File: /General/MLAB-Text/Papers/hyptest.tex

## Hypothesis Testing

Gary D. Knott, Ph.D. Civilized Software, Inc. 12109 Heritage Park Circle Silver Spring, MD 20906 Tel. (301) 062-3711 Email: csi@civilized.com URL: www.civilized.com

Hypothesis testing is a major paradigm in statistics. It is closely linked with the computation of specified probability distribution functions. The basic notion is simple. We obtain a sample value v of a random variable T and we ask how probable it is that the sample value v would appear under a hypothesis H which makes the distribution of T well-defined. If the probability that, under the hypothesis H, v or a more extreme value of Tappears is small, we take this as evidence that the hypothesis H is unlikely to be true. In other words, we conclude that the test of the hypothesis Hhas not supported H.

The random variable T is called the *test statistic*. If many samples of various random variables are taken, they are often combined in some, possibly quite elaborate, manner to obtain a single sample of a derived test statistic T. In other cases, the test statistic may be a vector-valued random variable with a multivariate distribution function. For example, the test statistic associated with the famous *t*-test for testing the hypothesis that two normally-distributed random variables have the same mean is the difference between the means, or variance-adjusted means, of two sets of sample values corresponding to the two random variables being studied.

In order to compute the probability p that, under the hypothesis H, the sample value v or a more extreme value of T appears, we must be able to compute  $P(T \leq v \mid H)$ , which is the distribution of the test statistic T under the hypothesis H. We shall denote a random variable with this distribution by  $T_H$ . The hypothesis H must be such that the distribution function of  $T_H$  is known; this means that H is often of the form: "there is no difference between two sets of samples", since it is generally easier to deduce the distribution of  $T_H$  in this case. Thus, H is called the null hypothesis, meaning the "no difference" hypothesis.

Suppose that the distribution function of  $T_H$  is  $G(x) := P(T_H \leq x)$ . Also suppose that the density function dG(x)/dx is a unimodal "bell-shaped" curve, so that the extreme sample values of  $T_H$  lie toward  $+\infty$  and  $-\infty$ . Suppose the value v is given as a sample value of T. We may compute, for example,  $p = P(|T_H - E(T_H)| \geq |v - E(T_H)|)$ . This is a particular form of a so-called two-tailed test. p is the probability that the value v or a "more extreme" value occurs as a sample value of T, given H. If p is sufficiently small, we may reject the null hypothesis H as implausible in the face of the "evidence" v. We call such a probability p the *plausibility probability* of H, given v.

If the test statistic  $T_H$  were known to be non-negative and the density function dG(x)/dx were a function, such as the exponential density function, which decreases on  $[0, \infty)$ , then we might use a so-called one-tail test, where we compute the probability  $p = P(T_H \ge v)$ .

In general, we may specify a particular value  $\alpha$  as our criterion of "sufficiently small" and we may choose any subset S of the range of T such that  $P(T_H \notin S) = \alpha$ . Then if  $v \notin S$ , the null hypothesis H may be judged implausible. S is called the acceptance set, because, when  $v \in S$ , the null hypothesis His not rejected. The value  $\alpha = P(T_H \notin S)$  is the probability that we make a mistake if we reject H when  $v \notin S$ .

How should the acceptance set S be chosen? S should be chosen to minimize the chance of making the mistake of accepting H when H is, in fact, false. But, this can only be done rigorously with respect to an alternative hypothesis  $H_a$  such that the distribution of T given  $H_a$  is known. We must postulate that H and  $H_a$  are the only non-negligable possibilities. Sometimes,  $H_a = \neg H$  is a suitable alternate hypothesis, but more often, this is not suitable. Given  $H_a$ , the probability we falsely accept H when the alternate hypothesis  $H_a$  is true is  $P(T_{H_a} \in S) =: \beta$ , and we can choose S such that  $P(T_H \notin S) = \alpha$  while  $P(T_{H_a} \in S) = \beta$  is minimized.

The value  $P(T_{H_a} \notin S) = 1 - \beta$  is called the *power* of the test of the null hypothesis H versus the alternate hypothesis  $H_a$ . Choosing S to minimize  $\beta$  is the same as choosing S to maximize the power  $1 - \beta$ .

If we don't care about achieving the optimal power of the test with respect to a specific alternate hypothesis, but merely wish to compute the plausibility probability that v or a more extreme sample value of T would occur given H, in a fair manner, then we may proceed as follows.

Let  $m = median(T_H)$ ; thus,  $P(T_H \ge m) = 0.5$ . Now, if v < m, choose

 $r_1 = v$  and  $r_2$  as the value such that  $P(m < T_H < r_2) = P(v < T_H < m)$ , otherwise choose  $r_2 = v$  and choose  $r_1$  as the value such that  $P(r_1 < T_H < m) = P(m < T_H < v)$ . Then the two-tail plausibility probability  $\alpha = 1 - P(r_1 < T_H < r_2)$ . If v < m,  $\alpha = 2P(T_H \le v)$ , otherwise, if  $v \ge m$ ,  $\alpha = 2(1 - P(T_H \le v))$ .

If we know that the only values more extreme than v which we wish to consider as possible are those in the same tail of the density function that v lies in, then we may compute the one-tail plausibility probability as  $\alpha = P(T_H \leq v)$  if  $v \leq m$  and  $\alpha = P(T_H \geq v)$  if v > m.

Consider testing the null hypothesis H versus the alternate hypothesis  $H_a$  using a sample value v of the test random variable T with the acceptance set S. We have the following outcomes.

|       | $v \in S$                                                                                                                | $v\not\in S$                                                                                |
|-------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Η     | accept $H$<br>prob $1 - \alpha$<br>correct                                                                               | reject $H$<br>prob $\alpha$<br>rejection error                                              |
| $H_a$ | $\begin{array}{c} \operatorname{accept} H \\ \operatorname{prob} \beta \\ \operatorname{acceptance \ error} \end{array}$ | $\begin{array}{c} \text{reject } H \\ \text{prob } 1 - \beta \\ \text{correct} \end{array}$ |

| $\alpha$     | = | $P(T_H \notin S) = P(\text{we falsely reject } H \mid H)$         | (rejection error)  |
|--------------|---|-------------------------------------------------------------------|--------------------|
| $1 - \alpha$ | = | $P(T_H \in S) = P(\text{we correctly accept } H \mid H)$          | (acceptance power) |
| eta          | = | $P(T_{H_a} \in S) = P(\text{we falsely accept } H \mid H_a)$      | (acceptance error) |
| $1-\beta$    | = | $P(T_{H_a} \notin S) = P(\text{we correctly reject } H \mid H_a)$ | (rejection power)  |

Let Q be the sample-space of the test statistic T. We assumed above that either H(q) = 1 for all  $q \in Q$  or H(q) = 0 for all  $q \in Q$ , but this universal applicability of H or  $H_a$  may be relaxed. Suppose the hypothesis H and the alternate hypothesis  $H_a$  may each hold at different points of Q, so that H and  $H_a$  define corresponding complementary Bernouilli random variables on Q. Thus H(q) = 1 if H holds at the sample point  $q \in Q$  and H(q) = 0if H does not hold at the sample point q;  $H_a$  is defined on Q in the same manner. Let  $P(\{q \in Q \mid H(q) = 1\})$  be denoted by P(H) and let  $P(\{q \in Q \mid H_a(q) = 1\})$  be denoted by  $P(H_a)$ . P(H) is called the *incidence* probability of H and  $P(H_a)$  is called the *incidence* probability of  $H_a$ . As before, we postulate that  $P(H) = 1 - P(H_a)$ . Often P(H) is 0 or 1 as we assumed above, but it may be that 0 < P(H) < 1. In this latter case, our test of hypothesis can be taken as a test of whether H(q) = 1 or  $H_a(q) = 1$  for the particular sample point q at hand for which T(q) = v; the test statistic value v may be taken as evidence serving to increase or diminish the probability of H(q) = 1.

Note that we cannot compute the "posterior" probability that H(q) = 1 (and that  $H_a(q) = 0$ ), or conversely, *unless* we have the "prior" incidence probability of H being true in the sample-space Q. In particular, if we assume the underlying sample-space point q is chosen at random, then:

$$\begin{array}{rcl} P(H(q) = 1 & \& & T(q) \in S) & = & (1 - \alpha)P(H) \\ P(H(q) = 1 & \& & T(q) \notin S) & = & \alpha P(H) \\ P(H(q) = 0 & \& & T(q) \in S) & = & \beta(1 - P(H)) \\ P(H(q) = 0 & \& & T(q) \notin S) & = & (1 - \beta)(1 - P(H)) \end{array}$$

If we take the occurrence of H(q) = 0 as being a determination of a "positive state" of the random sample-space point q, then  $(1 - \alpha)P(H)$  is the probability of a *true negative* sample,  $\alpha P(H)$  is the probability of a *false positive* sample,  $\beta(1 - P(H))$  is the probability of a *false negative* sample, and  $(1 - \beta)(1 - P(H))$  is the probability of a *true positive* sample.

Now let us look at a particular case of an hypothesis test, namely the socalled F-test for equal variances of two normal populations.

Suppose  $X_{11}, X_{12}, \ldots, X_{1n_1}$  are independent identically-distributed random variables distributed as  $N(\mu_1, \sigma_1^2)$ , and  $X_{21}, X_{22}, \ldots, X_{2n_2}$  are independent identically-distributed random variables distributed as  $N(\mu_2, \sigma_2^2)$ . The corresponding sample-variance random variables are

$$S_1^2 = \sum_{j=1}^{n_1} (X_{ij} - \bar{X}_1)^2 / (n_1 - 1)$$
 and  $S_2^2 = \sum_{j=1}^{n_2} (X_{2j} - \bar{X}_2)^2 / (n_2 - 1),$ 

where  $\bar{X}_1 = \sum_{j=1}^{n_1} X_{1j}/n_1$  and  $\bar{X}_2 = \sum_{j=1}^{n_2} X_{2j}/n_2$ .

Let R denote the sample variance ratio  $S_1^2/S_2^2$ . Then  $R \sim (\sigma_1^2/\sigma_2^2)F_{n_1-1,n_2-1}$ , where  $F_{n_1-1,n_2-1}$  is a random variable having the F-distribution with  $(n_1 - 1, n_2 - 1)$  degrees of freedom.

We take the null hypothesis H to be  $\sigma_1/\sigma_2 = 1$ , so that, given H, the test statistic R is known to be distributed as  $F_{n_1-1,n_2-1}$ . In order to determine the acceptance region S with maximal power for  $\alpha$  fixed, we take

the alternate hypothesis  $H_a$  to be  $\sigma_1/\sigma_2 = a$ . Then S is the interval  $[r_1, r_2]$  where  $P(r_1/a^2 \leq F_{n_1-1,n_2-1} \leq r_2/a^2) = \beta$  is minimal, subject to  $1 - P(r_1 \leq F_{n_1-1,n_2-1} \leq r_2) = \alpha$ .

Let  $G(z) = P(F_{n_1-1,n_2-1} \leq z)$ , the distribution function of  $F_{n_1-1,n_2-1}$ , and let g(z) = G'(z), the probability density function of  $F_{n_1-1,n_2-1}$ . Then, we have  $r_1 = root_z[g(z)g(h(z)/a^2) - g(h(z))g(z/a^2)]$  and  $r_2 = h(r_1)$ , where  $h(z) = G^{-1}(1 - \alpha + G(z))$ .

A simplified, slightly less powerful, way to choose the acceptance region S is to take  $S = [r_1, r_2]$  where  $r_1$  is the value such that  $P(F_{n_1-1,n_2-1} \leq r_1) = \alpha/2$  and  $r_2$  is the value such that  $P(F_{n_1-1,n_2-1} \geq r_2) = \alpha/2$ . Another way to select the acceptance region is to take S = [1/r, r], where r is the value such that  $P(1/r \leq F_{n_1-1,n_2-1} \leq r) = 1 - \alpha$ . When  $n_1 = n_2$ , the acceptance region  $[r_1, r_2]$  and the acceptance region [1/r, r] are identical.

The foregoing clearly exemplifies the fact that there is a trade-off among the acceptance error probability  $\beta$ , the rejection error probability  $\alpha$ , and the sample sizes  $(n_1, n_2)$ . If we wish to have a smaller  $\alpha$ , then we must have a greater  $\beta$  or greater values of  $n_1$  and  $n_2$ . Similarly,  $\beta$  can only be reduced if we allow  $\alpha$  or  $n_1$  and  $n_2$  to increase. In general, given any two of the test parameters  $\alpha$ ,  $\beta$ , or  $(n_1, n_2)$ , we can attempt to determine the third, although a compatible value need not exist. Actually, in most cases, a fourth variable representing the distinction between the null hypothesis and the alternate hypothesis, such as the value a above, enters the trade-off balancing relations.

For the simplified two-tailed *F*-test with  $S = [r_1, r_2]$ , the relations among  $\alpha$ ,  $\beta$ , a,  $n_1$ ,  $n_2$ ,  $r_1$ , and  $r_2$  are listed below.

$$P(F_{n_1-1,n_2-1} \le r_1) = \alpha/2,$$
  

$$P(F_{n_1-1,n_2-1} \ge r_2) = \alpha/2,$$
  

$$P(r_1 \le a^2 F_{n_1-1,n_2-1} \le r_2) = \beta.$$

For the alternate case with S = [1/r, r], the relations among  $\alpha$ ,  $\beta$ , a,  $n_1$ ,  $n_2$ , and r are:

$$P(1/r \le F_{n_1-1,n_2-1} \le r) = 1 - \alpha$$

$$P(1/r \le a^2 F_{n_1 - 1, n_2 - 1} \le r) = \beta.$$

In order to reduce the number of unknowns, we may postulate that  $n_1$  and  $n_2$  are related as  $n_2 = \theta n_1$ , where  $\theta$  is a fixed constant.

The value of  $\beta$  is determined above by the distribution of  $a^2 F_{n_1-1,n_2-1}$ , because for the *F*-test, the test statistic, assuming the alternate hypothesis  $\sigma_1/\sigma_2 = a$ , is the random variable  $a^2 F_{n_1-1,n_2-1}$  whose distribution function is just the *F*-distribution with the argument scaled by  $1/a^2$ . In other cases, the distribution of the alternate hypothesis test statistic  $T_{H_a}$  is more difficult to obtain.

If we take the dichotomy  $\sigma_1/\sigma_2 = 1$  vs.  $\sigma_1/\sigma_2 = a$  as the *only* two possibilities, then a one-tailed *F*-test is most appropriate. Suppose a > 1. Then we take  $S = [-\infty, r_2]$ , and we have the relations:  $P(F_{n_1-1,n_2-1} \ge r_2) = \alpha$ , and  $P(a^2F_{n_1-1,n_2-1} \le r_2) = \beta$ . If a < 1, then with the null hypothesis  $\sigma_1/\sigma_2 = 1$  and the alternate hypothesis  $\sigma_1/\sigma_2 = a$ , we should take  $S = [r_1, \infty]$ . Then,  $P(F_{n_1-1,n_2-1} \le r_1) = a$ , and  $P(a^2F_{n_1-1,n_2-1} \ge r_1) = \beta$ .

Generally, hypothesis testing is most useful when a decision is to be made. Instead, for example, suppose we are interested in the variance ratio  $(\sigma_1/\sigma_2)^2$  between two normal populations for computational purposes. Then it is preferable to use estimation techniques and confidence intervals to characterize  $(\sigma_1/\sigma_2)$ , rather than to use a hypothesis test whose only useful outcome is "significantly implausible", or "not significantly implausible" with the significance level  $\alpha$  (which is the same as the rejection error probability).

Let  $r_1$  satisfy  $P(F_{n_1-1,n_2-1} \leq r_1) = \alpha_1$ , and let  $r_2$  satisfy  $P(F_{n_1-1,n_2-1} \leq r_2) = 1 - \alpha_2$ , with  $\alpha_1 + \alpha_2 = \alpha < 1$ . Then  $P((\sigma_1/\sigma_2)^2 r_1 > R \text{ or } R > (\sigma_1/\sigma_2)^2 r_2) = \alpha_1 + \alpha_2$ , and  $P((\sigma_1/\sigma_2)^2 r_1 < R \text{ and } R < (\sigma_1/\sigma_2)^2 r_2) = 1 - \alpha_1 - \alpha_2 = P((\sigma_1/\sigma_2)^2 < R/r_1 \text{ and } R/r_2 < (\sigma_1/\sigma_2)^2) = P(R/r_2 < (\sigma_1/\sigma_2)^2 < R/r_1).$ 

Thus,  $[R/r_2, R/r_1]$  is a  $(1 - \alpha)$ -confidence interval which is an intervalvalued random variable that contains the true value  $(\sigma_1/\sigma_2)$  with probability  $1 - \alpha$ . The length of this interval is minimized for  $n_2 > 2$  by choosing  $\alpha_1$  and  $\alpha_2$ , subject to  $\alpha_1 + \alpha_2 = \alpha$ , such that  $G^{-1}(\alpha_1)^2 g(G^{-1}(1 - \alpha_2)) - G^{-1}(1 - \alpha_2)^2 g(G^{-1}(\alpha_1)) = 0$ , where  $G(x) = P(F_{n_1-1,n_2-1} \leq x)$  and where g(x) = G'(x), the probability density function of  $F_{n_1-1,n_2-1}$ . Then  $\alpha_1 = root_z(G^{-1}(z)^2 g(G^{-1}(1 + \alpha - z)) - G^{-1}(1 - \alpha + z)^2 g(G^{-1}(z))$ , and  $\alpha_2 = \alpha - \alpha_1, r_1 = G^{-1}(\alpha_1)$ , and  $r_2 = G^{-1}(1 - \alpha_2)$ . Let v denote the observed sample value of R. Then  $[v/r_2, v/r_1]$  is a sample  $(1 - \alpha)$ -confidence interval for  $(\sigma_1/\sigma_2)^2$ .

The MLAB mathematical and statistical modeling system contains functions for various statistical tests and also functions to compute associated power and sample-size values. Let us consider an example focusing on the simplified F-test discussed above. We are given the following data:

x1: -1.66, 0.46, 0.15, 0.52, 0.82, -0.58, -0.44, -0.53, 0.4, -1.1
x2: 3.02, 2.88, 0.98, 2.01, 3.06, 2.95, 3.4, 2.76, 3.92, 5.02, 4, 4.89, 2.64, 3.08

We may read this data into two vectors in MLAB and test whether the two data sets  $x_1$  and  $x_2$  have equal variances by using the MLAB *F*-test function QFT, which implements the [1/r, r] simplified *F*-test specified above. The MLAB dialog to do this is exhibited below

```
*x1 = read(x1file); x2 = read(x2file);
*qft(x1,x2)
```

```
[F-test: are the variances v1 and v2 of 2 normal populations plausibly equal?]
```

```
null hypothesis H0: v1/v2 = 1. Then v1/v2 is F-distributed with (n1-1,n2-1) degrees of freedom. n1 & n2 are the sample sizes.
The sample value of v1/v2 = 0.577562, n1 = 10, n2 = 15
```

```
The probability P(F < 0.577562) = 0.205421
This means that a value of v1/v2 smaller than 0.577562 arises about 20.542096 percent of the time, given H0.
```

```
The probability P(F > 0.577562) = 0.794579
This means that a value of v1/v2 larger than 0.577562 arises about 79.457904 percent of the time, given H0.
```

```
The probability: 1-P(0.577562 < F < 1.731416) = 0.377689
This means that a value of v1/v2 more extreme than 0.577562 arises about 37.768896 percent of the time, given H0.
```

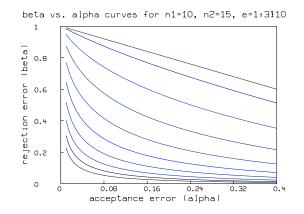
The  $\alpha = .05$  simplified *F*-test acceptance set of the form [1/r, r] can be computed directly as follows. QFF is the name of the *F*-distribution function in MLAB.

\* n1 = nrows(x1)-1; n2 = nrows(x2)-1; \* fct rv(a) = root(z,.001,300,qff(1/z,n1,n2)+1-qff(z,n1,n2)-a) \* r = rv(.05) \* type 1/r,r = .285471776 R = 3.50297326

Thus, a sample of  $F_{9,14}$  will lie in [.2855, 3.503] with probability .95.

The rejection error probability  $\beta$  can be plotted as a function of the acceptance error probability  $\alpha$  for the sample sizes 10 and 15 by using the builtin function QFB as follows. The function QFB ( $\alpha, n, \theta, e$ ) returns the rejection error probability value  $\beta$  that corresponds to the sample sizes n and  $\theta n$ , with the acceptance error probability  $\alpha$  and the alternate hypothesis variance ratio e.

```
* fct b(a) = qfb(a,10,3/2,e)
* for e = 1:3!10 do {draw points(b,.01:.4!100)}
* left title "rejection error (beta)"
* bottom title "acceptance error (alpha)"
* top title "beta vs. alpha curves for n1=10, n2=15, e=1:3!10"
* view
```



Suppose we want to take n samples from each of two populations to be used to test whether these populations have the variance ratio 1 versus the variance ratio e, with acceptance error probability  $\alpha = .05$  and rejection error  $\beta = .05$ . We can use the builtin function QFN to compute the sample size n as a function of e as follows. The function QFN( $\alpha, \beta, \theta, e$ ) returns the sample size n that corresponds to the variance ratio numerator sample size, assuming the denominator sample size  $\theta n$ , and given that the acceptance error probability is  $\alpha$ , the rejection error probability is  $\beta$ , and the alternate hypothesis variance ratio value is e.

```
* fct n(e) = qfn(.05,.05,1,e)
* draw points(n,.1:2.5!50)
* top title "sample size vs. variance ratio (with a=b=.05,t=1)"
* left title "sample size (n)"
* bottom title "variance ratio (e)"
* view
```

