
Modeling for Parameter Estimation with a
Compartmental Model Example

Gary D. Knott, Ph.D.
Civilized Software, Inc.

12109 Heritage Park Circle
Silver Spring MD 20906
Tel.: (301)-962-3711

email: knott@civilized.com
URL: www.civilized.com

abstract: The practical issues involved in parameter estimation via weighted
least-squares minimization are reviewed, with emphasis on fitting compart-
mental models. An example is given and solved using the MLAB mathemat-
ical and statistical modeling package. The problems of weight generation
and of guessing an initial starting point are discussed and various heuristic
methods for dealing with these problems are presented. Finally, the pit-
falls of round-off error, algorithm instability, algorithm ineffectiveness, and
ill-conditioning are described, together with some amelioration devices.

Parameter estimation methods generally consist of minimizing (or maximiz-
ing) some objective function. The case of maximum likelihood estimation
entails maximizing a so-called likelihood or log-likelihood objective function.
The case of weighted least-squares estimation entails minimizing a so-called
weighted sum-of-squares objective function. (Note that computing x to max-
imize a function f(x) is the same as computing x to minimize −f(x), so we
may focus on minimization algorithms without loss of generality.) Most,
but not all, minimization algorithms are variations of the Newton itera-
tion method derived from introducing a quadratic model for the objective
function at each iteration.

Suppose we have a vector of random variables, e = (e1, e2, . . . , en)
T which

represent “errors” in some observations. Let y be a vector of random
variables, y = (y1, y2, . . . , yn)

T , representing the observations such that

1

yi = b0xi0 + b1xi1 + . . . + bkxik + ei, where b0, b1, . . . , bk are unknown
constants, and xi0, . . . , xik are specified values. The random variable yi
is merely a translation of the random variable ei. Often xi0 = 1, and in
general xi0, xi1, . . . , xik may be defined in terms of some lesser number of
independent variables. For example, xi1 may be an independent variable,
and xi0 = 1 and xi2 = x2i1.

Define the vector b = (b0, b1, . . . , bk)
T , and the n× (k + 1) matrix

X =











x10 x11 . . . x1k
x20 x21 . . . x2k
.
xn0 xn1 . . . xnk











.

In matrix terms, we have y = Xb+ e. This defines each random variable yi
as a linear expression in xi0, xi1, . . . , xik plus an error term ei.

Any stochastic relationship between the random variable yi and the values
xi0, . . . , xik can be expressed by the choice of the random variable ei. Note
that E(y) = Xb+E(e). Suppose that E(e) = 0. In this case E(y) = Xb and
we say that y = Xb+ e is a linear model for y, since the random variable yi
is a linear function of the constants b0, . . . , bk and the random variable ei.

Now, given X and estimates, ỹ, of E(y), we wish to estimate the constants,
b, which are the parameters of interest.

Let cov(e) = V , so that V is a symmetric n×n matrix with Vij = cov(ei, ej).
Usually we assume V is a diagonal matrix. Then we may define the weighted
sum-of-squares objective function S(b) := (y − Xb)TV −1(y − Xb). S(b)
is a random variable which depends upon the parameters b. Note when
b is the parameter vector such that E(y) = Xb, then S(b) = eTV −1e.
Now define b̂ = (b̂0, b̂1, . . . , b̂k)

T as the vector of random variables such that
b̂ = (XTV −1X)−1XTV −1y. The vector b̂ is the solution to the system of
equations ∂S/∂b = 0, so that E(S(b̂)) is minimal. b̂ is our estimator of b.

Often we have a situation where E(e) 6= 0 when we choose y = Xb + e.
In this case, the linear model is not appropriate, instead, we may have a
real-valued function, f(x; b), of vector arguments x and b, such that yi =
f(xi; b) + e with E(e) = 0. The function f(xi; b) is in general a non-linear
function of the parameters b = (b0, b1, . . . , bk)

T , as well as the arguments

2

xi = (xi0, xi1, . . . , xim). Note the number of parameters, k + 1, need not be
the same as the number of independent variables, m+ 1.

Our problem is still that of estimating the parameters b, given estimates
ỹ of E(y). As before we may define the vector of random variables b̂ so
that [∂S/∂b](b̂) = 0 and so that E(S(b̂)) is minimal, where S(b) = (y −
y∗)TV −1(y − y∗), with V = cov(e), and y∗i = f(xi; b). Note, if we have
several separate functions with shared parameters modeling several sets of
data, we can combine the separate sum-of-squares objective functions into
one by defining S(b) as their sum, where b is the vector whose components are
the local and global parameters appearing in the separate model functions.

There are numerical methods for solving the normal equations [∂S/∂b](
˜̂
b) =

0 given a particular starting estimate for
˜̂
b and the particular sampled esti-

mates ỹ for E(y). These methods are iterative in nature, and may sometimes
fail to converge to a correct solution.

To solve ∂S/∂b = 0, treating the random vector y as constant, we may
expand ∂S/∂b in a Taylor series about a point b(j). Thus, we linearize the
normal equations, to obtain:

0 = [∂S/∂b](b(j) + β(j)) = M (j)β(j) + w(j) +O(| β(j) |2)

whereM (j) = [∂2S/∂b2](b(j)), w(j) = [∂S/∂b](b(j)), and β(j) = (β
(j)
0 , . . . , β

(j)
k)T .

Now the Newton-Raphson procedure is the iteration formula:

b(j+1) = b(j)−π(M (j))−1w(j), where π is a parameter, usually near 1. Under
appropriate conditions this iteration will converge to a vector, b∗, such that
[∂S/∂b](b∗) = 0.

The Method of Steepest Descent is: b(j+1) = b(j) − πw(j), where π is the
minimum of S along the antigradient, given by ∂S(b(j) − πw(j))/∂π = 0.

Davidon’s quasi-Newton method is: b(j+1) = b(j) − πH(j)w(j), where π is
determined as in the method of steepest descent, and H(j) is a positive-
definite matrix such that H(j)w(j) − w(j−1) = b(j) − b(j−1), and H(0) = I.

Another approach to solving ∂S/∂b = 0 is to linearize the model to obtain
linear normal equations. The Gauss-Newton procedure uses this idea iter-
atively. We have the model yi = f(xi; b) + ei, and we may expand f in a
Taylor series to obtain:

3

f(x; b+ β) ≈ f(x, b) + (∂f(x; b)/∂b)Tβ, where β = (β0, . . . , βk)
T .

Define g(x;β) = (∂f(x; b)/∂b)Tβ. Now, for any point b, we suppose β is the
correction vector such that f(xi, b + β) = E(yi). Thus g(xi;β) ≈ E(yi) −
f(xi; b), so β ≈ (XTV −1X)−1XTV −1(E(y)−(f(x1; b), . . . , f(xn; b))

T), where
Xst = ∂f(xs; b)/∂bt, with 1 ≤ s ≤ n, and 0 ≤ t ≤ k. Now β de-
pends upon the guess, b. Thus we have the iteration: b(j+1) = b(j) + β(j),
where β(j) = (XTV −1X)−1XTV −1(E(y) − (f(x1; b

(j)), . . . , f(xn; b
(j)))T),

with Xst = ∂f(xs; b
(j))/∂bt.

The matrix XTV −1X may be singular or ill-conditioned; moreover the ap-
proximation f(x; b + β) ≈ f(x; b) + g(x;β) may hold only for vectors, β,
which are very small. The Marquardt-Levenberg method is a variation of the
Gauss-Newton procedure which deals with these difficulties.

Let D be a diagonal n× n matrix with Dii = (XTV −1X)ii. Now define:

β = (XTV −1X + εD)−1XTV −1(E(y)− (f(x1; b), . . . , f(xn; b))
T).

The matrix XTV −1X + εD is non-singular for ε > 0 and its condition
depends upon ε.

Now, the Marquardt-Levenberg iteration is: b(j+1) = b(j)+β(j), where β(j) =
(XTV −1X + εD)−1XTV −1(E(y)− (f(x1; b

(j)), . . . , f(xn; b
(j)))T),

with Xst = ∂f(xs; b
(j))/∂bt, and Dst = if s = t then (XTV −1X)st else 0.

For ε = 0, we have the Gauss-Newton procedure, while for ε → ∞, we obtain
a vanishing correction vector, β(j), in the direction of steepest descent. When
the matrix XTV −1X is ill-conditioned or of deficient rank, the magnified-
diagonal property of the Marquardt-Levenberg method usually overcomes
this difficulty. Unless we start at or exactly hit a maximum, we will not be
troubled by the fact that [∂S/∂b](b̂) = 0 at both minima and maxima, since
we always require that a “downhill” step be preferred.

Our approach employs the Marquardt-Levenberg method, with ε = 10−10

initially. Rather than keep ε fixed, at each iteration ε is varied so as to
seek out a smaller S(b) for b lying on an appropriate curve between the
current estimate of b and the next estimate predicted by the Gauss-Newton
iteration. This is a form of line-search with a curved “line”. The evaluations
of S(b) involved for different trial values of ε constitute subiterations.

The practical issues involved in parameter estimation are:

4

1. Choice and justification of the mathematical model.

2. Choice and justification of the statistical error model.

3. Choice of the initial parameter values (guesses) and the “guidance con-
trol” of the minimization process.

Let us consider these issues in the context of a concrete example. The
following data and model was proposed by Nicholas Holford as a challenge
for compartmental modeling software packages. The data is widely disparate
in scale, and we discuss below how to use weight vectors to handle this.
There is also missing data at different time points.

We shall employ the MLAB mathematical and statistical modeling sys-
tem[1][2] for this challenge problem. The solution discussed herein shows
several important features of MLAB. These features include simultaneously
fitting several functions with shared parameters to different data sets. The
functions which make up the model are defined by a set of differential equa-
tions. These differential equations turn out to be stiff and thus require a
suitable implicit method such as Gear’s method[3] to solve them numerically
in a reasonable amount of time.

The problem setting is as follows: 48.15milligrams of a drug D is given
by mouth, and blood concentrations of the drug D and also of its only
metabolite M are measured. Also the cumulative amounts of D and M in
the urine are measured. Thus, we have the following data.

5

time blood-D blood-M urine-D urine-M
(hours) (mg/liter) (mg/liter) (mg) (mg)

.82 .1746 .822051
1 1.87 7.23
1.2 .166 1.143786
1.4 .1264 1.152462
2 .1092 .859647 3.23 15.53
2.4 .0904 .648531
2.9 .0828 .601536
3 4.02 21.15
3.38 .0704 .381744
3.92 .0591 .402711
4 4.59 25.88
4.42 .0511 .30366
5.18 .0355 .252327
6 5.77 32.42
6.35 .0148 .143154
8 6.3 34.89
8.3 .0081 .063624
10 6.51 36.16
10.28 .0047 .033258
12 6.65 37.06
12.4 .0026 .020967
24 6.92 38.7
24.57 .0009 .006507
48 7.3 40.29
72 7.38 40.77

Note: In the data table above, blanks represent missing data. In order to
prepare the data for input, some value must be supplied at each place where
a number is missing. Any unique value may be used for these missing values
since we will remove them later. For this example, zero will be entered for
the missing table values. MLAB handles the problem of missing data auto-
matically during fitting (zero weights are generated internally to correspond
to missing data).

The errors in the blood concentration measurements have variances which
are roughly proportional to the squares of the true measurement values. The
errors in the urine amounts have more-nearly constant variances. Whatever
model we use to predict D(t) (blood drug concentration at time t), M(t)

6

(blood metabolite concentration at time t), A(t) (urine drug amount at time
t), and B(t) (urine metabolite amount at time t), we will want to weight
our observations by weights which are proportional to the reciprocals of the
variances.

A compartmental model for the uptake, metabolic conversion and excretion
of this drug is given below, and we wish to curve-fit to adjust the model to
fit the observed data.

blood with
drug (D)

blood with
metabolite (M)

tissue storage
(S)

k
2

k
1

kC

metabolite output in
urine (B)

kM

drug output
in urine (A)

kD

drug
input (I)

This is a highly simplified model; the path from the blood drug compartment
to the blood metabolite compartment should probably include a metabolic
conversion compartment, and perhaps the metabolite should go in and out
of tissue as does the drug D, but this five-compartment model is already
near the limit of what we can usefully fit to the data.

Let VB be the volume in liters of the blood and let VS be the volume in liters
of the tissue of the subject being studied. We let VM denote the volume in
liters of the blood-metabolite compartment; we would expect that VM = VB,
but we may obtain a better fit when this constraint is not honored.

Let D(t) = the concentration of the drug D in the blood at the time t, let
M(t) be the concentration of the metabolite M in the blood at time t, let
S(t) be the concentration of the drug D in the tissue at time t. Also, let
A(t) be the cumulative amount of drug D which has appeared in the urine
by time t, and let B(t) be the cumulative amount of the metabolite M which
has appeared in the urine by time t.

7

We can define the functions that comprise the above compartmental model
by specifying a first-order ordinary differential equation for each compart-
ment.

D′ = (I(t)− (k1 + kD + kC)D + k2S)/VB

S′ = (k1D − k2S)/VS

M ′ = (kCD − kMM)/VM

A′ = kDD

B′ = kMM

with D(0) = 0, M(0) = 0, S(0) = 0, A(0) = 0, and B(0) = 0.

The choice of the input function, I, is somewhat arbitrary. However, if
the drug is absorbed as fast as it passes at a constant rate into the small
intestine, we may choose I(t) = if t < ET then 48.15/ET else 0, so 48.15mg
of the drug is introduced at a constant rate over ET hours. The absorbance
rate of the drug is not known; thus we shall let ET be a fitting parameter.
If we needed a continuous input function, we could instead use the form
I(t) = 48.15 · H · exp(−H · t), and introduce the constraint H > 0. It
turns out this makes little difference in the final results. Another method
of handling the input, which is especially suitable for a bolus injection of
an unknown amount of drug, is to specify the initial condition for D as
D(0) = d0, and then make d0 a fitting parameter. This requires that initial
values can be adjusted by our curve-fitting software, as is possible in MLAB.

Note that kM , kC , k1 and k2 are in units of liters/hour, the derivatives D′,
S′, and M ′ are in units of mg/liter/hour, A′ and B′ are in units of mg/hour,
D, S, and M are in units of mg/liter, A and B are in units of mg, VB, VS

and VM are in units of liters, and I(t) is in units of mg/hour, and these units
are dimensionally consistent.

Like almost all compartmental models, this is a gross over-simplification
of reality. In many cases, such as chemical kinetics modeling, it is often
possible to employ a theoretically-justifiable model. Physiological compart-
mental models however, are necessarily inaccurate in regard to mechanism
and spatial mass distribution and flow. In spite of their theoretical inade-
quacy, compartmental models can be useful descriptive and predictive tools,
as long as they are not mistaken as physically and mechanistically-complete
and valid models.

8

The model above is not the minimal model that might be usefully employed
for the given data. Indeed it is near the limit of complexity that can be
usefully fit to the given data. The complexity of a compartmental model
is generally a function of the number of compartments and the number of
edges indicating flow between compartments, which together determine the
number of unknown parameters to be estimated. A further determinant of
complexity is the interconnection density which is measured by the number
of alternate paths that connect separated compartments. Part of the art of
compartmental modeling consists of judging the trade-offs between model
adequacy versus model complexity in light of the measured data, the types
and sizes of errors in the observations, and the research goals motivating the
modeling being undertaken.

The next concern is that of the nature of the measurement error in our
data. Each observed value ỹi can be considered to be the sum of the “true”
value E(yi), plus an error value ẽi which may be taken as a sample of a
random variable ei. Ideally we would like to know the joint distribution of
the error random variables ei so that maximum likelihood estimation can be
employed when desired. Usually, however, such distributional information
is not known, although the investigator’s experience can often play a role
here.

Maximum likelihood estimation is often the preferred tool when suitable
non-elliptically-contoured distribution functions are plausibly known; in this
case, we could use the MLAB maximize operator. The results of weighted
least squares minimization are generally close to the results of maximum
likelihood estimation when the observational errors are independent and
approximately normal with 0 mean. It is important to remember, however,
that least-squares estimators can be inconsistent for some non-normal error
distributions. With normal error, when the model is linear in the parame-
ters, the least squares estimators are the same as the maximum likelihood
estimators, provided that the correct weights are used; and these estimators
are themselves jointly normally-distributed.

For least squares estimation, it is important that the error in the independent
variable or variables be neglible. When both the independent and dependent
variables are measured with error, we can sometimes “assign” all the error
for a data point to reside with the dependent variable value, but usually the
correlation present between such errors makes this assignment of error prob-
lematical. One important example where such correlated errors occur is in
fitting the Scatchard model to ligand binding data[4]. The Scatchard model

9

predicts the ratio of bound ligand concentration to free ligand concentra-
tion as a linear function of bound ligand concentration; typically all of these
quantities are measured with error, and the error is clearly correlated. In
this case, the difficulties can be overcome by using an alternate (non-linear)
saturation model which relates the total amount of ligand present to the
amount bound; the total amount of ligand can generally be measured much
more accurately than can the amount of bound ligand.

This device of transforming the model and the data finds use in the situation
where the error in a variable deviates substantially from normal. For exam-
ple, if an observed variable is seen to behave approximately like a shifted
log-normal random variable, we may use a logarithm transformation to ob-
tain the more desirable situation where the error in the transformed data
appears to be approximately normal. The opposite effect must also be taken
into account; when data is transformed for more convenient modeling (either
mathematically or physically via a different measuring procedure); the er-
ror may be adversely affected, i.e. made noticeably non-normal. Algebraic
transformations can also be useful in other ways. For example, if a parame-
ter K is necessarily positive, it may be more convenient to substitute exp(L)
for K, and estimate L, because the least-squares estimator for L is likely to
be distributed more like a normal random variable than is the least-squares
estimator for K, and thus the linear normal error theory is more likely to
be of use.

The most fundamental consideration of error, that we ignore at our peril, is
the issue of scale. We need to take account of the varying magnitudes of the
errors that often occur in observations of distinct variables or of the same
variable at different independent variable values. In the data given above,
the magnitudes of the errors in the drug-in-blood data are much larger than
the magnitudes of the errors in the metabolite data. In this case, the dif-
ference is mainly due to the differing units of measurement used (molar
concentration vs. grams per milliliter), but often differing scales of error
magnitude are unavoidable. The purpose of weights in least squares param-
eter estimation is exactly to accomodate the differing error magnitudes that
may arise. We want to weigh the observation ỹi with the reciprocal of the
variance of the associated error random variable ei; thus we wish to assign
the weight 1/V ar(ei) to the observation ỹi. Some such weighting is necessary
when we have data with error of substantially different magnitudes.

Even when the data of greatest magnitude is accurately measured, we may
wish to use weights which give data with lower magnitudes a chance to be fit;

10

the use of such artifical weights are useful and defensible when the model
is known to be inexact; we might say that the error due to the model is
“transferred” to the high magnitude data by using lowered weights.

There are several useful ways to estimate the variances of a sequence of ob-
servations. Often we may know from experience that the standard deviation
of an observation ỹi is adequately modeled by a known constant, or by a
fixed fraction or some other function h of the unknown true value E(yi). In
this latter case, we might estimate the variance to be associated with the ob-
servation ỹi as h(ỹi)

2. In MLAB, it is also possible to iteratively change the
weights during curve-fitting so that a function of the form h(f(xi), xi, ỹi, i)
is used as our dynamically changing variance estimate, where xi is the in-
dependent variable vector associated with the observation ỹi and f is the
model function being fit to the data points (xi, ỹi). This device goes by
the name iterative reweighting; it can be used for various purposes such as
implementing “robust” curve-fitting algorithms.

When we have enough data, we may estimate the associated variance values
by computing a moving standard deviation with respect to a sliding “win-
dow” passing over the data; this entails computing a moving mean as well.
Both the moving mean and the moving standard deviation can be computed
with a weighting function applied to the data in the window so as to give
more importance to the central points within the window interval and to
insure that the resulting moving standard deviation curve is continuous in
theory. Moreover we may smooth the resulting moving standard deviation
curve using various schemes when this is desired. There are many slight
variations of this basic idea for generating variance estimates automatically,
having to do with the scheme used to compute the non-parametric central
trend curve. Besides weighted moving averages, moving linear or quadratic
models can be successively fit to our data sequence, smoothing splines or
kernel estimation methods can be used, and even moving medians can be
useful for some data sets.

For our example problem, we will use the MLAB EWT operator which em-
ploys the deviations from a smoothed form of the data to estimate the errors
in data values. Using EWT on the various data sets produces weights based
on error estimates scaled comparably to the underlying error of the data
sets themselves. This has the effect that the deviations will each be approx-
imately sized so that each of our sets of observed data is given more or less
correct weight in the sum of squares to be minimized.

11

Once the weights or the weighting model is established, we have only a
minimization problem to solve, with the proviso that we can impose all nec-
essary constraints on the admissable parameter values. Constraints are an
important part of many curve-fitting problems. Sometimes, the constraints
are physically dictated; certain parameters must be positive (or negative),
or must lie in some fixed range. Other times the constraints that we impose
are “plausibility” constraints; for example, the investigator’s judgment may
dictate that a certain parameter is limited to lie in a certain range.

We may want to impose constraints to guide the curve-fitting process; such
constraints may be dropped in a final “fiduciary” curve-fit once we have
discovered the region of interest in parameter space. This use of constraints
may be considered to be a tactical device for obtaining a good starting point
in parameter space rather than as part of the model itself.

Non-linear constraints such as a2 + b2 < 10 pose special difficulties. Most
systems allow only linear constraints (if that), and non-linear constraints
must be generally implemented “by hand” by including a penalty function

term in the model. For example, if we are fitting the model f(t; a, b) to the
data points (ti, vi) with the constraint a2 + b2 < 10, we may minimize the
objective function

∑n
i=1(vi − f(ti; a, b))

2 +max(0, , a2 + b2 − 10)8; whenever
a2+b2 > 10, the penalty term becomes increasingly-positive, and a suitably-
sensitive search process will move back into the region in parameter space
where a2 + b2 < 10.

It is necessary to use constraints for fitting our example; without them,
the parameters may well be assigned foolish values where the differential
equations cannot be integrated numerically. Let us assume the following set
of constraints.

{ .1 < ET < 70, 0 < k1, 0 < k2, 0 < kD, 0 < kC , 0 < kM , 3 < VB < 7,
10 < VS < 100, VM > .01}

Once we have established our model and weights, we can undertake the
parameter estimation process. This can be easy or difficult depending upon
the nature of our weighted least-squares objective function and the initial
starting point chosen for the vector of parameters. Moreover this entire
process is often provisional (we may be exploring various weights or various
models), and may want to be repeated with revisions in the weights or the
model or in certain other controlling choices.

Guessing the initial starting point “correctly” is sometimes vital to obtain-

12

ing a sucessful fit. But most often the initial starting point makes little
difference; the shape of the objective function is essentially bowl-shaped, al-
beit with some irregular features, and we will “roll” to the minimum at the
bottom of the bowl from any reasonable initial starting point. Indeed, for
a linear model, the quadratic approximation used with Newton-based min-
imization methods is exact, and we will reach the minimum immediately.
For some non-linear models, however, the objective function has various
complicated features such as several separate “bowls” and/or various ridges
and valleys that make starting from a good guess important. Even when we
have a good initial starting point, the progress to the desired minimum can
be slow; a “banana”-shaped bowl is not well-modeled by an elliptical bowl,
and the fitting process may zig-zag slowly toward the minimum.

Choosing an initial starting point for a sensitive problem is generally an
iterative process; we usually must try several starting points and thereby
gradually learn about our objective function. Knowledge of the physical
meaning of parameters can be very helpful, but this becomes less important
as the model deviates from reality.

There are a variety of tricks for obtaining “good” parameter-value guesses;
the unifying theme is to start with a simplified model and/or simplified data
for which guessing the initial starting point is easier, and then to reintroduce
the complexities of the original situation bit by bit. This can be formally
done by using a homotopic mixture of our desired model and some simplified
model, and then gradually adjusting the mixing coefficient; this is a kind
of continuation device. Often it suffices to fix some parameters and adjust
the others, and then vary the fixed parameters in a subsequent fit. For
example, it can be useful to iteratively fix the non-linear parameters, adjust
the linear parameters (generally with no difficulty,) and then adjust all the
parameters, repeating this process as necessary. Occasionally, we may want
to modify the data or the weights being used, or even “make up” a set of
data so as to guide the fitting process toward a desired solution; finally, of
course, we undo all such data modifications for a final fit.

It is often useful to do random probes and graph the resulting model together
with the associated data; even though the parameter space is huge and
of high dimension, an investigator’s intuition is sometimes sharpened by
looking at a few such graphs. Indeed, one should always graph the data and
the model as determined by the initial starting point in order to visually
check the data and to verify that the model is correctly formulated for
computation. Sometimes initial starting points can be usefully obtained by

13

using minimization methods such as the simplex method or some form of
simulated annealing.

For compartmental models, we can often use a simplified model by drop-
ping some edges or some compartments and then estimate the remaining
parameters. Then we can return to our original model, and make more in-
formed guesses of its parameters. For example, in our problem, we might
drop the tissue storage compartment, estimate the remaining parameters,
and then reintroduce it, knowing that the effect of this reintroduction is to
reduce the estimated flow rate parameters going out of the drug-in-blood
compartment. Another device for compartmental models with the parame-
ters occurring linearly in the associated differential equations, due to Judah
Rosenblatt[5], is as follows. To use Rosenblatt’s device, we must have data
for each function (i.e., each compartment) in our model; if needed, we might
“make-up” such data. Now, we fit the data we have with smooth curves (e.g.
smoothing splines), and then differentiate those curves to get derivative func-
tion curves for each model function. With these smooth curves for both the
model functions and their associated derivative functions, our system of dif-
ferential equations becomes an over-determined system of linear equations,
and we may solve the corresponding normal equations to obtain the initial
starting parameter values that we are seeking.

When we are fitting a distribution function model to data, we can make use
of old tricks like using the formulas for the moments, and fitting them to the
computed moment estimates. For example, Suppose we are fitting a fam-
ily of gamma distributions determined by a covariate a to data, so that the
model is F (s; a) = G(s;α1(a), α2(a), α3(a)), whereG(s;m, b, c) is the general
Gamma distribution function, withG(s;m, b, c) := Γ(m)−1

∫

0≤t≤ s−c

b

tm−1e−tdt

for s > c and 0 for s < c. The associated mean is mb + c, and the asso-
ciated variance is mb2. Note the Gamma-distribution parameters m and b
must both be non-negative values. Suppose the functions α1(a), α2(a), and
α3(a) are all taken as quadratic expressions with distinct coefficients, so that
αi(a) = λ1ia

2 + λ2ia + λ3i for i = 1, 2, 3. In order to obtain an initial esti-
mate for the coefficients λji, we may simultaneously fit α1(a)α2(a) + α3(a)
to the appropriate sample means, and α1(a)α2(a)

2 to the appropriate sam-
ple variances. We may now use the obtained λji values and refine these
estimates by fitting F to the ensemble of empirical cumulative distribution
values obtained from the data.

The curve-fitting process is essentially characterized by making sucessive

14

informed guesses for the starting parameter values and accepting those pa-
rameter value estimates which please us the most; generally, but not neces-
sarily always, these estimates correspond to the least value for our sum-of-
squares objective function. Note that when, as in the case of a compart-
mental model, we have a model involving functions defined by differential
equations, we must numerically solve these differential equations in order
to compute a single value of our objective function. Also, for most mini-
mization algorithms, the partial derivatives of the objective function with
respect to each of the parameters must be occasionally computed. When
these partial derivatives can be obtained symbolically, it is useful to do
so, since this avoids the common problems associated with numerical dif-
ferentiation that sometimes arise. (MLAB computes such symbolic deriva-
tives automatically for non-differential equation models.) In the case of a
differential-equation-based model, it is necessary to use numerical methods,
either by numerically solving an auxillary system of differential equations, or
by solving our given system of differential equations twice for the purpose of
computing a centered-difference numerical derivative estimate. Clearly then,
curve-fitting a differential-equation-based model can be a computationally
demanding process.

As with any complex computational process, we may be the victims of
(1) round-off error, (2) algorithm instability, (3) algorithm ineffectiveness,
and/or (4) ill-conditioning. Round-off error often arises when we have terms
of widely-disparate magnitude arising in our objective function; data of dif-
fering magnitudes can also be a cause of round-off error.

One particularly egregious round-off error problem is the situation where
numerical overflow occurs; this happens when we generate a number whose
magnitude is greater than the computers’ floating-point representational ca-
pacity. (On a PC, approximately 1.7·10308 is the largest directly-representable
value.) Overflows sometimes occur during curve-fitting when an unsuitable
parameter vector is generated. Many computer programs either stop or
produce an “infinity”-code which fatally contaminates all subsequent calcu-
lations. It is preferable to produce the largest computationally-valid num-
ber of the correct sign, since even excessive round-off error is better than
termination, because, if allowed to proceed, the search process may well
eventually go in a more felicitous direction into a region of parameter space
where overflows do not occur, so that the transient occurrence of overflows is
inconsequential. It is often unnecessarily hard (and sometimes impossible)
to program this behaviour in a practical manner, but it is an effective ad-

15

junct for some problems, and MLAB handles overflows as described above
on most processors.

Algorithm instability occurs when the values produced by various compu-
tations are garbage because certain assumptions are violated or because
certain iterations do not converge. One important example is when the al-
gorithm used for solving differential equations introduces a error-magnifying
effect in the solution because the problem that we are solving lies outside the
“stability region” for the numerical method being employed. It is sometimes
possible to program tests which detect such problems. The most appropri-
ate response is to switch to another numerical method which is, hopefully,
more suitable to the problem at hand.

Algorithm ineffectiveness is basically the issue of speed. If it takes too long
to estimate our parameters, we have gone outside the class of problems for
which our methods are effective. Sometimes this is merely a matter of size;
all methods are ineffective when the number of parameters to be estimated
becomes too large or when the objective function becomes too complicated.
One common situation that occurs with compartmental models is that of a
stiff system of differential equations. A stiff system of differential equations is
a system with at least one “super-stable” equation which requires many very
small steps to track the solution accurately with so-called explicit methods.
In such a circumstance, there are other implicit methods[3] which sometimes
allow the use of a large-enough step-size to restore effectiveness. Since the
overhead of an implicit method is greater than the overhead of an explicit
method, we don’t want to use an implicit method routinely. It is convenient
for the investigator if we program tests for stiffness and automatically switch
to an implicit method that is effective for stiff differential equations when
this is appropriate.

The classic situation of ill-conditioning is an inherent defect in our model,
our data, or both. If the objective function, or its derivatives, are so sensi-
tive to small changes in the parameters that we get wildly different function
values for almost identical parameter values, then we have an ill-conditioned
problem. This includes the case where a solution of a differential equation
becomes very large in magnitude except for a small range of parameter
values. Such instability generally manifests itself by overflows. This “diver-
gent” behavior in a differential equation is the opposite of stiffness.

Ill-conditioning often manifests itself by yielding extremely non-unique pa-
rameter estimates, in the sense that small changes in the data, or in choices

16

such as the integration error-per-step limit lead to very different parameter
estimates. Geometrically, we have a “flat” place in the graph of our objec-
tive function; the parameters can move a relatively-large distance in certain
directions with only a small change in the objective function, and where
we end-up in this flat region is a matter of our initial starting point, and
the computational errors engendered during searching. Such a flat place is
modeled by an elliptical bowl defined by a quadratic form, where some of
the eigenvalues of the matrix of the quadratic form are relatively very large,
and some are relatively very small; this is the hallmark of ill-conditioning.
Since a joint-confidence region of our estimated parameters is obtained as a
contour of the objective function in the neighborhood of the minimum that
corresponds to our estimated parameter vector, these eigenvalues are also
useful in obtaining the linear normal theory error estimates for the estimated
parameters; essentially, the less flat the approximating bowl containing the
minimum is, the smaller an approximate elliptic joint-confidence region will
be.

The condition of a curve-fitting problem can change as the parameter val-
ues change; our problem can be ill-conditioned in some regions of parameter
space and not in others. If we are lucky, we will find suitable parameter
values in a region of the parameter space where ill-conditioning does not
occur. If we are unlucky, however, we may be driven to a sub-optimal local
minimum corresponding to an unacceptable fit due to encountering tran-
sient or persistent ill-conditioning. For differential-equation-based objective
functions, the occurrence of ill-conditioning may be connected to entering a
region of parameter space where the character of our differential equations
is markedly different, this is a bifurcation event occurring.

Even if none of the above issues present us with serious difficulties, we may
have a minimization problem which is just plain hard. That is, the objective
function with k parameters may correspond to a surface in (k + 1)-space
which has many complex features such as ridges and valleys and local de-
pressions that violate the successive quadratic (elliptic bowl) approximation
approach used by Newton minimization methods.

Now let us return to our compartmental modeling example. We need initial
guesses for all the parameters. These guesses must be suitable; arbitrary
guesses can lead to unreasonable final fit values, or even cause the fitting
process to be unable to proceed due to excessive stiffness of the differential
equations!

17

Suppose a unit amount of drug diffuses from blood into tissue so that half
of it is transfered in one hour. Then if y is the amount of drug in the blood,
we have y′ = −k1y with y(0) = 1, and y(1) = .5, and so k1 ≈ .7. Let us also
guess that k2 = .7.

If half of a unit amount of drug is cleared from the blood and transferred to
the urine by the kidneys in about 4 hours, then kD ≈ .17. Let us also guess
that kM = .17. Similarly, let us guess kC = .17.

Finally we choose VB = 5, VM = 5, VS = 40, and ET = 1.

Now we may proceed in MLAB as follows. First we enter the data listed
above, with zeros for missing values, and then we construct the correspond-
ing weight vectors WD, WM, WA, and WB using the built-in EWT (estimated
weights) operator. (compress(m,2) removes all the rows of the matrix m

where the value in column 2 is 0.)

n = read(datafile, 100, 5)

tv = n col 1; "tv = time values"

dv = n col 2; "dv = blood drug data."

mv = n col 3; "mv = blood metabolite data."

av = n col 4; "av = urine drug data."

bv = n col 5; "bv = urine metabolite data."

dv = tv &’ dv; dv = compress(dv,2); wd =ewt(dv)

mv = tv &’ mv; mv = compress(mv,2); wm =ewt(mv)

av = tv &’ av; av = compress(av,2); wa =ewt(av)

bv = tv &’ bv; bv = compress(bv,2); wb =ewt(bv)

Now we enter our model, our constraints, and our inital guesses.

function d’t(t) = (i(t) - (k1 + kd + kc)*d + k2*s)/vb

function s’t(t) = (k1*d - k2*s)/vs

function m’t(t) = (kc*d - km*m)/vm

function a’t(t) = kd*d

function b’t(t) = km*m

function i(t) = if t<et then dose/et else 0

initial d(0) = 0

18

initial s(0) = 0

initial m(0) = 0

initial a(0) = 0

initial b(0) = 0

dose = 48.15

k1=.7;k2=k1;kd=.17;km=kd;kc=kd;vb=5;vs=40;et=1;vm=5

constraints c = {k1>0, k2>0, kc>0, km>0, et>.1, et<70, vb>3,

vb<7, vs>10, vs<100, vm>.01}

Now we proceed to fit. To reduce the amount of time needed to fit this stiff
model, we use Gear’s method with a tolerance of .01.

method = gear;

maxiter = 100

errfac = 0.01

fit(k1,k2,kc,kd,km,et,vb,vs,vm),

d to dv with weight wd, m to mv with weight wm,

a to av with weight wa, b to bv with weight wb, constraints c

final parameter values

value error dependency parameter

19.55670378 12.41128315 0.7277144348 K1

4.829029615 56.05648908 0.9970952774 K2

95.71231349 18.05875113 0.9611351847 KC

17.29009355 3.174400652 0.9601255658 KD

13.57478156 2.526143866 0.6637941471 KM

4.835844445 0.8222361079 0.945128974 ET

4.168221663 13.3558721 0.5651377681 VB

88.309337 930.8309603 0.997317646 VS

3.929260682 8.161760496 0.9041479451 VM

22 iterations

CONVERGED

best weighted sum of squares = 3.054944e+02

weighted root mean square error = 2.665431e+00

weighted deviation fraction = 5.505088e-02

19

R squared = 9.959130e-01

no active constraints

Now we will graph our four data sets together with the best-fit curves pro-
duced by solving our system of differential equations with the parameter
values obtained above.

Note that we must beware of assuming that our obtained parameters have
any physical significance. It is unlikely, for example, that the actual com-
partment volumes are close to the values we have for VB, VM and VS . Our
model may be useful for prediction purposes, but it is not useful for gaining
insight into any actual physiological mechanisms.

tv=0:75!120

draw points(d,tv) color brown

draw dv color red pt xpt lt none

image color white

top title " Drug concentration in Blood" font 11 size .03

left title "’-90AD" font 11 size .03

bottom title "time"

frame 0 to .5, 0 to .5

w1=w

draw points(m,tv) color blue

draw mv color blue pt octagon lt none

image color yellow; frame color green

top title "Metabolite concentration in Blood" font 11 color brown size .03

left title "’-90AM" font 11 size .03

bottom title "time"

frame .5 to 1, 0 to .5

w2=w

draw points(a,tv) color purple

draw av color red pt square lt none

image color grey; frame color brown

top title " Drug amount in Urine" font 11 size .03

left title "’-90AA" font 11 size .03

bottom title "time"

frame 0 to .5, .5 to 1

w3=w

20

draw points(b,tv) color brown

draw bv color blue pt crosspt lt none

image color aqua; frame color red

top title " Metabolite amount in Urine" font 11 size .03

left title "-90AB" font 11 size .03

bottom title "time"

window 0 to 80, 0 to 45

frame .5 to 1, .5 to 1

w4=w

view

This is not the only reasonable fit. Starting from other guesses, for exam-
ple: K1 = 223, K2 = 14.7, KC = 66, KD = 11.7, KM = 9.7, ET = 1.95,
VB = 6.24, VS = 12.35, and VM = 0.04, we can obtain other, quite dif-
ferent, results; this fit is presented below. The large dependency values of
the parameters indicate that this problem does not have a unique answer.
Probably the problem is over-parameterized.

k1 = 223; k2 = 14.7

kd = 11.7; km = 9.7; kc = 66

vb = 6.24; vs = 12.35; vm =.04; et = 1.95;

fit(k1,k2,kc,kd,km,et,vb,vs,vm),

d to dv with weight wd, m to mv with weight wm,

a to av with weight wa, b to bv with weight wb, constraints c

final parameter values

value error dependency parameter

222.3296966 27.76132266 0.8337053755 K1

14.7359648 3117.341849 0.9999999383 K2

65.98333895 3.836887237 0.9399933157 KC

11.7407663 0.692533352 0.938315949 KD

9.697523939 0.6754487655 0.6928345824 KM

1.960006851 0.059767016 0.9654962599 ET

5.964737228 3.990424231 0.866044195 VB

12.31946483 2605.653695 0.9999999384 VS

0.04208395842 0.01012174536 0.9703620604 VM

21

3 iterations

CONVERGED

best weighted sum of squares = 4.491649e+01

weighted root mean square error = 1.022042e+00

weighted deviation fraction = 2.993774e-02

R squared = 9.941458e-01

no active constraints

The graphical results of this fit are shown below. Note we fit the blood-drug
and blood-metabolite concentrations more closely at the expense of urine-
drug and urine-metabolite fitting, indeed this was our goal in searching for an
alternate local minimum. This minimum is smaller than the first minimum
we found, and seems to be a generally-preferable fit as well.

Since our model is not physically accurate, we may feel free to choose our
parameter values so that the four curves are adequately predicted, without
concern for the physical meanings of the parameters.

In conclusion, note that parameter estimation via curve-fitting is not always
an automatic procedure. Considerable physical and mathematical judgment

22

may be required to coax the generation of suitable estimates. This is a fertile
area for research into heuristic algorithms to aid investigators in doing curve-
fitting, but it is unlikely that parameter estimation via model-fitting with a
curve-fitting process will ever be routine for all the various modeling tasks
we may wish to undertake.

[1] Civilized Software Inc., URL: http://www.civilized.com

[2] Nash, John C.; Quon, Tony K., Software for Modeling Kinetic Phenom-

ena, The American Statistician, Vol. 50, No. 4, pp. 368-378, 1996.

[3] Gear, C. W., Numerical Initial Value Problems in Ordinary Differential
Equations, Prentice-Hall, Englewood Cliffs NJ, 1971.

[4] Knott, Gary D.,MLABApplications Manual, Civilized Software, Bethesda
MD, 1996.

[5] Rosenblatt, Judah, A More Direct Approach to Compartmental Modeling,
Progress in Food and Nutrition Science, Vol. 12, pp. 315-324, 1988.

23

