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Hypothesis testing is a major paradigm in statistics. It is closely linked
with the computation of specified probability distribution functions. The
basic notion is simple. We obtain a sample value v of a random variable
T and we ask how probable it is that the sample value v would appear
under a hypothesis H which makes the distribution of T well-defined. If the
probability that, under the hypothesis H, v or a more extreme value of T
appears is small, we take this as evidence that the hypothesis H is unlikely
to be true. In other words, we conclude that the test of the hypothesis H
has not supported H.

The random variable T is called the test statistic. If many samples of vari-
ous random variables are taken, they are often combined in some, possibly
quite elaborate, manner to obtain a single sample of a derived test statistic
T . In other cases, the test statistic may be a vector-valued random vari-
able with a multivariate distribution function. For example, the test statis-
tic associated with the famous t-test for testing the hypothesis that two
normally-distributed random variables have the same mean is the difference
between the means, or variance-adjusted means, of two sets of sample values
corresponding to the two random variables being studied.

In order to compute the probability p that, under the hypothesis H, the
sample value v or a more extreme value of T appears, we must be able
to compute P (T ≤ v | H), which is the distribution of the test statistic
T under the hypothesis H. We shall denote a random variable with this
distribution by TH . The hypothesis H must be such that the distribution
function of TH is known; this means that H is often of the form: “there is no
difference between two sets of samples”, since it is generally easier to deduce
the distribution of TH in this case. Thus, H is called the null hypothesis,
meaning the “no difference” hypothesis.
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Suppose that the distribution function of TH is G(x) := P (TH ≤ x). Also
suppose that the density function dG(x)/dx is a unimodal “bell-shaped”
curve, so that the extreme sample values of TH lie toward +∞ and −∞.
Suppose the value v is given as a sample value of T . We may compute, for
example, p = P (|TH − E(TH)| ≥ |v − E(TH)|). This is a particular form of
a so-called two-tailed test. p is the probability that the value v or a “more
extreme” value occurs as a sample value of T , given H. If p is sufficiently
small, we may reject the null hypothesis H as implausible in the face of the
“evidence” v. We call such a probability p the plausibility probability of H,
given v.

If the test statistic TH were known to be non-negative and the density func-
tion dG(x)/dx were a function, such as the exponential density function,
which decreases on [0,∞), then we might use a so-called one-tail test, where
we compute the probability p = P (TH ≥ v).

In general, we may specify a particular value α as our criterion of “sufficiently
small” and we may choose any subset S of the range of T such that P (TH 6∈
S) = α. Then if v 6∈ S, the null hypothesis H may be judged implausible.
S is called the acceptance set, because, when v ∈ S, the null hypothesis H
is not rejected. The value α = P (TH 6∈ S) is the probability that we make
a mistake if we reject H when v 6∈ S.

How should the acceptance set S be chosen? S should be chosen to mini-
mize the chance of making the mistake of accepting H when H is, in fact,
false. But, this can only be done rigorously with respect to an alternative
hypothesis Ha such that the distribution of T given Ha is known. We must
postulate that H and Ha are the only non-negligable possibilities. Some-
times, Ha = ¬H is a suitable alternate hypothesis, but more often, this is
not suitable. Given Ha, the probability we falsely accept H when the alter-
nate hypothesis Ha is true is P (THa

∈ S) =: β, and we can choose S such
that P (TH 6∈ S) = α while P (THa

∈ S) = β is minimized.

The value P (THa
6∈ S) = 1 − β is called the power of the test of the null

hypothesis H versus the alternate hypothesis Ha. Choosing S to minimize
β is the same as choosing S to maximize the power 1− β.

If we don’t care about achieving the optimal power of the test with respect to
a specific alternate hypothesis, but merely wish to compute the plausibility
probability that v or a more extreme sample value of T would occur given
H, in a fair manner, then we may proceed as follows.

Let m = median(TH); thus, P (TH ≥ m) = 0.5. Now, if v < m, choose
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r1 = v and r2 as the value such that P (m < TH < r2) = P (v < TH <
m), otherwise choose r2 = v and choose r1 as the value such that P (r1 <
TH < m) = P (m < TH < v). Then the two-tail plausibility probability
α = 1− P (r1 < TH < r2). If v < m, α = 2P (TH ≤ v), otherwise, if v ≥ m,
α = 2(1− P (TH ≤ v)).

If we know that the only values more extreme than v which we wish to
consider as possible are those in the same tail of the density function that
v lies in, then we may compute the one-tail plausibility probability as α =
P (TH ≤ v) if v ≤ m and α = P (TH ≥ v) if v > m.

Consider testing the null hypothesis H versus the alternate hypothesis Ha

using a sample value v of the test random variable T with the acceptance
set S. We have the following outcomes.

v ∈ S v 6∈ S

H
accept H
prob 1− α
correct

reject H
prob α

rejection error

Ha

accept H
prob β

acceptance error

reject H
prob 1− β
correct

α = P (TH 6∈ S) = P (we falsely reject H | H) (rejection error)
1− α = P (TH ∈ S) = P (we correctly accept H | H) (acceptance power)

β = P (THa
∈ S) = P (we falsely accept H | Ha) (acceptance error)

1− β = P (THa
6∈ S) = P (we correctly reject H | Ha) (rejection power)

Let Q be the sample-space of the test statistic T . We assumed above that
either H(q) = 1 for all q ∈ Q or H(q) = 0 for all q ∈ Q, but this universal
applicability of H or Ha may be relaxed. Suppose the hypothesis H and
the alternate hypothesis Ha may each hold at different points of Q, so that
H and Ha define corresponding complementary Bernouilli random variables
on Q. Thus H(q) = 1 if H holds at the sample point q ∈ Q and H(q) = 0
if H does not hold at the sample point q; Ha is defined on Q in the same
manner.
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Let P ({q ∈ Q | H(q) = 1}) be denoted by P (H) and let P ({q ∈ Q | Ha(q) =
1}) be denoted by P (Ha). P (H) is called the incidence probability of H
and P (Ha) is called the incidence probability of Ha. As before, we postulate
that P (H) = 1− P (Ha). Often P (H) is 0 or 1 as we assumed above, but it
may be that 0 < P (H) < 1. In this latter case, our test of hypothesis can be
taken as a test of whether H(q) = 1 or Ha(q) = 1 for the particular sample
point q at hand for which T (q) = v; the test statistic value v may be taken
as evidence serving to increase or diminish the probability of H(q) = 1.

Note that we cannot compute the “posterior” probability that H(q) = 1
(and that Ha(q) = 0), or conversely, unless we have the “prior” incidence
probability of H being true in the sample-space Q. In particular, if we
assume the underlying sample-space point q is chosen at random, then:

P (H(q) = 1 & T (q) ∈ S) = (1− α)P (H)
P (H(q) = 1 & T (q) 6∈ S) = αP (H)
P (H(q) = 0 & T (q) ∈ S) = β(1− P (H))
P (H(q) = 0 & T (q) 6∈ S) = (1− β)(1− P (H))

If we take the occurrence of H(q) = 0 as being a determination of a “pos-
itive state” of the random sample-space point q, then (1 − α)P (H) is the
probability of a true negative sample, αP (H) is the probability of a false

positive sample, β(1 − P (H)) is the probability of a false negative sample,
and (1− β)(1− P (H)) is the probability of a true positive sample.

Now let us look at a particular case of an hypothesis test, namely the so-
called F -test for equal variances of two normal populations.

Suppose X11, X12, . . . , X1n1
are independent identically-distributed random

variables distributed as N(µ1, σ
2
1), and X21, X22, . . . , X2n2

are independent
identically-distributed random variables distributed as N(µ2, σ

2
2). The cor-

responding sample-variance random variables are

S2

1 =
n1∑

j=1

(Xij − X̄1)
2/(n1 − 1) and S2

2 =
n2∑

j=1

(X2j − X̄2)
2/(n2 − 1),

where X̄1 =
∑n1

j=1
X1j/n1 and X̄2 =

∑n2

j=1
X2j/n2.

LetR denote the sample variance ratio S2
1/S

2
2 . ThenR ∼ (σ2

1/σ
2
2)Fn1−1,n2−1,

where Fn1−1,n2−1 is a random variable having the F -distribution with (n1−
1, n2 − 1) degrees of freedom.

We take the null hypothesis H to be σ1/σ2 = 1, so that, given H, the test
statistic R is known to be distributed as Fn1−1,n2−1. In order to deter-
mine the acceptance region S with maximal power for α fixed, we take
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the alternate hypothesis Ha to be σ1/σ2 = a. Then S is the interval
[r1, r2] where P (r1/a

2 ≤ Fn1−1,n2−1 ≤ r2/a
2) = β is minimal, subject to

1− P (r1 ≤ Fn1−1,n2−1 ≤ r2) = α.

Let G(z) = P (Fn1−1,n2−1 ≤ z), the distribution function of Fn1−1,n2−1, and
let g(z) = G′(z), the probability density function of Fn1−1,n2−1. Then, we
have r1 = rootz[g(z)g(h(z)/a

2) − g(h(z))g(z/a2)] and r2 = h(r1), where
h(z) = G−1(1− α+G(z)).

A simplified, slightly less powerful, way to choose the acceptance region S is
to take S = [r1, r2] where r1 is the value such that P (Fn1−1,n2−1 ≤ r1) = α/2
and r2 is the value such that P (Fn1−1,n2−1 ≥ r2) = α/2. Another way to
select the acceptance region is to take S = [1/r, r], where r is the value such
that P (1/r ≤ Fn1−1,n2−1 ≤ r) = 1 − α. When n1 = n2, the acceptance
region [r1, r2] and the acceptance region [1/r, r] are identical.

The foregoing clearly exemplifies the fact that there is a trade-off among
the acceptance error probability β, the rejection error probability α, and
the sample sizes (n1, n2). If we wish to have a smaller α, then we must
have a greater β or greater values of n1 and n2. Similarly, β can only be
reduced if we allow α or n1 and n2 to increase. In general, given any two
of the test parameters α, β, or (n1, n2), we can attempt to determine the
third, although a compatible value need not exist. Actually, in most cases,
a fourth variable representing the distinction between the null hypothesis
and the alternate hypothesis, such as the value a above, enters the trade-off
balancing relations.

For the simplified two-tailed F -test with S = [r1, r2], the relations among
α, β, a, n1, n2, r1, and r2 are listed below.

P (Fn1−1,n2−1 ≤ r1) = α/2,

P (Fn1−1,n2−1 ≥ r2) = α/2,

P (r1 ≤ a2Fn1−1,n2−1 ≤ r2) = β.

For the alternate case with S = [1/r, r], the relations among α, β, a, n1, n2,
and r are:

P (1/r ≤ Fn1−1,n2−1 ≤ r) = 1− α
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P (1/r ≤ a2Fn1−1,n2−1 ≤ r) = β.

In order to reduce the number of unknowns, we may postulate that n1 and
n2 are related as n2 = θn1, where θ is a fixed constant.

The value of β is determined above by the distribution of a2Fn1−1,n2−1,
because for the F -test, the test statistic, assuming the alternate hypothesis
σ1/σ2 = a, is the random variable a2Fn1−1,n2−1 whose distribution function
is just the F -distribution with the argument scaled by 1/a2. In other cases,
the distribution of the alternate hypothesis test statistic THa

is more difficult
to obtain.

If we take the dichotomy σ1/σ2 = 1 vs. σ1/σ2 = a as the only two possibili-
ties, then a one-tailed F -test is most appropriate. Suppose a > 1. Then we
take S = [−∞, r2], and we have the relations: P (Fn1−1,n2−1 ≥ r2) = α, and
P (a2Fn1−1,n2−1 ≤ r2) = β. If a < 1, then with the null hypothesis σ1/σ2 = 1
and the alternate hypothesis σ1/σ2 = a, we should take S = [r1,∞]. Then,
P (Fn1−1,n2−1 ≤ r1) = a, and P (a2Fn1−1,n2−1 ≥ r1) = β.

Generally, hypothesis testing is most useful when a decision is to be made.
Instead, for example, suppose we are interested in the variance ratio (σ1/σ2)

2

between two normal populations for computational purposes. Then it is
preferable to use estimation techniques and confidence intervals to charac-
terize (σ1/σ2), rather than to use a hypothesis test whose only useful out-
come is “significantly implausible”, or “not significantly implausible” with
the significance level α (which is the same as the rejection error probability).

Let r1 satisfy P (Fn1−1,n2−1 ≤ r1) = α1, and let r2 satisfy P (Fn1−1,n2−1 ≤
r2) = 1 − α2, with α1 + α2 = α < 1. Then P ((σ1/σ2)

2r1 > R or R >
(σ1/σ2)

2r2) = α1 + α2, and P ((σ1/σ2)
2r1 < R and R < (σ1/σ2)

2r2) =
1 − α1 − α2 = P ((σ1/σ2)

2 < R/r1 and R/r2 < (σ1/σ2)
2) = P (R/r2 <

(σ1/σ2)
2 < R/r1).

Thus, [R/r2, R/r1] is a (1 − α)-confidence interval which is an interval-
valued random variable that contains the true value (σ1/σ2) with proba-
bility 1 − α. The length of this interval is minimized for n2 > 2 by choos-
ing α1 and α2, subject to α1 + α2 = α, such that G−1(α1)

2g(G−1(1 −
α2))−G−1(1− α2)

2g(G−1(α1)) = 0, where G(x) = P (Fn1−1,n2−1 ≤ x) and
where g(x) = G′(x), the probability density function of Fn1−1,n2−1. Then
α1 = rootz(G

−1(z)2g(G−1(1 + α − z)) − G−1(1 − α + z)2g(G−1(z)), and
α2 = α− α1, r1 = G−1(α1), and r2 = G−1(1− α2).
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Let v denote the observed sample value of R. Then [v/r2, v/r1] is a sample
(1− α)-confidence interval for (σ1/σ2)

2.

The MLABmathematical and statistical modeling system contains functions
for various statistical tests and also functions to compute associated power
and sample-size values. Let us consider an example focusing on the simplified
F -test discussed above. We are given the following data:

x1: -1.66, 0.46, 0.15, 0.52, 0.82, -0.58, -0.44, -0.53, 0.4, -1.1

x2: 3.02, 2.88, 0.98, 2.01, 3.06, 2.95, 3.4, 2.76, 3.92, 5.02, 4,

4.89, 2.64, 3.08

We may read this data into two vectors in MLAB and test whether the
two data sets x1 and x2 have equal variances by using the MLAB F -test
function QFT, which implements the [1/r, r] simplified F -test specified above.
The MLAB dialog to do this is exhibited below

*x1 = read(x1file); x2 = read(x2file);

*qft(x1,x2)

[F-test: are the variances v1 and v2 of 2 normal populations

plausibly equal?]

null hypothesis H0: v1/v2 = 1. Then v1/v2 is F-distributed with

(n1-1,n2-1) degrees of freedom. n1 & n2 are the sample sizes.

The sample value of v1/v2 = 0.577562, n1 = 10, n2 = 15

The probability P(F < 0.577562) = 0.205421

This means that a value of v1/v2 smaller than 0.577562 arises about

20.542096 percent of the time, given H0.

The probability P(F > 0.577562) = 0.794579

This means that a value of v1/v2 larger than 0.577562 arises about

79.457904 percent of the time, given H0.

The probability: 1-P(0.577562 < F < 1.731416) = 0.377689

This means that a value of v1/v2 more extreme than 0.577562 arises

about 37.768896 percent of the time, given H0.
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The α = .05 simplified F -test acceptance set of the form [1/r, r] can be
computed directly as follows. QFF is the name of the F -distribution function
in MLAB.

* n1 = nrows(x1)-1; n2 = nrows(x2)-1;

* fct rv(a) = root(z,.001,300,qff(1/z,n1,n2)+1-qff(z,n1,n2)-a)

* r = rv(.05)

* type 1/r,r

= .285471776

R = 3.50297326

Thus, a sample of F9,14 will lie in [.2855, 3.503] with probability .95.

The rejection error probability β can be plotted as a function of the ac-
ceptance error probability α for the sample sizes 10 and 15 by using the
builtin function QFB as follows. The function QFB (α, n, θ, e) returns the re-
jection error probability value β that corresponds to the sample sizes n and
θn, with the acceptance error probability α and the alternate hypothesis
variance ratio e.

* fct b(a) = qfb(a,10,3/2,e)

* for e = 1:3!10 do {draw points(b,.01:.4!100)}

* left title "rejection error (beta)"

* bottom title "acceptance error (alpha)"

* top title "beta vs. alpha curves for n1=10, n2=15, e=1:3!10"

* view
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Suppose we want to take n samples from each of two populations to be
used to test whether these populations have the variance ratio 1 versus the
variance ratio e, with acceptance error probability α = .05 and rejection
error β = .05. We can use the builtin function QFN to compute the sample
size n as a function of e as follows. The function QFN(α, β, θ, e) returns the
sample size n that corresponds to the variance ratio numerator sample size,
assuming the denominator sample size θn, and given that the acceptance
error probability is α, the rejection error probability is β, and the alternate
hypothesis variance ratio value is e.

* fct n(e) = qfn(.05,.05,1,e)

* draw points(n,.1:2.5!50)

* top title "sample size vs. variance ratio (with a=b=.05,t=1)"

* left title "sample size (n)"

* bottom title "variance ratio (e)"

* view
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