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The problem of estimating the probability of a failure event arises in
many diverse situations. In quality control for example, we may have a
batch of identical electrical components such as a transducer of some kind,
or a batch of identical mechanical components such as a shock absorber or a
compressor. We wish to assess the reliability of these components in terms
of the load that can be handled without substantial loss of normal response.
Time may also play a role; the response may degrade over time in a manner
which is accelarated in the presence of a high load.

Another example arises where a population of patients are being treated
with a drug or other treatment which produces undesiable side-effects over
time. The “amount” of treatment becomes the load, and the level of side-
effects becomes the response. In this case, we may numerically measure
response as 100-(% disfunctionality-due-to-side-effects), so that a low re-
sponse indicates a loss of function.

Let the response at time t of a random subject subjected to the load
x be specified by f(t, x, β) + ε where β is a vector of unknown parameters
occurring in the response function, and ε is a mean 0, variance σ2 normal
random variable representing the error in response measurment and the
effect of inter-subject variability.

One commonly applicable response model function that we shall use
here is the four parameter logistic form: f(t, x, β) = the value y such that
β3g(y)

β1t + β4g(y)
β2x = 1, where g(y) = y/(1 − y). Usually, β1 > 0, β2 >

0, β3 > 0 and β4 > 0.

Now suppose we have measured the degradation responses y1, y2, . . . , yn
of a set of n subjects at the times t1, t2, . . . , tn, after having been subjected
to the loads x1, x2, . . . , xn respectively. There are various complications that
can arise, such as the case where the measured responses are not independent
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samples, in which case, we may have a so-called repeated measures study.
If the loads are higher than usual, we have an accelarated study which,
of course, raises the question as to the adequacy of our model for such
loads. Finally, the times t1, t2, . . . , tn may be such that only modest response
changes are seen. When this happens, our model must be adequate to
extrapolate to longer unobserved times.

With due attention to the above issues, we may write:

y1 = f(t1, x1, β) + ε1

y2 = f(t2, x2, β) + ε2
...

yn = f(tn, xn, β) + εn

where ε1, . . . , εn are independent samples of the mean 0, variance σ2

random variable ε.
We can then estimate the unknown parameters β by curve-fitting the

model f(t, x, β) to the data (t1, x1, y1), (t2, x2, y2), . . . , (tn, xn, yn). We may
then estimate σ as the standard deviation σ̂ of the deviations yi−f(ti, xi, β̂)
where β̂ is our obtained estimator for β.

Let Ytx be the random variable f(t, x, β)+ε. Now, after estimating β, we
may approximate the probability P (Ytx ≤ c) by P (f(t, x, β̂) + ε ≤ c). But
then P (Ytx ≤ c) ≈ P (ε/σ̂ ≤ (c − f(t, x, β̂))/σ̂), and ε/σ̂ is approximately a
mean 0, variance 1 normal random variable with the distribution function
Φ(v) = 1√

2πσ̂

∫ v
−∞ e−u

2/2du and the density function φ(v) = dΦ(v)
dv .

Thus, P (Ytx ≤ c) ≈ Φ(c − f(t, x, β̂)/σ̂), and the density function of Ytx
is approximatedy p(t, x, c) := φ(c− f(t, x, β̂)/σ̂). The graph of the function
p(t, x, c) is also called the response probability surface. In particular, the
graph of p(t, x0, c) is the response probability surface for a given load x0.
The volume under this surface over any (t, c)-region R is the probability
that the load-x0 response Ytx will equal c at time t for some (t, c)-pair in
R. Similarly the graph of p(t0, x, c) is the response probability surface at a
given time t0.

Let the response value c0 or less be considered a failure. Then P (Ytx ≤
c0) is the probability that the failure state is exhibited at time t, subject
to load x. We are often interested in the distribution of the failure time Tx
which is the earliest time for which Ytx ≤ c0. When f is a monotonically-
decreasing function of t, the random variable Tx can be defined as the value
of t such that f(t, x, β) = c0 − ε. Sometimes we can explicitly write Tx
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in terms of the random variable ε; however in all cases we can estimate
the distribution of Tx by means of a Monte-Carlo simulation. We shall
demonstrate this in the example below.

An Example

The MLAB mathematical and statistical modeling system is well-suited
to perform the parameter-estimation, simulation, and graphics required for
a failure probability analysis as described above.

To begin, let us read-in the (t, x, y) data points.

m = read(data,120,3)

/* degrade.do -- Accelarated Degradation Testing */

reset

echodo = 3

fct g(y) = 1/(B1-B2*y)-1

fct h(t,x,y) = B5*g(y)^B3*t+B6*g(y)^B4*x-1

fct f(t,x) = root(y, 1.001, 1.999, B5*g(y)^B3*t+B6*g(y)^B4*x-1)

constraints q = (B1>1, B2>0, B3<0, B4<0, B5>0, B6>0)

data = cross((0:10:.5),(1:10:.5))

B1=2; B2=1; B3=-1/2; B4=-1/2; B5=3/2; B6=4/3

m = points(f,data)

draw contour(m) lt svmarker

view
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