appropriate to use a non-parametric test such as the Wilcoxon 2-sample paired-
data test in MLAB on the ri-values versus the vi-values. And we can check our outcome with a
paired-data t-test on the pi-values, even though the normal-distribution assumption used there may
be invalid.

Note that in order to decide which of two drug combination treatments is better we need only
compare the pi-values for treatment 1 with the pi-values for treatment 2.
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Let us look at an example using MLAB to perform an analysis of some two drug combination
responses at various doses. We have a file called “a3azt.in” which contains n lines of three numbers,
where the first number is the administered dose of drug D1, the second number is the administered
dose of drug D2,and the third number is the response measured as the amount of disease present
after treatment (in this case, the response is the amount of virus assayed.) Each line in our data
file is thus an “observation” from a single “experiment”.

The MLAB dialog given below shows how we read our data, normalize the response values v1, . . . , vn
to lie in [0, 1], extract the data for the marginal dose-response curves (one data-set where the
drug D1 dose is 0 and one data-set where the drug D2 dose is 0), fit to obtain the estimated
marginal dose-response curve parameters c1, b1, c2, and b2 (which then define our Bunow-Weinstein
non-interaction two-drug dose-response function), compute the predicted non-interaction response
values r1, . . . , rn, and then compare the predicted ri-values with the observed vi-values to study
the nature and amount of synergism apparent between our two drugs.

/* read-in a3azt.in, normalize it, and extract the data needed to

fit the marginals. */

m = read("a3azt.in",1000,3)

m col 3 = (m col 3)/maxv(m col 3)

m1 = extract(m,2,0) col (1,3); m1 = sort(m1)

m2 = extract(m,1,0) col (2,3); m2 = sort(m2)

/* define the non-interacting 2-drug combination model

and its marginals */

fct y1(d1) = 1/(1+(d1/c1)^b1)

fct y2(d2) = 1/(1+(d2/c2)^b2)

fct y(d1,d2) = if d1=0 then y2(d2) else \

if d2=0 then y1(d1) else \

if y1(d1)<.00001 and y2(d2)<.00001 then 0 else \

if y1(d1)>.9999 and y2(d2)>.9999 then 1 else \

root(z,1e-11,1-1e-11,(d1/c1)*(1/z-1)^(-1/b1)+(d2/c2)*(1/z-1)^(-1/b2)-1)

/* fit the marginals. the derivative y1’b1 involves the log

of d1/c1 which may be 0. Also the derivative y1’c1 involves

(d1/c1)^(b1-1) which may become 0^0. y2 has similar problems.

To avoid these problems we can use symdsw = 0. */

symdsw = 0

constraints q = {b1 > .00001,b2 > .00001,c1 > .00001,c2 > .00001}

c1 = 1; b1 = 1

fit (c1,b1), y1 to m1 with weight ewt(m1), constraints q

final parameter values

value error dependency parameter

0.039470779 0.0063108802 0.05395208237 C1
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1.078644618 0.2041472332 0.05395208237 B1

9 iterations

CONVERGED

best weighted sum of squares = 1.028776e+01

weighted root mean square error = 8.572280e-01

weighted deviation fraction = 7.954586e-02

R squared = 9.770071e-01

no active constraints

c2 = 1; b2 = 2

fit (c2,b2), y2 to m2 with weight ewt(m2), constraints q

final parameter values

value error dependency parameter

0.204651635 0.0231668295 0.07182693961 C2

2.676935005 0.6159096057 0.07182693961 B2

11 iterations

CONVERGED

best weighted sum of squares = 4.343704e+01

weighted root mean square error = 1.647669e+00

weighted deviation fraction = 7.585580e-02

R squared = 9.646190e-01

no active constraints

/* graph the resulting y1-fit. */

draw points(y1,minv(m1 col 1):maxv(m1 col 1)!100)

draw m1 lt none pt circle ptsize .01

left title "response" font 18

bottom title "drug-1 dose" font 18

top title "fit of y1(d1) = 1/(1+(d1/c1)’.5ub1’.5d)" font 7

title "c1 = "+c1 at (.5,.8)

title "b1 = "+b1 at (.5,.75)

view
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delete w

/* graph the resulting y2-fit. */

draw points(y2,minv(m2 col 1):maxv(m2 col 1)!100)

draw m2 lt none pt circle ptsize .01

left title "response" font 18

bottom title "drug-2 dose" font 18

top title "fit of y2(d2) = 1/(1+(d2/c2)’.5ub2’.5d)" font 7

title "c2 = "+c2 at (.5,.8)

title "b2 = "+b2 at (.5,.75)

view

delete w

/* Now to analyze our drug combination data, we compute our

non-interaction response values r, and compare them to the

actual data v. If the v’s are smaller, we have synergism.

Also we will look at the percent changed-response values p.*/
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r = y on (m col 1:2)

v = m col 3

p = 1-v/’r

/* Type out the average percentage-improvement seen in our

data compared to the predicted non-interaction response. */

type mean(p)

= .593531217

/* Graph the linked-pairs of predicted noninteraction response and

observed response for each drug-dose pair used. */

draw v pt square lt none ptsize .01

draw r pt circle lt none ptsize .01

top title "squares:data, circles:non-interaction prediction"

left title "amount of disease"

bottom title "drug-combination observation number"

n = nrows(v)

nm = 1:n

fct f(x) = if x < 0 then -1 else 1

c = f on (v-r)

qv = nm&’v&’c; qr = nm&’r&’c

qq = mesh(qv,qr)

qv = extract(qq,3,-1) col 1:2

qr = extract(qq,3,1) col 1:2

draw qv lt alternate color green

draw qr lt alternate color red

view

delete w
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/* Graph the percentage-improvements (positive or negative) seen

in each observation. */

draw mesh(nm&’0, nm&’p) lt alternate color yellow

draw p pt circle ptsize .01 lt none

draw nm&’0 color red

top title "fractional change from non-interaction response"

bottom title "drug-combination observation number"

left title "percent improvement"

view

delete w

fct ed2(r) = if r=1 then 0 else if r=0 then maxd2 \

else c2/[(1/r-1)^(-1/b2)]

maxd2 = maxv(m col 2)

e = ed2 on r

draw e&’v color green lt none pt square ptsize .01

/* also show the drug-2 marginal curve */

draw points(y2,minv(m2 col 1):maxv(m2 col 1)!100)

top title "solid curve:drug-2 response, squares:data"

bottom title "equivalent drug-2 dose"

left title "amount of disease"

view
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/* Now we use the Wilcoxon 2-sample test for paired data to

compare our data v with the corresponding predicted

non-interaction response values r. */

wil2t(v,r)

[Wilcoxon 2 sample signed-rank test: are the medians of the

ranks of the observed paired data d1[] and d2[] plausibly equal?]

null hypothesis H0: median(d1) = median(d2).

The sum of positive ranks W-sample: T+ = 459.000000

The absolute sum of negative ranks W-sample: T- = 1819.000000

The probability P(W > 459.000000) = 0.999989

This means that a value of T+ at least as large as 459.000000 arises

about 99.998920 percent of the time, given H0.

The probability P(W > 1819.000000) = 0.000011

This means that a value of T- at least as large as 1819.000000 arises

about 0.001050 percent of the time, given H0.

The probability P[W > 1819.000000 or W < 459.000000] = 0.000022

This means that a rank-sum value at least as extreme as 1819.000000

arises about 0.002160 percent of the time, given H0.

: a 6 by 1 matrix TP

1: 67

2: 459

3: 1819

4: .999989202

5: 1.05008711E-5
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6: 2.15957906E-5

In the wil2t output vector TP above, if the probability reported in TP[5] is small then we can reject
the null hypothesis of equal responses, with probability TP[5] of being correct, and we can conclude
that the alternate hypothesis: median(v) < median(r) probably holds, so we accept that synergism
is present. If TP[4] is small, then we can conclude that median(v) > median(r) (corresponding to
antagonism), and if TP[6] is small, we can conclude that median(v) 6= median(r).

Note that the graphs presented above can be constructed and have interest in the more-general
situations of more than two drugs being used in combination.

When we have synergy, we will generally see that the bulk of the observed vi-values, plotted with
respect to the equivalent dose ei of one of the drugs, lie below the marginal dose-response curve
for that drug. This occurs above, where we compare the marginal curve for drug D2 with our
observed response vs. D2-equivalent dose amounts. We may fit a single-drug dose-response model
to these (ei, vi) points; the difference between this fitted curve and the single-drug marginal curve
is a suitable basis for computing the degree of synergism or antagonism at that equivalent dose.

Sometimes we may have the situation where a drug D2 has no theraputic effect, but may, nev-
ertheless, modify the effect of another drug D1 when used in combination. In this case, we
should define the Bunow-Weinstein non-interaction model function so that y(d1, d2) = y(d1, 0)
(i.e., y(d1, d2) = 1/(1 + (d1/c1)

b1).) If this model does not fit our data, then we have statistically
demonstrated the pure potentiation or inhibition behavior of drug D2 on drug D1,where drug D2,
by itself, has no effect.

It is important to note that to use the approach to drug-combination analysis presented here, we
must have the marginal single-drug dose-response curves specified by some means. If this is not
possible, we can use a direct model-based approach due to Bunow and Weinstein. This approach
requires that we fit an explicit model function to our drug combination data, where the model
function contains explicit interaction terms. If the estimated interaction parameters are significantly
different from their “no-interaction” value, then we have evidence for synergy or antagonism (but
not both in different regions.)

One such drug-interaction model proposed by Bunow and Weinstein is:

y(d1, d2) = root0≤z≤1[−1 + (
1

z
− 1)−1/b1(d1/c1)(1 + a12d

e12
2

) + (
1

z
− 1)−1/b2(d2/c2)].

In this model, the term a12d
e12
2

determines an change in the efficacy of drug D1 in the presence
of drug D2, which itself has an independent effect. When a12 is 0, there is no interaction. The
greater a12 and e12 are, the greater is the dose-dependent potentiation effect of drug D2 on drug D1.
When a12 is negative, drug D2 has an inhibitory effect on drug D1. Fitting such a model requires
some care in the curve-fitting process. Numerical issues such as division by zero and zero raised
to a negative power must be handled. Generally, appropriate weights are required, and often good
initial parameter guesses and accompanying constraints are also needed. For example, it may be
appropriate to constrain e12 to be non-negative. MLAB can accept such weights and constraints,
and with some care, can be used to estimate the desired parameters.
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It is tempting to suppose that the estimated values of c1 and b1 determine the drug D1 single-drug
dose response curve, and likewise for c2 and b2, but this is an unwarranted assumption. What we
do know is that if a12 is significantly different than 0 and e12 is not a large negative value, then
our data prefers to follow this interaction model, rather than the pure non-interaction model, and
we take this as evidence of interaction. The basic underlying assumption is still that the actions
of drug D1 and drug D2 separately are well-described by logistic dose-response curves as discussed
above.

The entire drug-combination analysis method presented here can be recast in a more-general non-
parametric framework. We can use a non-parametric estimate for each of our single-drug marginal
dose-response curves, instead of using the logistic model. The Bunow-Weinstein non-interaction
model can be defined with respect to these marginals, and the subsequent analysis proceeds as
before. A suitable non-parametric estimate of a single-drug dose-response curve can be obtained
in MLAB by first using the function MONOT to monotonize the data, and then using the function
SMOOTHSPLINE to obtain an estimating optimal smoothing spline.

There is a serious practical problem with any drug-interaction analysis method which uses dose-
response data as is done here. The problem is that at high (theraputic-level) doses, for some
types of measurement of the amount of disease present, the error in the response-values may be
so magnified that such measurements may be predominantly noise, and yet this is likely to be the
domain in which treatment will actually occur. Practically speaking, it is much more important
that there be no serious antagonism present than that our drug-combination be synergistic; as long
as the drugs involved are not antagonistic and are jointly effective, it is generally useful to use
them in combination. Of course such possible antagonism can be assayed via the analysis methods
discussed here, subject to the same caveat of high errors in the response data. You might imagine
that if synergism is seen at moderate (IC50-level) doses (where measurement error may be less
problematical), then it will also be present at higher theraputic doses, but this is not always the
case. The conclusion is that when the drugs involved can be usefully administered at levels where
our observed responses will be predominately noise because of the nearly complete suppression of
disease expected, drug-combination analysis does not take the place of clinical trials using the drugs
at theraputic levels in order to assess the effacacy of the treatment.

[1] see www.civilized.com

[2] Bunow, Barry J. and Weinstein, John N. ”Combo: A New Approach to the Analysis of Drug
Combinations in Vitro”, Annals N.Y. Acad. of Science Vol. 616, pp. 490-494, 1990.
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