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In the area of heat transfer and fluid flow, it commonly occurs that the
fluid adjacent to a vertical heated plate rises due to the buoyancy force
corresponding to the difference in pressure below and above the heated fluid
in the vicinity of the vertical plate. This pressure difference is due to the
gravity-induced density-gradient in the fluid, taking into account the lower
density of the heated fluid; in the absence of gravity, a hot ball of fluid has
no tendency to move.

Let us place the origin at the bottom of the vertical plate, with the
plate extending along the vertical x-axis of a left-handed coordinate system.
Generally, the heated fluid will flow such that the streamwise flow velocity
component in the vertical x-direction is much greater than the transverse ve-
locity in the horizontal y-direction (since the y-direction motion is primarily
due to the stream deflection caused by the boundary layer of fluid accreted
along the plate.) Also, the y-direction gradient, ∂φ/∂y, of a field variable
φ is much greater than the x-direction counterpart. As a result, most of
the flow activity takes place within a thin region adjacent to the plate. The
velocity of the heated fluid is small immediately adjacent to the heated plate
due to the “friction” associated with the thermal noise in the heated fluid;
thus we have non-uniform-velocity laminar flow about the heated plate. As
the horizontal distance from the plate increases, the induced velocity rises;
and as the horizontal distance increases still more, the induced velocity di-
minishes due to the increasingly-small pressure difference in excess of the
force of gravity.

Nondimensional continuum partial-differential equations governing the
boundary-layer flow driven by the buoyancy force mentioned above can be
written as

mass conservation (continuity):

∂u/∂x+ ∂v/∂y = 0,
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x-direction momentum conservation:

u∂u/∂x+ v∂u/∂y = (∂2u/∂y2)/re− ∂p/∂x+ gx(1/ρ− 1),

y-direction momentum conservation:

u∂v/∂x+ v∂v/∂y = (∂2v/∂y2)/re− ∂p/∂y + gy(1/ρ− 1),

energy conservation:

u∂T/∂x+ v∂T/∂y = ∂2T/∂y2/pe.

The relevant quantities in these equations are defined below.

u(x, y) = dimensionless x-direction flow velocity at the point (x, y).
v(x, y) = dimensionless y-direction flow velocity at the point (x, y).
ρ(x, y) = dimensionless density at the point (x, y).
u0 = reference flow-velocity value used for dimensionless conversion.
ρ0 = reference density value far from the plate.
T ∗

0 = reference temperature value far from the plate.
g∗x = acceleration due to gravity in the vertical x-direction.
g∗y = acceleration due to gravity in the horizontal y-direction (= 0).
gx = g∗xL/u

2
0 = dimensionless x-direction gravity acceleration.

gy = g∗yL/u
2
0 = dimensionless y-direction gravity acceleration.

p∗(x, y) = the pressure in the fluid at the point (x, y).
p(x, y) = dimensionless pressure, (p∗(x, y)+ρogxLy)/(ρ(x, y)u

2
o) at the

point (x, y).
α = thermal diffusivity.
ν = kinematic viscosity.
pe = Peclet number, u0L/α.
re = Reynolds number, u0L/ν.
T ∗(x, y) = the temperature in the fluid at the point (x, y).
T (x, y) = (T ∗(x, y)− T ∗

0 )/(T
∗(x, 0)− T ∗

0 ).
It is possible and sometimes convenient to transform these partial differ-

ential equations into two ordinary differential equations [1].
Let s := y(gr/(4x))1/4 where gr is the Grashof number g∗xL(T

∗(0, 0) −
T ∗

0 )/(u
2
0T

∗

0 ). Now define f(s) := ψ(x, y)/ψ0(x), where the streamfunction
ψ(x, y) is defined to be

∫ y
0
u(x, δ)dδ and ψ0(x) := 4ν(gr/4)1/4x3/4. The func-

tion f is a dimensionless streamfunction whose derivative f ′ is the x-velocity
of the fluid in arbitrary units at each point (x, y) in the vicinity of the heated
plate that satisfies s = y(gr/(4x))1/4. Also define h(s) := T (1, s/(gr/4)1/4).
The dimensionless temperature defined by h is the constant value h(s) along
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the curve defined by y(gr/(4x))1/4 = s, where the x-velocity is similarly con-
stant.

With these definitions, and knowing that u = ∂ψ/∂y and v = −∂ψ/∂x,
we can follow Ostrach [1] to obtain the following system of differential equa-
tions. The symbol pr denotes the Prandtl number, ν/α.

f ′′′ + 3ff ′′ − 2(f ′)2 + h = 0,

h′′ + 3prfh′ = 0,

subject to f(0) = f ′(0) = 0, h(0) = 1, and f ′(∞) = 0 and h(∞) = 0.
This is a boundary-value problem with two boundary-value conditions

corresponding to the two unknown initial conditions: f ′′(0) = v1 and h
′(0) =

v2. For practical computational purposes, f ′ may be taken to be nearly
zero at a large finite horizontal distance from the plate; we shall use the
finite boundary conditions f ′(10) = 0 and h(10) = 0 in place of the infinite
boundary conditions given above.

The MLAB mathematical modeling system [2] may be employed to solve
this double-shooting problem. The required input, and the corresponding
results are shown below. We have constructed an MLAB script-file of MLAB
commands entitled hotair.do, and executed that script to obtain the results
below. (The commands in the script file are echoed in the log-file listing
displayed below.)

MLAB: Mathematical Modeling System, Revision: January 25, 1996

Copyright: Civilized Software, Inc. (301)652-4714

Fri Mar 29 14:03:42 1996

’* ’ is the command prompt

* do "hotair.do"

*

* fct f’’’s(s)=2*(f’s)^2-h-3*f*f’’s

* fct h’’s(s)=-3*pr*f*h’s

*

* init f(0)=0

* init f’s(0)=0

* init f’’s(0)=vf

*

* init h(0)=1
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* init h’s(0)=vh

*

* pr=1; vf=.5; vh=-1

*

* d=10&’0

*

* constraints q={0<vf,vf<1,vh>-1,vh<0}

* fit(vf,vh), h to d, f’s to d, constraints q

final parameter values

value error dependency parameter

0.6421470108 3.210436076e-14 0.8268185934 VF

-0.5671057549 1.688437213e-14 0.8268185934 VH

12 iterations

CONVERGED

best weighted sum of squares = 4.232665e-27

weighted root mean square error = 6.505893e-14

weighted deviation fraction = 1.797693e+308

R squared = 1.000000e+00

no active constraints

*

* m=integrate(f’’’s,h’’s,0:11!160)

* odestr

ODESTR = S F’S’S F’S’S’S F’S F’S’S F F’S H’S H’S’S H H’S

*

* draw m col (1,6)

* draw m col (1,4) color red lt dashed

* draw m col (1,2) lt (.01,004,.01,0,0,0,-1) color green

* draw m col (1,3) color blue lt alternate

* top title "f,f’’,f’’’’,f’’’’’’ vs. s" font 17

* view
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Note that f is drawn as a solid line, while the derivative functions f ′, f ′′,
and f ′′′ are drawn with dashed lines. It is easy to see which is f ′ by looking
at the shape of f in the graph.

* delete w

* draw m col (1,10)

* draw m col (1,8) color red lt dashed

* draw m col (1,9) lt (.01,004,.01,0,0,0,-1) color green

* top title "h,h’’,h’’’’ vs. s" font 17

* view
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* exit
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