
File: /General/MLAB-Text/Papers/delay/delay

Fitting a Pharmacological Model with Delay Using MLAB

(data due to Ernest Feytmans)

Gary D. Knott, Ph.D.
Civilized Software, Inc.

12109 Heritage Park Circle
Silver Spring MD 20906 USA

Tel.: (301)-962-3711
email: csi@civilized.com
URL: www.civilized.com

This example shows how to formulate and fit a compartmental model.
It also shows how MLAB can handle a delay term in a differential equation.
Finally, the EWT function (estimated weights) is exemplified.

At time 0, a dose of radioactive-labeled taurocholate, Y , is injected in a
rat. This material, Y , is passed through the liver and enters the bile. The
bile is collected from the bile duct and the cumulative amount of Y present
is measured at various times over a period of 1202 seconds. The level of Y
seen in the bile at time t is actually the amount we measure in the output
of a catheter at time t + k, since a delay of time k is needed for the bile
to travel through the catheter. Also each blood level measurement involves
removing a small sample of blood for analysis. Thus a simple model for
the incorporation of Y in the bile which includes the effects of measurement
takes the following compartmental form.

1

blood
Y1

liver
Y2

blood samples
collected bile

Y3

h21

h12

h20 delay(k)h10

Y 1(t) is the concentration of Y in the blood at time t. Y 2(t) is the
amount of Y in the liver at time t. Y 3(t) is the cumulative amount of Y
in the collected bile at time t. V is the volume of blood in milliliters. U is
the volume of the liver compartment in milliliters. k is the time-delay of the
flow of bile from the liver into the bile-collection vial. We have:

Y ′1(t) = (h21Y2/U − (h10 + h12)Y1)/V,

Y ′2(t) = h12Y1 − (h20 + h21)Y2/U,

Y ′3(t) = h20Y2(t− k)/U,

with Y1(0) = 100/V , Y2(0) = 0, and Y3(0) = 0.
The initial value 100/V for Y1(0) denotes the concentration of 100 per-

cent of the dose of Y , and all measurements are given in terms of percent
of the initial dose. Y1 is in units of percent-of-dose per V milliliters and Y2

and Y3 are in percent-of-dose units.
Let k21 = h21/U , k12 = h12/V , k20 = h20/U , and k10 = h10/V . Then we

have

Y ′1(t) = k21Y2/V − (k10 + k12)Y1,

Y ′2(t) = k12V · Y1 − (k20 + k21)Y2,

Y ′3(t) = k20Y2(t− k),

with Y1(0) = 100/V , Y2(0) = 0, and Y3(0) = 0.

2

We may guess the following values (these are fairly good guesses, ob-
tained by prior study with MLAB.)

V ≈ 15ml; k ≈ 1.7 hsec; k12 ≈ 1.7 hsec−1; k21 ≈ .1 hsec−1; k10 ≈

.25 hsec−1; k20 ≈ .5 hsec−1;
The time units used are hectoseconds, denoted hsec; one hsec is 100

seconds. The data below is given in units of hectoseconds.
The blood data is in a text-file called D1, as follows.

time Y1

.2 3.972

.3 3.484

.4 2.928

.5 2.317

.6 1.988
1 .2 .481
1 .8 .321
2 .4 .217
3 .6 .146
4 .8 .086
6 .0 .066
7 .2 .047
9 .0 .033
12 .0 .047

The bile data is in a text-file called D2, as follows.

t Y3 t Y3 t Y3

.35 0 .60 0 .90 0
1.17 .004 1.44 .114 1.78 1.095
2.05 2.248 2.32 4.689 2.62 6.542
2.91 7.652 3.12 5.937 3.40 6.580
3.60 4.687 3.85 6.663 4.20 4.587
4.44 3.687 4.77 3.215 5.06 3.378
5.30 2.458 5.60 2.679 5.84 1.854
6.10 2.059 6.42 1.691 6.63 1.181
6.97 1.648 7.25 1.235 7.56 1.183
7.83 .955 8.12 .976 8.37 .706
8.60 .498 8.82 .665 9.13 .792
9.32 .395 9.55 .462 9.80 .470
10.00 .478 10.27 .407 10.60 .426
10.84 .285 11.15 .438 11.46 .396
11.74 .273 12.02 .318

3

The bile data in D2 is the incremental percentage-of-dose amounts of Y
found in drops of bile collected at the specified times. To obtain cumulative
bile measurements we must compute the successive partial sums of the given
values.
We wish to fit our model to the data by estimating values for k12, k21,

k20, k10, V , and k.
We may run MLAB and proceed as follows. This example shows the use

of MLAB interactively. In practice, we would construct a do-file and then
execute it repetitively, probably with modifications; using a do-file is the
most convenient way to do modeling with MLAB.

* M1 = READ(D1,200,2)

* M2 = READ(D2,200,2)

First we must compute the partial sums of the incremental bile data.

* FUNCTION PS(j) = (IF j=1 THEN 0 ELSE PS) + M2[j,2]

* M2 COL 2 = PS ON 1:NROWS(M2)

In general, the weight associated with a given observation should be
the reciprocal of the variance of the random variable of which the obser-
vation is a sample. When using correct weights, we not only account for
differing amounts of error, but also automatically compensate for differing
scales which may be used in distinct sets of data being fit simultaneously
by model functions with shared parameters. We can estimate the standard
deviations, and hence the desired weight values, non-parametrically, using
the EWT operator.

* W1 = EWT(M1)

* W2 = EWT(M2)

Now we normalize both W1 and W2 to sum to 1/2, since we wish to
give each curve the same total weight.

* W1 = W1/ROWSUM(W1)/2

* W2 = W2/ROWSUM(W2)/2

Now M1 and M2 are our data matrices for the blood and cummulative
bile data respectively, and W1 and W2 are the associated weight vectors.
The differential equations which define the model functions Y1, Y2, and Y3

are given below. Note one differential equation contains a delay term.

4

* FUNCTION Y1’T(T) = K21*Y2/V - (K10 + K12)*Y1

* FUNCTION Y2’T(T) = K12*V*Y1 - (K20 + K21)*Y2

* FUNCTION Y3’T(T) = K20*Y2(T-K)

* INITIAL Y1(0)= 100/V

* INITIAL Y2(0)= 0

* INITIAL Y3(0)= 0

* V=15; K=1.7; K12=1.7; K21=.1; K10=.25; K20=.5

Since we are using MLAB interactively, it is wise to save our data and
model in an MLAB save-file for later reuse.

* SAVE IN FEYT

At this point we may start fitting our model. However, first let us
consider what the delay term implies. In MLAB, delay terms in differential
equations are evaluated during the numerical solution process by looking
back in the table of previously-computed results and obtaining a value for
the delay term by interpolation. If the previously-generated results do not
extend far enough into the past, the earliest available value is used! In order
for this to be the initial value, it is necessary for the initial time to be present
in the vector of time values at which we are maintaining results. It is also
necessary that the time vector consist of sufficiently closely-spaced values so
that the interpolation process is adequately accurate. In our case, our time
values are reasonably closely-spaced, but, we must add the initial time value
(with weight 0) as follows.

* M1 = 0&M1

* M2 = 0&M2

* W1 = 0&W1

* W2 = 0&W2

In MLAB, the delay expression Y 2(t − k) is effectively treated as Y 2(if
t < k then 0 else t − k). Thus the delay enters gradually. We start with
zero delay, and the delay increases until time t = k, whereupon the delay
remains constant. This interpretation of a delay is forced by MLAB, but it
is generally the appropriate way to handle delays, given initial conditions
only.

Before fitting, it is a good idea to check the model and the quality of our
guesses.

5

* R=INTEGRATE (Y1’T, Y2’T, Y3’T, 0:12:.2)

t = 1.7, errfac = 0.001, eqn # 3, truncation error = 111.111

tolerance will be increased in order to proceed with the deq solution.

t = 1.7, errfac = 0.01, eqn # 3, truncation error = 11.1111

tolerance will be increased in order to proceed with the deq solution.

solution of deq system forced past a possible singularity near 1.7.

accuracy may be lost

dy[1]: -0.486184

dy[2]: -16.1942

dy[3]: 0

* DRAW M1, LINE NONE PT "+"

* DRAW R COL 1:2

* VIEW

* DELETE W

* DRAW R COL (1,4) LINETYPE ALTERNATE

* DRAW M2, LINETYPE NONE POINTTYPE "o"

* DRAW R COL (1,6)

* VIEW

* DELETE W

These graphs are shown below. Note how the delay effects Y 3; it remains
zero even when Y 2 is positive.

6

The tolerance violations which occurred during the integration above are
harmless. What happened is that for the chosen value of k, the particular
time points where the differential-equation-solver obtained solution values
included a time, t1, which was very close to k. When a step, s, from t1 to
t1 + s was attempted, the value of Y 2(t − k), and hence of Y 3′t, jumped
from zero to a positive value. The change in a derivative value must be
sufficiently gentle or the differential-equation-solver will reduce the step-size
s until it is! But in this case, t1 was so close to k that t1 + s could not
achieve a value at which Y 3′t was sufficiently close to zero without s being
too small! The tolerance violation is complaining of this fact. The effect of
a tolerance violation is to advance t and assume the current value of Y 1,
Y 2, and Y 3 hold at the new time. This introduces an error which we hope
is small and whose effect dies out over time.

Now we may fit our data. In order to see the progress of the curve-fitting
process, we set the MLAB control variable lsqrpt to 9. Note the parameter
V occurs in the initial condition for Y 1 as well as in the derivative functions.
In order to avoid tolerance violation messages, we shall set the MLAB control
variable disastersw to -2.

* lsqrpt = 9

* disastersw = -2

* FIT (K12, K21, K20, K10, K, V), Y1 TO M1 WITH WEIGHT W1,Y3 TO M2 WITH WEIGHT W2

Begin iteration 1 bestsosq=6.06291e-01

7

Begin iteration 2 bestsosq=3.37174e-01

Begin iteration 3 bestsosq=2.80705e-01

Begin iteration 4 bestsosq=6.13384e-02

Begin iteration 5 bestsosq=6.01915e-02

Begin iteration 6 bestsosq=6.01306e-02

Begin iteration 7 bestsosq=6.00476e-02

Begin iteration 8 bestsosq=5.95795e-02

Begin iteration 9 bestsosq=5.94568e-02

Begin iteration 10 bestsosq=5.91193e-02

Begin iteration 11 bestsosq=5.41983e-02

Begin iteration 12 bestsosq=5.39791e-02

Begin iteration 13 bestsosq=5.31954e-02

final parameter values

value error dependency parameter

2.404830506 0.5089934386 0.9996545161 K12

0.1788429902 0.03364502419 0.9984644263 K21

0.4046451617 0.01567822569 0.995752869 K20

0.2352243999 0.050102745 0.9988267993 K10

1.667994505 0.06660192075 0.9643014847 K

13.44151307 2.411338814 0.855048444 V

13 iterations

CONVERGED

best weighted sum of squares = 5.31954e-02

weighted root mean square error = 3.13863e-02

weighted deviation fraction = 2.74048e-03

R squared = 9.98708e-01

We may observe the result below.

* R = INTEGRATE(Y1’T,Y2’T,Y3’T,0:12:.2)

* DRAW M1,LINETYPE 0,POINTTYPE "+"

* DRAW R COL 1:2; VIEW

8

* DELETE W

* DRAW M2,LINETYPE NONE POINTTYPE "o"

* DRAW R COL (1,4),LINETYPE ALTERNATE

* DRAW R COL (1,6); VIEW;

* DELETE W

9

This is a good fit. In this case we did not need to impose constraints
to keep the parameter values within reasonable limits, but such constraints
are often necessary.
We can get a slightly better fit by using the explicit formulas for Y 1 and

Y 3, which are obtainable in this case since Y 1 and Y 2 do not depend on
Y 3.
The explicit solution functions are given below. It is important to use

the gradual delay expression (if t < k then t else k) in solving the differ-
ential equations. Otherwise the solutions will not correspond to the results
obtained by numerical integration.

Y1(t) = A1 exp(−A2t) +B1exp(−B2t),

Y2(t) = A3[exp(−A2t)− exp(−B2t)], and

Y3(t) = if t < k then 0 else A4[1− exp(−A2(t− k))] +A5[1− exp(−B2(t− k))],

where

A2 = (S +Q)/2,

B2 = (S −Q)/2,

S = K12 +K21 +K20 +K10,

Q = [S2 − 4(K12K20 +K10K21 +K10K20)]
1/2,

A1 = (100/V)[A2 −K21 −K20]/(A2 −B2),

B1 = (100/V)[K21 +K20 −B2]/(A2 −B2),

A3 = 100K20K12/(B2 −A2),

A4 = 100K20K12/[A2(B2 −A2)], and

A5 = 100K20K12/[B2(A2 −B2)].

Now, an important point arises. How are these functions to be defined in
MLAB? The straightforward process of substituting to eliminate the auxilary
variables A1, A2, A3, A4, A5, B1, and B2 results in huge formulas, which,
when defined in MLAB would cause the required symbolic derivative functions
Y 1′K12, Y 1

′K21, . . . , etc. to be so large they might not all fit in memory!
One approach to representing these functions is to make A1, A2, A3, A4,

A5, B1, B2, S, and Q functions of no arguments which have the appropriate
parameters merely by virtue of their appearence in the definitions. Thus we
could type:

FUNCTION Y1(T) = A1()*EXP(-A2()*T)+B1()*EXP(-B2()*T)

10

FUNCTION A1() = (100/V)*(A2()-K12-K20)/(A2()-B2())

FUNCTION A2() = (S() + Q())/2

FUNCTION S() = K12 + K21 + K20 + K10 ..., etc.

This process results in functions which waste much time computing the
same values many times during one invocation. For example computing
Y 1(2) involves computing A1(), A2(), B1(), and B2(); but computing A1()
also involves computing A2() and B2() (again!) and so on.

A better approach is to discover common sub-expressions, and when they
occur, make them actual arguments to be passed to a function which returns
the value of the formula in which they occur. This process results in the
following formulation for defining our model. This example merits careful
study since the principle involved should usually be employed in using MLAB!

* DELETE Y1, Y2, Y3, Y1’T, Y2’T, Y3’T

* FUNCTION F3(J,T,A2,B2) = (100/(A2-B2))*(IF J=1 THEN \

((A2-K21-K20)*EXP(A2*T)+(K21+K20-B2)*EXP(B2*T))/V \

ELSE K20*K12*(IF J=2 THEN (EXP(B2*T)-EXP(A2*T)) ELSE \

((1-EXP(B2*T))/B2-(1-EXP(A2*T))/A2)))

* FUNCTION F2(J,T,S,Q) = F3(J, -T, .5*(S+Q), .5*(S-Q))

* FUNCTION F1(J,T,S) = F2(J,T,S,SQRT(S*S-4*(K12*K20+K10*K21+K10*K20)))

* FUNCTION Y1(T) = F1(1, T, K12+K21+K10+K20)

* FUNCTION Y2(T) = F1(2, T, K12+K21+K10+K20)

* FUNCTION Y3(T) = IF T<K THEN 0 ELSE F1(3, T-K, K12+K21+K10+K20)

Now given these functions, you may see the derivative forms which result
by typing them out; although they are very large, they are easily handled
within MLAB. For example:

* TYPE Y1’K12

FUNCTION Y1’K12(T) = F1’K12(1,T,K12+K21+K10+K20)+ \

F1’S(1,T,K12+K21+K10+K20)

* TYPE F1’S

FUNCTION F1’S(J,T,S) = F2’ S(J,T,S, \

SQRT(S*S-4*(K12*K20+K10*K21+K10*K20))) \

+F2’ Q(J,T,S,SQRT(S*S-4*(K12*K20+K10*K21+K10*K20))) \

*((S+S)/(2*SQRT(S*S-4*(K12*K20+K10*K21+K10*K20))))

* TYPE F2’S

FUNCTION F2’S(J,T,S,Q) = F3’A2(J,-T,.5*(S+Q),.5*(S-Q))*.5 \

+F3’B2(J,-T,.5*(S+Q),.5*(S-Q))*.5

11

* TYPE F3’A2

FUNCTION F3 DIFF A2(J,T,A2,B2) = (100/(A2-B2))*(IF J=1 \

THEN (((A2-K21)-K20)*T*EXP(A2*T)+EXP(A2*T))/V \

ELSE K20*K12*(IF J=2 THEN -T*EXP(A2*T) \

ELSE -((-T*EXP(A2*T))/A2+(1-EXP(A2*T))*(-A2^(-2))))) \

+(IF J=1 THEN (((A2-K21)-K20)*EXP(A2*T)+((K21+K20)-B2)*EXP(B2*T))/V \

ELSE K20*K12*(IF J=2 THEN EXP(B2*T)-EXP(A2*T) \

ELSE (1-EXP(B2*T))/B2-(1-EXP(A2*T))/A2))*100*(-(A2-B2)^(-2))

Now to do our fit, we may use the following MLAB fit-statement.

FIT(K12, K21, K20, K10, K), Y1 TO M1 WITH WEIGHT W1,Y3 TO M2 WITH WEIGHT W2

Begin iteration 1 bestsosq=1.03081e-01

Begin iteration 2 bestsosq=6.66487e-02

Begin iteration 3 bestsosq=6.45033e-02

Begin iteration 4 bestsosq=6.39085e-02

final parameter values

value error dependency parameter

2.486325129 0.2919415767 0.9986809093 K12

0.2181076867 0.175390433 0.9997631512 K21

0.4060674476 0.01517223395 0.9949641321 K20

0.2362370486 0.04912624607 0.9993555185 K10

1.636370209 0.05358085176 0.9369202287 K

4 iterations

CONVERGED

best weighted sum of squares = 6.38532e-02

weighted root mean square error = 3.40730e-02

weighted deviation fraction = 2.94842e-03

R squared = 9.98282e-01

We can do even better if we account for the laminar flow in the catheter
which is sampling the bile. If this tube is of length L with interior diameter
2R, then

Y3(t) = if t = 0 then 0 else (1/t)

∫ t

0

g(u) du,

where g(u) is the concentration of labeled taurocholate entering compart-
ment Y3 at time u. This is just an average of earlier concentrations which
have entered the catheter; the following function g expresses the delayed
laminar flow and we have:

g(u) =

∫ R

0

Y2(u− L/(a(R− x)2)) · (2x/R2) dx,

12

where Y 2(t) = 0 for t < 0, and a is defined by the equation

t

∫ R

0

a(R− z)22πx dx− πR2L = Vt,

where Vt is the total volume of fluid accumulated in t seconds of flow through
the catheter, with to be completely filled.
We can thus reformulate our model using the MLAB integral operator:

fct Y3(T) = if T=0 then 0 else \

INTEGRAL(U,0,T,INTEGRAL(X,0,R,Y2(U-L/(A*(R-X)^2))*(2*X/R^2)))/T

where R and L are known values, and A is computed initially (before
fitting) using a function which employs the MLAB ROOT operator.

13

