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Let S be a “substrate” material which is converted by the addition of an enzyme, E, into a
molecular complex C which dissociates to yield a product P . We have:

S + E
K1⇀↽
K2

C
K3→E + P.

This is, of course, an idealization of a more complex schema, since, in fact, even when S and P
have the same molecular weight, energy must be used to, at least momentarily, change and restore
the conformation of the enzyme E. But for many situations, our simple model will suffice.

Let S(t), E(t), C(t), and P (t) be the amounts of S, E, C, and P respectively at time t. Then we
have:

dC/dt(t) = K1S(t)E(t)−K2C(t)−K3C(t), C(0) = 0,

dP/dt(t) = K3C(t), P (0) = 0,

S(t) = S0 − C(t)− P (t), with S0 = S(0),

E(t) = E0 − C(t), with E0 = E(0).

Typically the reaction C → P+E is much slower than the complex-formation reaction S+E ⇀↽ C.
Thus after the initial rise of C within time t0, we have dC/dt ≈ 0, so that then

C(t) ≈ K1S(t)(E0− C(t))/(K2 +K3), or

C(t) ≈ E0S(t)/[(K2 +K3)/K1 + S(t)], for t > t0.

Thus, from the equation for dP/dt, we have the so-called Michealis-Menten equation:

dP/dt(t) ≈ K3E0S(t)/((K2 +K3)/K1 + S(t)), for t > t0.
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Now the slope dP/dt(t) is measurable by fitting a straight-line to a segment of the kinetic curve
for P (t) with t0 < t ≪ te, where te is the time such that S(te) ≈ 0, e.g., when almost all the
substrate material has been consumed. Note S(t) ≈ S0 for t0 < t ≪ te if S0 is large enough, so
one can fit the Michealis-Menten equation to the single data point (S0, dP/dt) to try to obtain K3

and Km = (K2 +K3)/K1, the so-called Michealis-Menten constant.

The parameter K3 may be independently resolved by observing that when S0 is very large we have
S(t)/(Km + S(t)) ≈ 1 for t0 < t ≪ te, so dP/dt(t) ≈ K3E0. Thus the maximum rate of formation
of P for a fixed E0 value is K3E0. Let K3E0 = Vm. Vm can be determined by measuring the
slope, dP/dt(t), of the linear region of the kinetic curve obtained when S0 is very large. Now, the
Michealis-Menten equation becomes:

dP/dt(t)/Vm ≈ S(t)/(Km + S(t)) for t0 < t ≪ te.

Note dP/dt(t)/Vm is the relative rate of formation of P , i.e., the proportion of the maximum rate
which is achieved. Hence, having measured Vm, one can then measure dP/dt(t) for a relatively-
large amount of S, and then obtain Km from the Michealis-Menten equation as S0Vm/(dP/dt(t))−
S0.

The Michealis-Menten constant is the amount of substrate which will yield a product formation
rate of Vm/2. It thus is the point at which the formation of product becomes increasingly sensitive
to a decreasing amount of substrate. The activity of the enzyme for a given amount of substrate
is determined directly as dP/dt(t) computed from the Michealis-Menten equation for a given Km.

The Lineweaver-Burke form of the Michealis-Menten equation is often used because of its linear
form. It is:

1/(dP/dt(t)) ≈ (Km/Vm)(1/S(t)) + (1/Vm).

The Eadie and Dixon form is also often used. It is:

S(t)/(dP/dt(t)) ≈ S(t)/Vm +Km/Vm.

Actually, as noted above, the reaction S + E ⇀↽ C → P + E is a fiction. It is commonly used to
approximate the situation:

S + E
K1⇀↽
K2

C
K3⇀↽
K4

D
K5⇀↽
K6

P + F

U + F ⇀↽ B ⇀↽ A ⇀↽ V + E

where C is ES-complex, and D is EP -complex and E and F are co-factors. Typically K4 is
negligible, but as the amount of P increases, it may block an appreciable amount of enzyme if K6

is not nearly zero, and this can render the Michealis-Menten equation useless.

The following is an MLAB tutorial sequence for studying the Michaelis-Menten model relative to
the simplified kinetic model.
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First define the kinetic model by typing:

*FUNCTION C DIFF T(T) = K1*(S0-C-P)*(E0-C)-(K2+K3)*C
*FUNCTION P DIFF T(T) = K3*C
*INITIAL C(0)=0
*INITIAL P(0)=0
*S0 = 10; E0 = 1
*K1 = .2; K2 = .025; K3 = .025

Thus we have assumed the true situation is:

S + E
.2
⇀↽
.025

C
.025
→ P + E

starting with 10 moles of substrate and 1 mole of enzyme. We may look at the kinetic behavior
of this system over 900 seconds by typing:

*Q = INTEGRATE(P DIFF T, C DIFF T, 0:900:5)
*TYPE Q ROW 1:180:10

The first column of Q is time, t, the second is P (t), the third is dP/dt(t), the fourth is C(t), and
the fifth is dC/dt(t). We can look at the graph of P vs. t by typing:

*DRAW Q COL 1:2, LINETYPE dashed
*VIEW

Now, let us generate some “laboratory data” about our reaction. We shall use the MLAB normal
random number generator to generate normally distributed random numbers. Type:
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*M = Q COL 1:2 ROW 2:162:5
*E = (NORMRAN ON 0^^NROWS(M))/4
*TYPE E

E is a vector of “normal” errors. Now type:

*M COL 2 = (M COL 2) + E
*DRAW M, POINTTYPE triangle LINETYPE none
*view

M is a matrix of P vs. t points “with error”, as might have been measured in an actual laboratory
situation. Now, let us “guess” K1, K2, and K3 and try to determine them as functions of M .
Type:

*K1 = .3; K2 = .01; K3 = .02
*CONSTRAINTS CX={K1>K2, K2>0, K3>0}
*METHOD = GEAR; ERRFAC = .002; MAXITER = 12
*FIT(K1,K2,K3), P to M, CONSTRAINTS CX

The control variables METHOD and ERRFAC are set based on prior experience; this problem is stiff
and runs slowly! Our curve-fit “predicts” that K1, K2, and K3 are 2.4295, .7975, and .025296
respectively, and resets them accordingly. Note K1 and K2 are not even close to .2 and .025, but
K3 is approximately correct. We may observe the graph of this fit by typing:

*Q1 = INTEGRATE(P DIFF T, C DIFF T, 0:900:5)
*DRAW Q1 COL 1:2 color green
*VIEW
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Q1 is now a matrix of “kinetic concentration and velocity curves” for our reaction as determined
by curve-fitting. Let us discard our picture by typing:

*DELETE W

Now, let us analyze the same reaction using the Michaelis-Menten model. Type:

*K1 = .2; K2 = .025; K3 = K2
*FUNCTION MM(S)=VM*S/(KM+S)
*KM = (K2+K3)/K1; VM = K3*E0
*DRAW Q COL (1,3)
*SM = S0-(Q COL 2)-(Q COL 4)
*DRAW (Q COL 1)&’(MM ON SM), LINETYPE dashed
*view
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Recall Q is the matrix of true curves corresponding to K1 = .2, K2 = .025, and K3 = .025. The
matrix SM is computed as the amounts of S at time t = 0, 5, 10, . . . , 900. The curves we see are
the rate of change, dP/dt vs. t and its Michaelis-Menten approximation.

Now, let us generate two runs of “laboratory” data using the error vector E and obtain the two
constants Vm and Km. Type:

*DELETE W
*S0 = 500
*Z = INTEGRATE (P DIFF T, C DIFF T, 100:300:10) COL 1:2
*DRAW Z
*Z COL 2 = (Z COL 2)+(NORMRAN ON 0^^NROWS(Z))/4
*DRAW Z, LINETYPE none, POINTTYPE crosspt
*FUNCTION Y(T)=A*T+B
*CONSTRAINTS QS = {A > 0, B > 0}
*A = 1; B = 1
*FIT(A,B), Y TO Z, CONSTRAINTS QS
*VM =A
*DRAW POINTS (Y, 50:350!2), LINETYPE dashed
*VIEW

We have generated a “straight-line” segment of the P vs. t curve for S0 = 500, drawn it, added
some “noise”, shown the simulated points obtained, fit a straight line to these points, set Vm as
the slope of this line, and drawn the straight-line fit.

Now, we proceed in the same manner to do another “experiment” to help compute Km. Type:

*DELETE W
*S0 = 10
*Z = INTEGRATE(P DIFF T, C DIFF T,100:300:10) COL 1:2
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*Z COL 2 = (Z COL 2)+(NORMRAN ON 0^^NROWS(Z))/4
*FIT(A,B),Y TO Z, CONSTRAINTS QS
*KM = VM*S0/A-S0\
*TYPE VM,KM

Now, Vm and Km are computed. Let us look at the result. Type:

*DRAW Q COL (1,3)
*DRAW (Q COL 1)&’(MM ON SM) LINETYPE dotted color red
*DRAW Q1 COL (1,3) LINETYPE DASHED color green
*VIEW

Note the dP/dt curve predicted from the kinetic differential equation model is much better than
the consistent underestimate predicted by the Michaelis-Menten model.

There is another approach to estimating the Michaelis-Menten constants, Vm and Km, based on
the intersections of various linear plots. This scheme is due to R. Eisenthal and A. Cornish-Bowden
(Biochemistry Journal, Vol. 139, pp. 715:730). It is robust and, at the cost of more experiments,
allows a confidence region for Vm andKm to be obtained, without the usual restrictive assumptions.
Unfortunately, it often produces poor extimates of Vm and Km.

Given observations (S0i, Hi) of substrate concentrations and corresponding product-formation ve-
locities (obtained by linear-regression), we can construct lines defined by Vm/Hi + Km/S0i = 1,
which may be plotted in Km, Vm space. The line { (Km, Vm) | Vm/Hi +Km/S0i = 1 } is the locus
of all (Km, Vm) pairs which could produce the observation (S0i, Hi). Each of the (Km, Vm) points
obtained by the intersections of all pairs of these lines is an estimate of the “true” Km, Vm values.
The arithmetic median of the Km-estimates is the Eisenthal-Cornish-Bowden estimate of Km, and
the arithmetic median of the Vm-estimates is the Eisenthal-Cornish-Bowden estimate of Vm.

We shall simulate ten experiments for S0 = 50 : 500 : 50 and compute the Michaelis-Menten
velocity curve based on Km and Vm as estimated by the Eisenthal-Cornish-Bowden procedure.
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*FUNCTION VMF(I,J) = (SV[I]-SV[J])/(SV[I]/VV[I]-SV[J]/VV[J])
*FUNCTION KMF(I,J) = (VV[J]-VV[I])/(VV[I]/SV[I]-VV[J]/SV[J])
*FOR I = 1:10 DO \
{S0 = 50*I;

Z = INTEGRATE(P DIFF T, C DIFF T, 100:300:10) COL 1:2;
Z COL 2 = (Z COL 2) + (NORMRAN ON 0^^NROWS(Z))/4;
LSQRPT = 8;
FIT(A,B),Y to Z, CONSTRAINTS QS;
SV[I] = S0; VV[I] = A;

};
*D = 1:9^^’9
*D = COMPRESS((LIST(D)&’LIST(D’))*’LIST(D’<=D))
*D COL 1 = (D COL 1) +1
*VM = MEDIAN(VMF ON D)
*KM =MEDIAN(KMF ON D)
*TYPE VM,KM
*DELETE W
*DRAW Q COL (1,3)
*DRAW (Q COL 1)&’(MM ON SM),LINETYPE DASHED
*VIEW

Overall the best approach to enzyme kinetics is to try to measure enough points on the kinetic
curves of several species, so that direct curve-fitting using the appropriate differential equation
model can permit the association and dissociation constants to be found. The Michealis-Menten
equation is used only due to the difficulty of obtaining data other than P (t) for t0 < t < t2. Even
then, concurrent use of the kinetic model is useful. An excellent source for mathematical models
in enzyme kinetics is: Enzyme Kinetics by Kent Plowman, published by McGraw-Hill. Another
is Enzyme Kinetics by Irwen Segal, published by Wiley.


