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abstract: Drug-combination analysis is discussed and demonstrated.

Suppose we have a set of drugs (or other treatments which we misclas-
sify as “drugs” for the purpose of our analysis.) These drugs are supposed
to be treatments for some disease, e.g., HIV infection. Our goal is to as-
sess whether, and to what extent, treatment with a particular combination
of these drugs is more or less effective than some other such combination
treatment. Such combination treatments include the case of treatment with
a single drug, so we can also compare the efficacy of two distinct single drugs
with our method.

For each treatment with a combination of drugs D1, . . . , Dk, the data we
have is a set of k + 1 dimensional points of the form (d1, . . . , dk, y), where
dj is the dose of drug Dj (measured in any desirable units) and y is the
response observed in the subject represented by the point at hand.

The observed response is always non-negative, and is generally a value
in the interval [0, 1]. Such a value y denotes the relative amount or level
of disease present after the drug treatment. Thus a small response value
indicates a better response than does a larger response value. Crudely,
a response value y should be measured such that 100(1 − y) is the per-
cent improvement observed. For example, let w0 denote a subject’s white
blood cell count before treatment and let w1 denote that subject’s white
blood cell count after treatment; then the response for that subject might
be 1− (w1−w0)/w0 which is 1 minus the precentage improvement observed.
The value 1 or greater denotes no suppression of disease, and values near 0
indicate substantial suppression of disease. Another example is that where
we measure a quantity that is directly related to the level of disease present,
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such as the concentration of PSA present, normalized to lie in the interval
[0, 1], although here, as in most cases, a percentage response is more ap-
propriate, since the amount of disease present prior to treatment can vary
greatly.

For a single drug, a so-called logistic dose-response curve often provides
an adequate description of the effect of treatment with that drug. We as-

sume that such a model for single drugs is appropriate here. (Although,
see the remarks below on a non-parametric approach.) The general logistic
dose-response function for a single drug is:

y(d) = (a− h)/(1 + (d/c)b) + h.

Here y(d) is the response to treatment with a drug-dose of size d (remember a
smaller response value is better than a larger response value.) The parameter
a is the predicted response to a 0-dose (presumably, this response indicates
no suppression of disease.) The parameter h is the predicted response to
an infinite drug dose (ignoring toxicity and other practical issues.) The
parameter c is the “mid-effect” dose, which is that dose that yields the
response (a + h)/2. Often c is called the IC50 dose and is denoted by the
symbol PC50. The parameter b is called the slope parameter; it controls the
shape of the dose-response curve defined by the function y.

In our case, we assume that a = 1 (i.e., we have no suppression of disease
at 0 dose) and that h = 0 (i.e., we approach complete suppression of disease
as the dose becomes sufficiently large.) Thus, y(d) = 1/(1 + (d/c)b). This
dose-response curve generally “decays” sigmoidally from the value 1 to the
value 0 as the dose d increases. If b > 1, we have faster decay, if 0 < b < 1,
we have slower decay, if b = 0, y(d) is the constant value .5, and if b < 0,
our dose-response curve inceases instead of decaying.

We may construct a single drug dose-response model for given dose-
response data (d1, v1), . . . , (dm, vm) by estimating the parameters c and b
that fit the model function y to our data via weighted least-squares min-
imization. An example showing the use of the MLAB mathematical and
statistical modeling system[1] to read-in the dose-response data, define the
single-drug logistic dose-response model function, provide initial guesses for
the parameters c and b, fit our model to the data to obtain the least-squares
estimates of c and b, and finally, to graph the results, is given below. (Often
it is necessary to impose constraints on the parameters c and b in order to
get a successful fit. This can be done in MLAB, but it is not needed in the
example given here.)
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* dv=read(d1data,100,2)

* fct y(d) = 1/(1+(d/c)^b)

* c = 3; b = 1

* fit (b,c), y to dv

final parameter values

value error dependency parameter

4.166513485 0.3632194177 0.05378619542 B

2.886642188 0.06692784189 0.05378619542 C

6 iterations

CONVERGED

best weighted sum of squares = 2.664797e-02

weighted root mean square error = 4.921934e-02

weighted deviation fraction = 5.824418e-02

R squared = 9.833524e-01

* draw points(y,0:6!100)

* draw dv lt none pt circle ptsize .02

* left title "response" font 18

* bottom title "drug dose" font 18

* top title "fit of y(d) = 1/(1+(d/c)’.5ub’.5d)" font 7

* title "c = "+c at (.5,.8)

* title "b = "+b at (.5,.75)

* view
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Now let us consider a two-drug combination treatment. The dose-response
model in this situation is a function of two arguments, y(d1, d2), that pre-
dicts the response to the combination dose (d1, d2). Let us suppose that
drug D1 and drug D2 have no interaction. Moreover, we postulate that
y(d1, 0) = 1/(1 + (d1/c1)

b1) and y(0, d2) = 1/(1 + (d2/c2)
b2). We assume

that the parameters c1, b1, c2, and b2 are known due to fitting the single-
drug logistic dose-response model to given single-drug dose-response data
for drug D1 and separately for drug D2. In analogy to the terminology used
with multivariate distribution functions, we may call the single-drug logistic
functions y(d1, 0) and y(0, d2) the marginal dose-response functions for the
two-argument dose-response function y.

Let δ1 be the value such that our non-interaction two-drug dose-response
model satisfies y(δ1, 0) = r, and let δ2 be the value such that y(0, δ2) = r.
Now based on our no-interaction hypothesis, we can follow Bunow and Wein-
stein [2], and geometrically define y(d1, d2) by postulating that y(d1, d2) = r
for (d1, d2) on the line-segment connecting (δ1, 0) and (0, δ2). Note it would
not be appropriate to define y(d1, d2) = y(d1, 0) + y(0, d2) since drug D1

and drug D2 compete to suppress the disease, even if they act indepen-
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dently; that is, when drug D1 has acted to suppress some of the disease,
there is less “disease” present for drug D2 to apply to, and conversely. The
line-segment connecting (δ1, 0) and (0, δ2) is Lr := {(d1, d2) | (d1, d2) =
α(δ1, 0) + (1 − α)(0, δ2), 0 ≤ α ≤ 1}, and we specify that y(d1, d2) = r for
(d1, d2) ∈ Lr. This is appropriate because, when drug D2 is the same as
drug D1, the predicted response to a combination dose (d1, d2) must be the
same as the predicted response to a dose of size d1 + d2 of drug D1 (or
D2) alone! Any drug-interaction model which fails to satisfy this condition
cannot be a statistically-correct model.

Now note that, if z = 1/(1 + (d/c)b), then 1 = ( 1z − 1)
−1/b(d/c).

Recall that y(δ1, 0) = r = 1/(1+(δ1/c1)
b1). Thus 1 = (1r−1)

−1/b1(δ1/c1),

so α = (1r − 1)
−1/b1(αδ1/c1). Also y(0, δ2) = r = 1/(1 + (δ2/c2)

b2), so

1 = (1r − 1)
−1/b2(δ2/c2), and thus 1− α = ( 1r − 1)

−1/b2((1− α)δ2/c2).

But then, when (d1, d2) ∈ Lr, d1 = αδ1 and d2 = (1 − α)δ2 for some
value α ∈ [0, 1], and we have specified that y(d1, d2) = r. Next, note that

1 = (
1

r
− 1)−1/b1(αδ1/c1) + (

1

r
− 1)−1/b2((1− α)δ2/c2).

Therefore y(d1, d2) can be defined as the value z such that (
1

z−1)
−1/b1(d1/c1)+

(1z − 1)
−1/b2(d2/c2) = 1 for any non-negative values of d1 and d2. Note this

construction insures that y(d1, d2) = r for (d1, d2) ∈ Lr.

This Bunow-Weinstein two-argument dose-response function for non-
interacting drugs is a logically-correct generalization of a single-drug logistic
dose-response function. This implicit function can be defined in MLAB as
shown below. Note the care that is taken to avoid division by zero and
raising zero to a negative power.

function y1(d1)=1/(1+(d1/c1)^b1)

function y2(d2)=1/(1+(d2/c2)^b2)

function y(d1,d2)=if d1=0 then y2(d2) else \

if d2=0 then y1(d1) else \

if y1(d1)<.00001 and y2(d2)<.00001 then 0 else \

if y1(d1)>.99990 and y2(d2)>.99990 then 1 else \

root(z,1e-11,1-1e-11,(d1/c1)*(1/z-1)^(-1/b1)+(d2/c2)*(1/z-1)^(-1/b2) -1)
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MLAB was used to produce a picture of the “response-surface” de-
fined by our model function y for two non-interacting drugs with identical
marginal curves defined by c1 = c2 = 4.1665 and b1 = b2 = 2.8866 which is
given below.

It is also useful to see the contour map corresponding to the function y
with c1 = c2 = 4.1665 and b1 = b2 = 2.8866 corresponding to the surface
shown above. The contour map shows some level lines where y(d1, d2) is
constant.
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Here is the contour map corresponding to the function y in the case
where c1 = 2.08325, c2 = 4.1665 and b1 = b2 = 2.8866.
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Finally, here is the contour map corresponding to the function y in the
case where c1 = c2 = 4.1665, b1 = 1.4433 and b2 = 2.8866.
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Note that the Bunow-Weinstein non-interacting two-drug dose-response
function can be immediately generalized to the case of k non-interacting
drugs. In general we have:

y(d1, . . . , dk) = root0≤z≤1[−1 +
k∑

i=1

(
1

z
− 1)−1/bi(di/ci)].

Now we may consider drug combination treatments where the drugs
involved may interact synergistically or antagonistically. To analyze such
treatments, we need to have estimated the parameters c1, b1, . . ., ck, bk

appearing in the marginal single-drug dose-response functions for the k drugs
under consideration, so that the Bunow-Weinstein non-interaction model is
specified.

Given the data (di1, di2, . . . , dik, vi) for i = 1, . . . ,m, we may compute
the predicted non-interaction response values ri = y(di1, di2, . . . , dik). If we
have no interaction, the values ri should be approximately the same as the
observed response value vi. If not, then we can conclude there is evidence
for a synergistic or antagonistic effect, and the size and direction of this
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effect can be estimated from the response differences vi − ri. (Note that
for the same combination of drugs, we might have both synergistic effects
for dose-pairs in some regions and antagonistic effects in different dose-pair
regions.)

It may be convenient to consider the fractional differences pi := 1−vi/ri;
100pi is the percent change from the non-interaction predicted response
ri that is observed in the actual response vi. If vi < ri, the disease was
suppressed more than the non-interaction model would predict and pi > 0.
If vi > ri, the disease was suppressed less than the non-interaction model
would predict and pi < 0. Crudely, we might say that our drug-combination
exhibits a 100(p1 + . . .+ pm)/m percent synergy interaction effect.

It is interesting to plot the pi-values, the vi-values and/or the ri-values
versus the associated equivalent single-drug-dose of drug D1 (or any other of
the drugs involved) as determined by the Bunow-Weinstein non-interaction
model y. If (d1, . . . , dk) is the vector of dose values corresponding to the
data-value vi and the predicted non-interaction value ri, then the equivalent
drug D1 dose is the value e such that y(e, 0, . . . , 0) = ri; An MLAB function
involving the root-operator can be defined to compute such equivalent dose
values, but e can be directly computed as c1/(

1

ri
−1)−1/b1 (with due care for

ri = 0 and for ri = 1.) Such plots may be useful in seeing how the synergy
effect varies with dose.

Now one way to decide if the ri-values are, over all, sufficiently greater
than the vi values to conclude that we have statistically-significant synergy
is to test the hypothesis that the mean of the pi-values is less than or equal
to 0 versus the alternate hypothesis that the mean of the pi-values is greater
than 0. A similar test can be used to assess whether we have statistically-
significant antagonism.

It is probably most appropriate to use a non-parametric test such as
the Wilcoxon 2-sample paired-data test in MLAB on the ri-values versus
the vi-values. And we can check our outcome with a paired-data t-test on
the pi-values, even though the normal-distribution assumption used there is
invalid.

Note that in order to decide which of two drug combination treatments is
better we need only compare the pi-values for treatment 1 with the pi-values
for treatment 2.

Let us look at an example of the results of using MLAB to perform
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an analysis of some two drug combination responses at various doses. We
have a file called “a3azt.in” which contains n lines of three numbers, where
the first number is the administered dose of drug D1, the second number
is the administered dose of drug D2,and the third number is the response
measured as the amount of disease present after treatment (in this case, the
response is the amount of virus assayed.) Each line in our data file is thus
an “observation” from a single “experiment”.

In order to produce the graphs given below we used MLAB to read our
data, normalize the response values v1, . . . , vn to lie in [0, 1], extract the data
for the two marginal dose-response curves (one data-set where the drug D1

dose is 0 and one data-set where the drug D2 dose is 0), fit to obtain the
estimated marginal dose-response curve parameters c1, b1, c2, and b2 (which
then define our Bunow-Weinstein non-interaction two-drug dose-response
function), compute the predicted non-interaction response values r1, . . . , rn,
and then compare the predicted ri-values with the observed vi-values to
study the nature and amount of synergism apparent between our two drugs.
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We used the Wilcoxon 2-sample signed-ranks test for paired data in
MLAB to compare our data v with the corresponding predicted non-interaction
response values r. The null hypothesis is median(v) = median(r). In
our case, the absolute sum of negative ranks was 1819. Let W denote the
Wilcoxon test statistic. The probability P (W > 1819) = .000011. This
means that a value of W at least as large as 1819 arises about 0.001050
percent of the time, given the null hypothesis.

Since the probability P (W > 1819) is small, we can reject the null
hypothesis of equal responses, with probability .99989 of being correct, and
we can conclude that the alternate hypothesis: median(v) < median(r)
probably holds, so we accept that synergism is present.

Note that the graphs presented above can be constructed and have in-
terest in the more-general situations of more than two drugs being used in
combination.

When we have synergy, we will generally see that the bulk of the ob-
served vi-values, plotted with respect to the equivalent dose ei of one of the
drugs, lie below the marginal dose-response curve for that drug. This occurs
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above, where we compare the marginal curve for drug D2 with our observed
response vs. D2-equivalent dose amounts. We may fit a single-drug dose-
response model to these (ei, vi) points; the difference between this fitted
curve and the single-drug marginal curve is a suitable basis for computing
the degree of synergism or antagonism at that equivalent dose.

Sometimes we may have the situation where a drug D2 has no thera-
putic effect, but may, nevertheless, modify the effect of another drug D1

when used in combination. In this case, we should define the Bunow-
Weinstein non-interaction model function so that y(d1, d2) = y(d1, 0) (i.e.,
y(d1, d2) = 1/(1 + (d1/c1)

b1).) If this model does not fit our data, then we
have statistically demonstrated the pure potentiation or inhibition behavior
of drug D2 on drug D1,where drug D2, by itself, has no effect.

It is important to note that to use the approach to drug-combination
analysis presented here, we must have the marginal single-drug dose-response
curves specified by some means. If this is not possible, we can use a direct
model-based approach due to Bunow and Weinstein. This approach requires
that we fit an explicit model function to our drug combination data, where
the model function contains explicit interaction terms. If the estimated in-
teraction parameters are significantly different from their “no-interaction”
value, then we have evidence for synergy or antagonism (but not both in
different regions.)

One such drug-interaction model proposed by Bunow and Weinstein is:

y(d1, d2) = root0≤z≤1[−1+(
1

z
−1)−1/b1(d1/c1)(1+a12d

e12

2
)+(

1

z
−1)−1/b2(d2/c2)].

In this model, the term a12d
e12

2
determines an change in the efficacy of drug

D1 in the presence of drug D2, which itself has an independent effect. When
a12 is 0, there is no interaction. The greater a12 and e12 are, the greater is
the dose-dependent potentiation effect of drug D2 on drug D1. When a12

is negative, drug D2 has an inhibitory effect on drug D1. Fitting such a
model requires some care in the curve-fitting process. Numerical issues such
as division by zero and zero raised to a negative power must be handled.
Generally, appropriate weights are required, and often good initial parameter
guesses and accompanying constraints are also needed. For example, it may
be appropriate to constrain e12 to be non-negative. MLAB can accept such
weights and constraints, and with some care, can be used to estimate the
desired parameters.
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It is tempting to suppose that the estimated values of c1 and b1 determine
the drug D1 single-drug dose response curve, and likewise for c2 and b2,
but this is an unwarranted assumption. What we do know is that if a12

is significantly different than 0 and e12 is not a large negative value, then
our data prefers to follow this interaction model, rather than the pure non-
interaction model, and we take this as evidence of interaction. The basic
underlying assumption is still that the actions of drug D1 and drug D2

separately are well-described by logistic dose-response curves as discussed
above.

The entire drug-combination analysis method presented here can be
recast in a more-general non-parametric framework. We can use a non-
parametric estimate for each of our single-drug marginal dose-response curves,
instead of using the logistic model. The Bunow-Weinstein non-interaction
model can be defined with respect to these marginals, and the subsequent
analysis proceeds as before. A suitable non-parametric estimate of a single-
drug dose-response curve can be obtained in MLAB by first using the func-
tion MONOT tomonotonize the data, and then using the function SMOOTHSPLINE
to obtain an estimating optimal smoothing spline.

There is a serious practical problem with any drug-interaction analy-
sis method which uses dose-response data as is done here. The problem is
that at high (theraputic-level) doses, for some types of measurement of the
amount of disease present, the error in the response-values may be so mag-
nified that such measurements may be predominantly noise, and yet this is
likely to be the domain in which treatment will actually occur. Practically
speaking, it is much more important that there be no serious antagonism
present than that our drug-combination be synergistic; as long as the drugs
involved are not antagonistic and are jointly effective, it is generally useful
to use them in combination. Of course such possible antagonism can be
assayed via the analysis methods discussed here, subject to the same caveat
of high errors in the response data. You might imagine that if synergism is
seen at moderate (IC50-level) doses (where measurement error may be less
problematical), then it will also be present at higher theraputic doses, but
this is not always the case. The conclusion is that when the drugs involved
can be usefully administered at levels where our observed responses will be
predominately noise because of the nearly complete suppression of disease
expected, drug-combination analysis does not take the place of clinical tri-
als using the drugs at theraputic levels in order to assess the effacacy of the
treatment.
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