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This example demonstrates MLAB’s differential equation-solving facilities,
the use of MLAB’s Fourier transform operations, and MLAB graphics in
the context of the classic problem of analyzing an LRC circuit. A circuit
containing a coil with an inductance of L henries, a resistor with a resis-
tance of R ohms, and a capacitor with a capacitance of C farads in series is
traditionally called an LRC circuit. Consider the LRC circuit shown below
which also contains a voltage source component which exhibits a voltage
drop of −f(t) volts at time t measured clockwise across the voltage source
component. (This picture was constructed using MLAB.)

When the voltage source component is switched into the circuit at time 0,
a current will begin to flow. Let I(t) be the current flowing in the circuit at
time t, measured in amperes.

By defining what a flowing current consists of, the direction the current
flows may be specified arbitrarily, since one direction is the direction of the
actual flow of electrons from “hole” to “hole”, and then there is a virtual
flow of “holes” from electron to electron in the other direction. We shall
take a positive amount of charge (measured in coulombs) to be a deficit
of electrons, and we shall take a negative amount of charge (measured in
coulombs) to be an excess of electrons.
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We shall take a positive current (measured in amperes) to be a flow of posi-
tive charge, i.e., “holes”, in the established direction of flow, or equivalently,
a flow of electrons in the opposite direction, and a negative current (mea-
sured in amperes) to be a flow of electrons, i.e., a negative amount of charge,
in the established direction of flow, or equivalently, a flow of “holes”, i.e., a
positive amount of charge, in the opposite direction.

We take the voltage source terminal adjacent to the inductor coil in our
circuit diagram to be the positive terminal, and the other voltage source
terminal adjacent to the capacitor in our circuit diagram to be the negative
terminal.

When we have a positive voltage drop, measured as the potential difference
between the positive terminal of the voltage source and the negative terminal
of the voltage source, the direction of positive current flow is from the pos-
itive terminal to the negative terminal of the voltage source, i.e., clockwise
in our circuit as drawn. (This is the opposite of the potential difference we
shall use later on.) In this case, positive charge (i.e., an amount of “holes”)
flows from this positive terminal of the voltage source component to first
enter the inductor coil, that is, clockwise. The current in our circuit at time
t, I(t), will be positive when positive charge is flowing clockwise, and I(t)
will be negative when positive charge is flowing counterclockwise.

Let Q(t) be the charge-difference on the capacitor at time t, measured in
coulombs. This charge-difference is just the difference between the charges
on the first capacitor plate encountered going in the clockwise direction from
the positive terminal of the voltage source and on the second capacitor plate
encountered going in this direction. The charge is identical throughout the
branch of our circuit from the positive terminal of the voltage source to
the first capacitor plate, and the charge is separately identical throughout
the branch of our circuit from the second capacitor plate to the negative
terminal of the voltage source.

We have dQ(t)/dt = I(t).

The voltage drop across the resistor at time t is given by Ohm’s law as
R · I(t).

The voltage drop across the capacitor at time t is Q(t)/C.

The voltage drop across the coil at time t is L(dI(t)/dt).

And, as mentioned above, the voltage drop across the voltage source com-
ponent is −f(t) at time t.

For each voltage drop across a circuit component, we (conceptually) mea-
sure the voltage relative to “ground”, v1, just before the circuit component
appears in the circuit going in the clockwise direction – i.e., the direction
of positive current flow, and we measure the voltage relative to “ground”,
v2, just after the circuit component terminates in the circuit going in the
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clockwise direction, and we take the voltage drop to be v1 − v2. For the
voltage source, the voltage drop measured going from the negative terminal
to the positive terminal in a clockwise direction in our circuit diagram as
drawn is a negative value when our voltage source is a battery with positive
and negative terminals oriented as discussed above.

Note if positive current is flowing counterclockwise in our circuit as drawn,
our voltage drops for passive circuit components will be negative, and for
active circuit components will be positive.

Finally, by Kirchhoff’s first law, the sum of the voltage drops across each of
the circuit components is 0. Thus, we have

L
dI(t)

dt
+

Q(t)

C
+RI(t)− f(t) = 0 and

dQ(t)

dt
= I(t), or

L
d2Q(t)

dt2
+

Q(t)

C
+R

dQ(t)

dt
− f(t) = 0 and

dQ(t)

dt
= I(t), or

L
d2I(t)

dt2
+R

dI(t)

dt
+

I(t)

C
− df(t)

dt
= 0.

Take L = 1 henry, C = 1 farad, and R = .5 ohms. (Actually, 1 farad is
far too large a capacitance to be feasible; for a practical circuit, all these
values should be scaled so that we have a capacitance in microfarads. Let
us consider the situation where f(t) = 3, i.e., our voltage source is a 3-volt
battery with its positive terminal appearing just counterclockwise from the
induction coil and its negative terminal appearing just clockwise from the
capacitor in our circuit diagram. In this case the voltage drop across the
battery from negative to positive terminal is v1 − v2 = −3 volts where v1
is the voltage due to the difference of charge relative to ground at the neg-
ative terminal and v2 is the voltage due to the difference of charge relative
to ground at the positive terminal. To obtain a correct non-zero potential
difference, these measurements of v1 and v2 to ground must be taken when
the battery has chemically transported current flowing through it. A “float-
ing” battery has no measurable potential difference computed by separate
measurements between ground and its two terminals since its potential in
this “floating” case is the chemical potential represented by the reactions in
the battery being held at equilibrium; there is no appreciable charge excess
or deficit at the battery terminals.

Suppose further that there are two switches isolating this battery from our
(open) circuit. At time 0 both switches are simultaneously thrown and
current can flow. (Actually, from the just prior remarks, for a battery, only
one switch is required.) The differential equations describing this circuit are:

L
dI(t)

dt
+

Q(t)

C
+RI(t)− f(t) = 0 and

dQ(t)

dt
= I(t)
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with f(t) = 3, I(0) = 0 and Q(0) = 0.

The graphs of I and Q for 0 ≤ t ≤ 20 are shown below. The current graph
is a solid line, and the charge-difference graph is a dashed line.

The above graph is produced in MLAB with the following commands.

/* Define the differential equations governing current flow */

fct i’t(t)=(f(t)-r*i -q/c)/l

fct q’t(t)=i

fct f(t) = 3

l = 1; c =1; r =.5

/* Provide initial conditions for current flow */

init i(0) = 0

init q(0) = 0

/* Set time-vector */

tv = 0:20!200

/* Solve the differential equations governing current flow.

We will have:

m col 1 = t, m col 2 = I, m col 3 = i’t, m col 4 = q, m col 5 = q’t */

m = integrate(i’t,q’t,tv)

/* draw the current flow vs time and charge vs time */

draw m col (1,2) /* I */

draw m col (1,4) color green line dashed /* Q */

left title "Current(amps) & Charge(coulombs)"
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bottom title "time (seconds)"

top title "LRC circuit with 3-volt battery"

view

The steady-state value of I is 0 amperes and the steady-state value of Q is 3
coulombs countering the +3 volt battery. Thus when the capacitor reaches
full charge, where the potential difference between the positive terminal of
the battery and the first plate of the capacitor connected to this positive
terminal is 0 and the potential difference between the negative terminal of
the battery and the second plate of the capacitor connected to this negative
terminal is also 0, the capacitor now acts as an open switch. The charge
difference in the capacitor is 3 coulombs in this steady state because the
units of amperes, ohms, volts, and coulombs are defined such that a force of
1 volt drives 1 ampere of current across a resister of 1 ohm and 1 coulomb
is the amount of charge carried by a 1 ampere current in 1 second. An
accumulation of 1 coulomb of charge on a capacitor plate in excess of the
charge on the other capacitor plate corresponds to a voltage difference of
1 volt. Indeed, relative to a neutral ground, we have 1.5 volts of positive
charge in the circuit branch between the positive terminal of the battery
and the first plate of the capacitor, and −1.5 volts of positive charge in the
circuit branch between the second plate of the capacitor and the negative
terminal of the battery.

We have a voltage of 3 volts driving a current across a resistor of .5 ohms,
so we might expect a maximum current of 6 amperes, diminished by the
accumulation of charge on the capacitor, and oscillating due to the opposi-
tion of the induction coil. Indeed, we see a maximum current of about 2.2
amperes is obtained. When a charge-difference of 3 coulombs settles in the
capacitor, the current in our circuit becomes zero.

Note the equations
d2I(t)

dt2
=

(

df(t)

dt
−R

dI(t)

dt
− I(t)

C

)

/L and
dQ(t)

dt
= I(t)

with I(0) = 0, Q(0) = 0, and
dI(0)

dt
=

(

f(0)−RI(0)− Q(0)

C

)

/L =

f(0)/L. are equivalent to the equations above with exactly the same so-
lutions.

When the “driving force” f(t) is defined as the “square pulse” f(t) = if t <
2 then 3 else 0 then we have

L
dI(t)

dt
+

Q(t)

C
+RI(t)− f(t) = 0 and

dQ(t)

dt
= I(t),

with f(t) = if t < 2 then 3 else 0, I(0) = 0, and Q(0) = 0.

The graphs of I and Q for 0 ≤ t ≤ 20 with this driving force function are
shown below. The current graph is a solid line, and the charge-difference
graph is a dashed line.
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Again the current and charge-difference in the circuit decays to a steady
state, but in this case the current approaches 0 amperes, and the capacitor
charge-difference approaches 0 coulombs. The initial energy input in the
first 2 seconds is converted to heat by the resistor.

When the “driving force” f(t) is an AC voltage-source defined as f(t) =
sin(ω0t) where ω0 = 1/

√
LC, we are inputting an alternating voltage source

oscillating at the angular resonant angular frequency of our circuit. (Recall
w0 is called the angular frequency of the period-(2π/w0) function sin(w0t);
w0 is measured in radians per time-unit; w0/(2π) is the frequency of the
period-(2π/w0) function sin(w0t) measured in cycles per time-unit; when
the time unit is seconds, the frequency is measured in hertz.)

We have

L
dI(t)

dt
+

Q(t)

C
+RI(t)− f(t) = 0 and

dQ(t)

dt
= I(t),

with f(t) = sin(t/
√
LC), I(0) = 0, and Q(0) = 0.

The graphs of I and Q for 0 ≤ t ≤ 40 with this driving force function are
shown below. The current graph is a solid line, and the charge-difference
graph is a dashed line.
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In this case, the current and charge-difference in the circuit both rise to enter
a steady-state oscillation. As the resistance R is reduced, these steady-state
oscillations have greater and greater amplitudes. For example, for R = .1,
we have

In practice, as R becomes increasingly small, the increasing current will
“burn-out” the capacitor, stopping the current.

When the inductor in our circuit has L = .02 henries and we return to the
case where we have a 3 volt battery DC voltage source, we have

.02
dI(t)

dt
+

Q(t)

C
+RI(t)− f(t) = 0 and

dQ(t)

dt
= I(t),

with f(t) = 3, I(0) = 0, and Q(0) = 0.

The graphs of I and Q for 0 ≤ t ≤ 20 are shown below. The current graph
is a solid line, and the charge-difference graph is a dashed line.
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Note here the current initially rises rapidly to nearly 6 amperes, and then
the current and charge-difference in the circuit decays to steady state where
the current approaches 0, and the capacitor charge-difference approaches 3
coulombs. With negligible inductance, there is completely-damped oscilla-
tion.

When we completely remove the inductor coil from our circuit, we have
L = 0, and the equations defining the current and capacitor charge-difference
in our circuit become:

Q(t)

C
+RI(t)− f(t) = 0 and

dQ(t)

dt
= I(t), or

R
dQ(t)

dt
+

Q(t)

C
− f(t) = 0 and I(t) =

dQ(t)

dt
,

with f(t) = 3 and Q(0) = 0.

The graphs of I and Q for 0 ≤ t ≤ 10 are shown below.
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This time there is instantaneous current rise to 6 amperes. (This is not really
possible; to be more realistic, we should define the voltage source to have a
rapid rise from 0 to 3 volts when it is switched in to more closely approximate
the truth.) Again the steady-state current is 0 amperes and the steady-state
capacitor charge-difference is 3 coulombs, and with no inductance, there is
no oscillation. (Of course no circuit has 0 inductance, and no circuit has 0
resistence either.)

When the inductor in our circuit has L = 1 henry and the capacitance is 1
farad, but we have no resistor, we have

L
dI(t)

dt
+

Q(t)

C
− f(t) = 0 and

dQ(t)

dt
= I(t),

with f(t) = 3, I(0) = 0, and Q(0) = 0.

The current I and charge-difference Q is shown below. With no resistance,
we have no damping, no energy is lost, and our circuit has a pure sine-wave
current and capacitor charge-difference out-of-phase by π/2 radians. The
oscillation is due to the opposition of the 1 henry induction coil.

When, in addition to no resistor, there is no inductor coil, we have

Q(t) = Cf(t) and I(t) = C
df(t)

dt
with f(t) = 3.

With C = 1 farad, and R = .5 ohms, the current and capacitor charge-
difference in our pure capacitor circuit are shown below.

9



In this case, our model exhibits a flaw present for all our models; we have a
charge difference of 3 coulombs instantly appearing in the capacitor and 0
current when f(0) 6= 0, whereas the finite speed-of-light (and charge) makes
this impossible. We are instantaneously in steady state. Again, however, in
reality no circuit has zero resistence, so this singularity does not practically
arise.

When we “reduce” the capacitor in our circuit to “nothing” to remove the ca-
pacitor in our circuit, the charge-differenceQ across the capacitor necessarily
goes to zero as we imagine the capacitor plates shrinking and approaching
one-another to “morph” into a tiny segment of wire. And the capacitance
constant diminishes also, but not as fast as the charge-difference Q; thus the
voltage drop term Q(t)/C is zero in the limit.

The quantity Q(t) has no meaning in a circuit with no capacitor, but there is
still a charge being moved as a current flows in the circuit. Since 1 coulomb
of charge is the amount of positive charge moved by a 1 ampere current in 1
second, we may define the amount of charge in our circuit at time t (which is
identical at every point in the circuit and positive when there is a non-zero

current) as the value Qa(t) :=

∫

t≤τ≤t+1

|I(τ)|dτ . More properly, we should

define Qa(t) := lim
ε→0

1

ε

∫

t≤τ≤t+ε

|I(τ)|dτ . This means the “amount of charge”

being moved in our circuit at time t is proportional, with the proportionality
constant 1, to the absolute value of the current in our circuit at time t!

With no capacitor, we have the following model.

L
dI(t)

dt
− f(t)−RI(t) = 0 with I(0) =0, and Qa(t) =

∫

t≤τ≤t+1
|I(τ)|dτ .

Note the graph of Qa shown below tracks I just as it should.
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When we impose an oscillating voltage source, f(t) = sin(2t), we have the
resulting graph of Qa shown below tracking |I| just as it should. (If the
resonant frequency of our circuit and/or the frequency of our voltage source
were smaller, we would need to integrate |I| over a smaller time interval and
scale by the reciprocal of the length of the interval of integration to have Qa

computed to track |I|.)

Our model and the solution graph is:

L
dI(t)

dt
− f(t)−RI(t) = 0 and Qa(t) =

∫

t≤τ≤t+1

|I(τ)|dτ

with f(t) = sin(2t) and I(0) = 0.

Now let us consider a more dynamic example. Take the initial conditions
to be I(0) = 0 and dI(0)/dt = 0, and define f(t) = exp(−(t mod 1)). Fix
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L = 1, C = 1, and R = .5. Now we may solve the differential equation
defining the current flow function I(t) and produce a graph of this function
as shown below.

*function i’’t(t)=(f’t(t)-r*i’t -i/c)/l

*initial i(0) = 0

*initial i’t(0) = 0

*function f(t)=exp(-mod(t,1))

*l=1; c=1; r=.5

*m = integrate(i’t,i’’t,0:25!200)

*type odestr

odestr = t i’t i’t’t i i’t

*draw m col (1,4)

*view

The value of the string variable ODESTR tells us what functions are nu-
merically tabulated in the successive columns of M . The graph of the rate-
of-change of the current function I ′t(t) can also be plotted from the data in
M .

*delete w

*draw m col 1:2

*view
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We can display the phase diagram graph for I(t) by plotting I ′t(t) vs. I(t)
as follows

*delete w

*draw m col (4,2)

*view

We may “zoom-in” to see the neighborhood of the limit cycle more clearly
as follows.

*WINDOW -.75 TO -.5, -.1 TO .1

*VIEW

13



We can use the particular MLAB Fourier transform operator realdft to
compute the amplitude and phase-shift spectra of the current function I(t)
tabulated in M COL (1,4).

*d=realdft(m col(1,4))

*delete w

*draw d col 1:2

*frame 0 to 1, 0 to .5

*top title "Amplitude Spectrum" size .2 inches

*w1=w

*draw d col(1,3)

*frame 0 to 1, .5 to 1

*top title "Phase-Shift Spectrum" size .2 inches

*view

Ignoring the large DC value at frequency zero, we see that the maximum am-
plitude occurs at about .2Hertz; this is the resonant frequency of the circuit.
To see the amplitude spectrum at higher “resolution”, we should subtract
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the DC-value from our signal I(t) and compute the amplitude spectrum of
this shifted signal whose mean value is now zero.

The Fourier transform of I(t) contains the information to construct I(t) as a
periodic function via its Fourier series. If the Fourier series is truncated, the
resulting sum is a filtered form of I(t) omitting the high-frequency compo-
nents corresponding to the truncated terms. Below we show a graph of the
Fourier series of I(t) truncated to 7 terms. Note that Gibbs’ phenomenon
is exhibited, showing non-uniform convergence to the mid-point of the dis-
continuities occuring at the points between successive periods of I(t).

*fct s(t)=sum(i,1,n, d(i,2)*cos(2*pi*d(i,1)*t + d(i,3)) )

*n=7

*q=points(s,0:25!120)

*delete w,w1

*draw m col 1:2 lt dotted

*draw q

*view

We can also use the MLAB Fourier transform operator to compute the
amplitude and phase-shift spectra of the current rate-of-change function
I ′t(t) tabulated in M COL (1,2). As above, this amplitude spectrum shows
the resonant frequency of the circuit to be about .2Hertz. The peak at 1
Hertz corresponds to the frequency of oscillation of the forcing function f(t).

*d=realdft(m col 1:2)

*delete w,w1

*draw d col 1:2

*frame 0 to 1, 0 to .5

*top title "Amplitude Spectrum" size .2 inches

*w1=w

*draw d col(1,3)

*frame 0 to 1, .5 to 1
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*top title "Phase-Shift Spectrum" size .2 inches

*view

Just as before, the Fourier transform of I ′t(t) contains the information to
construct I ′t(t) via its Fourier series. If the Fourier series is truncated,
the resulting sum is a filtered form of I ′t(t) omitting the high-frequency
components corresponding to the truncated terms. Below we show a graph
of the Fourier series of I ′t(t) truncated to 7 terms, superimposed on a graph
of I ′t(t) plotted as a dotted line.

*fct s(t)=sum(i,1,n, d(i,2)*cos(2*pi*d(i,1)*t + d(i,3)) )

*n=7

*q=points(s,0:25!120)

*delete w,w1

*draw m col 1:2 lt dotted

*draw q

*view
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