
An MLAB Example: A Missing Data Imputation Procedure

Zhiping You, Ph.D.
Civilized Software Inc.

12109 Heritage Park Circle

Silver Spring, MD 20906

Tel: 301-962-3711

Email: csi@civilized.com

URL: www.civilized.com

The general problem of handling missing data in the presence of observed
covariates arises in many situations. For example, data on the incubation
period of theHIV virus in AIDS patients are often censored. One procedure
for handling this missing data has been proposed recently by Gang Chen
and Grace Yang [1]. An example of this procedure is given here using the
mathematical and statistical modeling software package MLAB.

Suppose we have m+n HIV -positive individuals. For n of these individuals,
we know both the amount of time that they have incubated the AIDS virus
and their current sero-index value (T4-cell count). Thus we have the data
(y1, t1), . . . , (yn, tn) where ti is the incubation time and yi is the sero-index
value for the ith individual. For the remaining m individuals, we know their
current sero-index values z1, . . . , zm, but we do not know the associated
incubation times s1, . . . , sm; these times are left-censored.

Our goal is to estimate the missing data values s1, . . . , sm associated with
the covariate values z1, . . . , zm. The procedure we use is based on resampling
and has utility in a wide range of circumstances.

Let t1, . . . , tn and s1, . . . , sm be samples of the random variables T1, . . . , Tn

and S1, . . . , Sm. Let y1, . . . , yn and z1, . . . , zm be samples of the random
variables Y1, . . . , Yn and Z1, . . . , Zm. Note that, generally, Ti and Yi are
correlated, as are Sj and Zj , in some unknown manner.

We want to estimate values s1, . . . , sm so that si will be a plausible and
useful sample of Si. (The notions of plausible and useful are somewhat
dependent upon how the data is to be used.)

In this example, we will always choose si from {t1, . . . , tn}, so no interpola-
tion is involved. Also note we could use partial information on si, such as
si > hi by merely taking si = hi whenever the generated value turns-out to
be less than hi.

The basic idea is: for any given zi, we want to choose the corresponding

1

value si from {t1, . . . , tn} according to the probability P (Si = tj | zi, (y, t)).
We will use the following formula for this conditional probability:

P (Si = tj | zi, (y, t)) =
K((zi − yj)/aj)

∑n
k=1

K((zi − yk)/ak)

where K is a suitable kernel function and a1, a2, . . . , an are kernel-width
parameters. Often K is the tent function, i.e. K(x) = if |x| > 1 then 0
else 1 − abs(x). Another useful choice is the Epanechnikov kernel function
K(x) = 0.75 ·max(1− x2, 0)

Note that P (Si = tj | zi, (y, t)) only depends on the values t1, . . . , tn through
the index j.

Let pij := P (Si = tj | zi, (y, t)), and let qij :=
∑j

k=1
pik, We can partition the

unit interval [0, 1] into the intervals [0, qi1), [qi1, qi2), . . . , [qi,n−1, qin] where
qin = 1. We now generate a uniform random number v in (0, 1) and see
which subinterval, [qi,j−1, qij), v falls into, and then choose si to be tj .

These choices for s1, . . . , sm “repair” the original data and thus solve our
problem. Here is an example of this procedure given as an MLAB do-file.
Note we use varying kernel-widths which are functions of the spacing of the
y-observations.

/* read-in the Y, T, Z and S1 observed values */

y = read(yfile);

t = read(tfile);

z = read(zfile);

s1 = read(sfile); /* we will see how well we predict these values */

n = nrows(y);

m = nrows(z);

/* compute the varying kernel-width vector av */

v = sort(y &’ t); t = v col 2; y = v col 1;

yd = y - rotate(y,1); yd[1] = yd[2];

av = 2*mmean(yd,floor(n/10)) *’ mstddev(t,floor(n/8))

fct maxf(a,b) = if (a > b) then a else b

fct k(x) = if abs(x) > 1 then 0 else 1 - abs(x)

/* now, impute s[1:m] */

2

for i = m:1 do {\

zv = z[i]; \

mav = maxf on (av &’ minv(abs on (zv-y))); \

p = k on (zv-y)/’mav; /* generate conditional probabilities p */ \

p = psum(p) &’ (1:n); r = ran(0,0,p[n]); \

s[i] = t[ceiling(lookup(p,r))]; /*select s[i] according to p*/ \

}

/* now s[1:m] holds the imputed values associated with z[1:m] */

draw y &’ t lt none pt hbar ptsize .002 color green; /* fully specified data */

draw z &’ s1 lt none pt vbar ptsize .01 color red; /* missing data */

view

delete w

draw y &’ t lt none pt hbar ptsize .01 color green; /* fully specified data */

draw z &’ s lt none pt xpt ptsize .01 color blue; /* imputed data */

view

Here are some examples showing the application of this procedure for im-
puting missing data.

3

Model function f(x) = sqrt(x − POISRAN(0,10)). Left: vbar for original
data, hbar for missing data. Right: vbar for original data, cross for imputed
data.

4

Model function x(t) = t2 + 0.1 · NORMRAN(0), y(t) = cos (t) + 0.3 ·
NORMRAN(0) Left: vbar for original data, hbar for missing data. Right:
vbar for original data, cross for imputed data.

Here is an example of data without error.

Model function f(x) = −(log x − log b)/b where b = 0.02. Left: vbar for
original data, hbar for missing data. Right: vbar for original data, cross for
imputed data.

Here is an example based on a non-single-valued function where the con-
ditional distribution of Si | {zi, (y, t)} becomes increasingly bi-modal. In
this case the kernel-width estimation method used above fails. The sec-
ond pair of the following pictures show some results for modified choices of
kernel-widths.

5

Model function f(x) = 15 · arccos(x − 0.1 · NORMRAN(0)). Left: vbar for
original data, hbar for missing data. Right: vbar for original data, cross for
imputed data. Kernel-widths depend on moving standard deviations of the
data.

6

Model function f(x) = 15 · arccos(x − 0.1 · NORMRAN(0)). Kernel-widths
do not depend on the standard deviation of the data. Left: kernel-widths =
5 times moving means. Right: kernel-widths = moving means.

Note that we can produce imputed data values for missing data in an indexed
time-series by taking y and z to be the integers 1, 2, . . . ,m + n, where z
specifies those integer times at which data was not recorded.

The noise in the imputed data, viewed as a stochastic process, is dependent
upon the widths used in the kernel function K and upon the known values
{t1, . . . , tn} from which the imputed values are drawn. Often we would
like the noise in the imputed data to be similar to the noise seen in the
complete observed data. In the limiting case, where the data points are
drawn without error from the graph of a smooth single-valued function,
imputed values should be obtained by means of some suitable interpolation
scheme, IS, such that IS(zi) produces a value for Si by interpolating with a
smooth function specified by the complete data points (y1, t1), . . . , (yn, tn).
In general, we can define a smoothing interpolation function specified by
the complete data points as the result of some weighted-average procedure.
One such choice is to compute IS(zi) = E(Si | zi, (y, t)), based on our kernel
estimate of the conditional distribution for Si.

In general, we could then choose an imputed data value for Si as αC(zi)+(1−
α) IS(zi) where C(zi) denotes the Chen-Yang procedure applied to select an
imputed value associated with the covariate value zi. The mixing parameter
α can be chosen as a function of the noise percieved in the complete observed
data; when no noise is present, α = 0, and when no trend is apparent, α = 1.

An example of this mixing computation for the first data set given above is

7

shown below where α = .5.

Model function f(x) = −(log x − log b)/b where b = 0.02. Left: vbar for
original data, hbar for missing data. Right: vbar for original data, cross for
imputed data.

[1] A conditional bootstrap procedure for reconstruction of incubation period
of aids. Mathematical Biosciences V117 p253-269

8

