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Suppose we have “shelf-life” data for a group of n items. These items
might be automobiles, or laser printer toner cartridges, or vials of vaccine,
or entry-slots for admission to a course. In the case of a physical item which
is to be replaced as it is “consumed”, we are interested in forecasting the
nature and rate of consumption, and in estimating a suitable replacement
schedule. This is an important component of planning and managing the
supply-logistics for the items of interest.

Suppose, that for most items, we have the age of the item when it was
“consumed”, i.e. removed from our group of items; this age is the “shelf-
life” of that item; generally this age is called the survival time of the item.
However, let us also suppose we may have censoring present; that is, for
some consumed items, we do not have the exact survival time, i.e. the
exact age at consumption, but only an age for the item such that at some
unknown time after this age, the item was consumed. In this case, the actual
survival time has been “censored”, i.e. hidden from our view. This kind
of complication might arise when, for example, incomplete records are kept,
or when dates of consumption are not recorded consistently, but periodic
inventory data is available.

Our data thus consists of pairs of values (y1, e1), (y2, e2), . . . , (yn, en)
where each ei is either 0 or 1. When ei = 1, yi is the survival time until the
consumption of item i, counting from the study starting point, and when
ei = 0, yi is the censoring time for item i, indicating that item i was lost to
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follow-up with an unknown consumption time sometime after yi time-units
from the study starting point. The value ei is called the result-code for item
i.

Suppose the items in the group being studied have survival times, X1,
X2, .. . .Xn, which are independent identically-distributed random variables,
a realization of which is, except for censoring, given by our data. Let F (t)
be the common distribution function of X1, . . . , Xn. We wish to estimate
the survival function S(t) = P (Xi > t) = 1− F (t).

Associated with each Xi, we postulate a censoring-time random variable,
Ci. The random variables C1, . . . , Cn are assumed to be independent and
identically-distributed, with the distribution function G(t) = P (Ci ≤ t).
For any realization, (X̃i, C̃i) where X̃i is a sample of Xi and C̃i is a sample
of Ci, if X̃i ≤ C̃i, we have yi = X̃i, and ei = 1, while when X̃i > C̃i, we have
yi = C̃I and ei = 0. Thus, the value yi is a sample of min(Xi, Ci).

If we assume a specific formula for the censoring-time distribution func-
tion G(t), then we can estimate S(t) by (1 −H(t))/(1 − G(t)) where H(t)
is the empirical cumulative distribution function of the data-values y1, . . . ,
yn. It is appropriate to adjust this estimate to be monotonically-decreasing
and to smooth it to obtain the final estimate. For example, suppose the
censoring-time distribution is uniform on the interval [0, 4]; then, given the
column vector Y listed below, where Yi holds the observed survival time
yi, we can estimate the survival function S in MLAB with the function SE
given below, and then monotonize, smooth, and graph it. The actual result-
code vector, E, associated with this data is listed below together with Y for
later reference, even though E is not needed to be used in the parametric
estimating function SE.

* TYPE Y&’E

MATRIX :

1.635686 0

.3113416 0

.4963642 1

1.131409 0

2.221448 0

1.668752 1

2.785097 0
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.3379156 0

.4495545 1

3.020983 1

.3994093 0

.9359379 1

.9697097 0

.6193121 0

.1234482 0

.8931070 1

.2233199 1

.8303535 0

3.926499 0

2.012626 1

.3871494 1

.9381460 1

1.210837 1

1.704919 0

1.006140 1

1.998524 1

.3763392 0

1.184550 0

.7832847 1

.9971150 0

.0452861 0

2.145687 1

.8396369 1

1.319498 0

3.288359 1

.7552886 1

1.017174 0

.8238844 1

.5893285 1

.2916714 0

3.266290 0

2.215458 1

.5546782 0

.1355474 1

.1247086 0

.9045237 1

.4080161 1
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1.188316 1

1.243582 1

1.043640 1

* L = 4

* H = CDF(Y)

* FUNCTION SE(T)=IF T>=L THEN 0 ELSE (1-LOOKUP(h,t))/(1-T/L)

* DRAW SMOOTHSPLINE(MONOT(POINTS(SE,0:L:.1), -1), 0:L!140)

* top title "Survival function estimate via (1-cdf(y))/(1-G)"

* VIEW

We can avoid assuming a specific censoring-time distribution by using
the asymptotically-unbiased Kaplan-Meier product-limit estimator function,
Ŝ as the estimator function for the survival function S. This can be com-
puted in MLAB using the KMSURV function and graphed using the STEPGRAPH
function.

For example, given the data vector, Y , listed above, together with the
associated result-code vector, E, we can produce a graph of our estimated
survival curve S̃ as shown below. The tic-marks show the points where
censored observations occur.

* DELETE W
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* D = Y&’E

* D = SORT(SORT(D,2,-1),1)

* H1 = KMSURV(D)

* H = STEPGRAPH(H1 COL 1:2)

* R = (0 &’ 1) & H & (H[NROWS(H),1] &’ 0)

* DRAW R, COLOR RED

* Y1 = COMPRESS(D,2,1) COL 1

* FCT F(X) = LOOKUP(H,X)

* H2 = POINTS(F,Y1)

* DRAW H2 LINE NONE, PT VBAR, PTSIZE .015, COLOR GREEN

* WINDOW 0 TO 4, 0 TO 1

* TOP TITLE "Kaplan-Meier curve (tick marks: censor times)"

* VIEW

We may postulate a specific form for the distribution of the Xi random
variables. For example, if the survival time distribution function is a Weibull
distribution with group-specific parameters, a and b, then the survival curve
is given by SW (t) = exp(−(t/a)b).

Now, we may estimate the parameters a and b using MLAB to fit the
model function SW (t) to a matrix of points lying on the Kaplan-Meier es-
timated survival curve. This is demonstrated for the matrix H1 of points
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on the estimated survival curve obtained above. Greenwood’s variance ap-
proximation for Ŝ computed by KMSURV() in H1 col 3 is used to compute
appropriate weights for the curve-fit.

* FUNCTION SW(T)=EXP(-((IF T=0 THEN .000001 ELSE T)/A)^B)

* A = 1;B = 1; H1[1,3] = 1

* FIT(A,B), SW TO H1 COL 1:2 WITH WEIGHT 1/(H1 COL 3)

final parameter values

value error dependency parameter

1.837800012 0.05250877741 0.3849266596 A

1.451240067 0.05755968774 0.3849266596 B

4 iterations

CONVERGED

best weighted sum of squares = 8.691990e+00

weighted root mean square error = 5.673848e-01

weighted deviation fraction = 1.869069e-02

R squared = 9.756895e-01

* DRAW POINTS(SW,0:4:.05)

* bottom title "Fit of Weibull distribution to Kaplan-Meier curve"

* view

Sometimes we may wish to compare the survival curves of several dis-
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similar groups of items, to determine, for example, which of several distinct
marketing strategies is superior. This can be done by comparing the esti-
mated survival curves directly with an appropriate statistical test (such as
the Mantel-Haensel test, MHT) provided by MLAB.

It may be of interest to compute the expected survival time of an item
that has already survived k time-units, i.e. has not been consumed by time
k. This is just M(k) :=

∫

∞

k tq(t|k) dt, where q(t|k) is the conditional density
function, d[P (X1 ≥ t|X1 ≥ k)]/dt. But given the survial time distribution
function F and the corresponding density function f(t) = dF (t)/dt, we can
compute q(t|k) = if t < k then 0 else f(t)/a, where

a =

∫

∞

k
f(s) ds = 1− F (k) = S(k).

Note q(t|0) = 0 and q(t|t) is just the hazard function f(t)/S(t).

The expected additional survival time function M(k) can be easily com-
puted and graphed in MLAB. One use for the function M(k) is to estimate
lifetimes for items with censored survival times. By thus “completing” a
data set, we obtain uncensored data which is amenable to a variety of oth-
erwise inapplicable statistical procedures.

Now we may suppose we have a survival function s(t), possibly obtained
by curve-fitting observed survival data, that describes the survival time char-
acteristics of the items of interest. Thus, we assume we have the survival
function s, where s(t) is the fraction of items which survive at least to time
t. Suppose that we wish to replace these items on a regular schedule so
as to maintain the constant level of a0 items available. It is reasonable to
assume that each newly-introduced replacement batch of items follows the
same survival behavior as the original items. We wish to compute the re-
placement schedule function. Note the replacement function can be used for
budget projection purposes.

Here we shall look at the discrete formulation of the problem where
time is measured in discrete increments as an integer value of say, hours,
days or weeks. Set s0 = 1 and in general let si be the fraction of items
which survive for at least i weeks. Let a0 be the initial number of items at
time 0, and let ai denote the number of items available at the beginning of
week i. Then the number of these items available at the start of week k is
a0sk + a1sk−1 + · · ·+ aks0. Since we wish to maintain the constant level of
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a0 items at each week, we equate a0 and a0sk + a1sk−1 + · · ·+ aks0. From
this we get the following recursion equation for ak, 0 ≤ k.

ak = (a0 −
k−1
∑

j=1

ajsk−j)/s0

with a0 and s0, s1, . . . , sk given.

This represents the solution vector of the following lower-triangular Toeplitz
system.
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The MLAB function DECONV may be used to compute the solution to
this linear system.

For example, here is the replacement schedule function computed by
using DECONV based on the best-fitting Weibull survival curve for the data
above. Note the first point indicates we obtain the entire initial group of
items at once (100 percent). Note also that the replacement schedule curve
rapidly converges to a nearly-constant replacement amount per week.
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In practice, we should re-estimate our survival curve and replacement
schedule curve from time to time, so that changes in consumption do not
invalidate the resupply process.
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