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Introduction

The study of how a ligand material, such as a hormone or antibody, binds
to one or more kinds of molecular complexes, called sites, is of fundamental
importance in biochemistry. Sites are often embedded in cell membranes,
and the binding serves to control the behavior of the cell itself. Typically we
are interested in the number of distinct kinds of sites and their frequency of
occurrence, and also the equilibrium constants for each ligand-site binding
reaction which indicates the absolute strength of each such binding reaction.

Quantitative analysis of hormone-receptor binding data can be performed
using appropriate software such as MLAB. MLAB is a computer program
whose name is an acronym for “modeling laboratory”; it is an interactive
system for mathematical modeling, originally developed at the National In-
stitutes of Health. MLAB can fit multiple non-linear models to data points
obtained from standard direct-binding or competitive displacement assays.
Typical assays involve measuring the competition between radiolabelled and
cold ligand in detergent-solubilized membrane preparations or on whole cells.
Affinity constants and limit values of binding protein concentrations for sin-
gle or multiple sites can be computed by fitting saturation curves in MLAB.
Output can include Scatchard plots obtained by a suitable transformation.

There are two common categories of data. The first category results from
cold displacement of bound labeled ligand where the labelled ligand concen-
tration is held constant, the unlabelled ligand concentration is varied, and
the ligand binding is calculated as a function of the proportion of labelled
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to total ligand concentration. The second category is a straight saturation
analysis where the ligand binding is measured as a function of increasing
labelled ligand concentration. This latter category of data also arises in
fluorescent, ultraviolet, or electrical current studies. In general, MLAB can
handle any measurements modeled by linear or nonlinear saturation plots.
In practice, the basic data must be adjusted to account for an experimentally-

determined nonspecific binding level, specific activity of the labelled ligand,
the values for maximal binding of the cellular preparations, and defective
non-binding ligand. Replicate data points need not be averaged; they are
entered as individual data points which are each included in the curve fitting
process. In contrast, curve fitting based on dose averages may require care-
ful attention to weights to obtain a reasonable fit. Experimental researchers
rarely have a priori knowledge of the validity of individual data points, so
each point may be assigned equal weight corresponding to constant expected
error for all the observations. However, weighting functions or weight values
can be applied in MLAB to adjust for the presence of percentage-errors,
including the case of differing error percentages, such as may occur in mea-
surements of low levels of radioactivity. Because of the options for flexible
weights, MLAB addresses some of the problems inherent in the treatment
of experimental data where the number of samples is usually low and the
error can be relatively high.
Ligand binding studies can be used to analyze down and up regulation in

receptor number on the cell surface, where the binding capacity or receptor
concentration is the limiting x-intercept on the Scatchard plot. The MLAB
program is also useful in determining whether changes in binding caused by
different ligand agonists/antagonists can be attributed to reduced binding
affinity of the defined site/sites (seen as changes in the affinity constant),
or to the total loss of binding ability of a class of sites (seen as changes
in the binding capacity, and changes in the fit from an n + 1 to n site
model). Similarly, MLAB can aid in comparison studies of a single ligand
against different binding proteins that vary by site-directed mutagenesis, or
alternative splicing; such analyses can be useful in exploring mechanisms of
ligand/receptor interaction, including amino acid and charge requirements.
In addition, post-translational processing and folding of the nascent pro-

tein in the endoplasmic reticulum can be studied by estimating the number
of active receptor molecules that have reached the cell surface. These studies
are of current interest to biochemists, and an accurate method of quantifi-
cation is important since conclusions about the biological system, which in
turn determine the future direction of research, are based on the calculated
binding parameters.
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In addition to ligand binding analyses, MLAB can be used in many
other curve fitting applications such as kinetic modeling, Michaelis-Menten
enzyme kinetics, ultracentrifuge data analysis, and various statistical anal-
yses. Kinetic analysis involves fitting differential equation models, which is
an important core capability of MLAB.

The MLAB Mathematical Modeling System

MLAB has hundreds of useful functions, e.g., the discrete Fourier trans-
form function dft and the parametric spline interpolation function splinep.
One of the central components of the system is a curve fitting program which
will adjust the parameters of a model function to minimize the weighted sum
of the errors raised to a specified power. A repertoire of mathematical oper-
ators and functions, routines for solving differential equations, a collection
of routines for onscreen drawing and for hardcopy plotting, and mechanisms
for saving data between sessions provide a powerful and convenient environ-
ment for data manipulation, arithmetic calculations, and for building and
testing models.

The user communicates with MLAB by typing commands which are
executed at once or, more commonly, by providing a script to be executed.
Should the user have questions, typing HELP will put the on-line system
documentation at his disposal. The MLAB language is defined in the MLAB
reference manual.

One of MLAB’s main uses is to fit models to data via its curve-fitting
facilities. Curve-fitting is a useful analytical tool in many diverse disciplines.
The basic notion is easily described. Given data, say various points in the
plane (x1, y1), (x2, y2), .. . . , (xn, yn), and a function y = f(x) where f in-
volves some parameters, say a and b, as for example f(x) = axb+1, we may
wish to calculate values for the parameters a and b so that the function f
well-predicts the observed data, that is, so that f(xi) = yi for 1 ≤ i ≤ n.
In this case, we say we have fit the model f to the data by estimating the
parameters a and b. The end result is merely the values obtained for the ini-
tially unknown parameters. The same principles apply in higher dimensions
with arbitrarily many parameters. MLAB can simultaneously fit multiple
non-linear model functions, some or all of which may be implicit functions,
or may even be defined by a system of differential equations.

The curve-fitting and graphics display facilities of MLAB make it an
ideal tool for the estimation of equilibrium constants from ligand binding
data, which typically consist of observed amounts of ligand bound for various
specified amounts of ligand provided for binding.
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The Mathematics of Multiple Site Binding

Suppose we have a ligand, F , which binds to each of N independently-
acting sites, S1, S2, . . . , SN , which are present in the various concentrations
of S10 µM, S20 µM, . . . , and SN0 µM respectively. Each reaction F+Si ⇀↽ Bi

forms a bound complex Bi, and we shall define ki to be the associated
equilibrium constant. Let F0 denote the concentration in µM of ligand
present initially, and let F be the concentration in µM of free ligand at
equilibrium. Similarly, let Si denote the concentration in µM of free sites
of type i at equilibrium, and let Bi denote the concentration of bound site
i complex at equilibrium. Note we use the symbols F , Si, and Bi for the
numerical quantities in µM (micromolar) units of these materials, as well as
for the names of the materials themselves. Then:

ki = Bi/(FSi) and Bi + Si = Si0 for 1 ≤ i ≤ N, and

F = F0 −B1 −B2 − . . .−BN .

Note that ki is specified in liters/µMole units (which is 1/µM units), so
that 106ki is the corresponding equilibrium constant in liters/Mole units.
Sometimes ki is called the equilibrium association constant, in contrast to
the value 1/ki which is called the equilibrium dissociation constant. The
unit of measurment for material amounts of F , Si, Bi, Si0 and F0 may
be chosen to be any convenient unit convertable to µM units, such as cpm
(counts per minute.) In general, the equilibrium constant ki will be specified
in the reciprocal of that unit. (Of course, an amount of non-labeled material
measured in cpm units is a fiction to be interpreted as if it were labeled.)
The fraction of Si-sites occupied by ligand molecules is r := F/(F+1/ki).

When F ¿ 1/ki, the occupancy fraction r is small, and when F À 1/ki, r
is nearly 1; when F = 1/ki, fifty percent of the Si-sites are occupied.
Often there is a fictitious (N + 1)-st site, X, which binds F molecules,

which is introduced to describe the non-specific binding of F molecules with
weak affinity to many locations, other than the N specific sites of interest.
Let k0 be the equilibrium constant for the fictitious non-specific binding
reaction F +X ⇀↽ Y . Then we have:

ki = Bi/(FSi) and Bi + Si = Si0 for 1 ≤ i ≤ N,

k0 = Y/(FX) and Y +X = X0, and

F = F0 −B1 −B2 − . . .−BN − Y,

where Y is the concentration of non-specifically bound ligand, X0 is the con-
centration of the fictitious non-specific binding site, and X is the concentra-
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tion of the free fictitious site at equilibrium. Then Bi = kiSi0F/(1 + kiF )
for 1 ≤ i ≤ N , and Y = k0X0F/(1 + k0F ).
Now, to capture the notion of non-specific binding as a weak sticking

of F molecules almost everywhere, let k0 tend to zero and let X0 tend to
infinity such that k0X0 = c, where c is a fixed constant. Then Y → cF , and
we have:

Bi = kiSi0F/(1+kiF ) for 1 ≤ i ≤ N, Y = cF, and F = F0−B1−. . .−BN−Y.

Note that the mathematical form Bi = Si0F/(1/ki + F ) is difficult to
handle when ki approaches 0, so that the form given above is more conve-
nient.
Usually values of F (free ligand) and/or B1 +B2 + . . .+BN + Y (total

bound ligand) are measured for different values of F0 and we wish to use
this data, which is generally of the form (F0, F ) or (F0, B1+ . . .+BN + Y ),
to estimate k1, k2, . . . , kN , c, and, if not already known, S10, S20, . . . ,
SN0. When only the total bound concentration B1 + B2 + . . . + BN + Y
is measured, rather than B1, B2, . . . , BN and Y separately, only a few
sites can be distinguished by curve-fitting. In order to determine how many
kinds of sites appear to be present, we must try each of the 1-site, 2-site,
etc. models and choose among them on the basis of how well the data is fit.
Note if the equilibrium constants obtained for two species of sites are close,
then there are no grounds for considering them to be distinct species, based
on this analysis alone.
When we have supplied a known concentration of site-bearing protein,

we may assume our N sites are different locations on the protein. One useful
model to explore in this case is B1 = k1NS10F/(1 + k1F ) where S10 is the
known protein concentration. This model corresponds to the case where all
of the N sites have the same equilibrium constant k1. We can use this model
to estimate k1 and/or N via curve-fitting.
Often people use the modelB(F ) = k1S10F/(1+k1F )+· · ·+kNSN0F/(1+

kNF ) + cF and fit it to data points of the form (F,B) where F is the free
ligand concentration at equilibrium and B is the total bound ligand concen-
tration at equilibrium (measured with error), with one such point for each
experiment. The difficulty with this approach is that we must compute F as
F0−B so that there is correlated error in both the dependent and indepen-
dent values used to form the data points. Our approach uses data points of
the form (F0, B), and since F0 can generally be accurately determined, we
avoid the aforementioned difficulty of error in the independent variable.
It is possible to model the simultaneous use of several distinct types of

ligands having distinct binding-affinities interacting with multiple classes of
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sites. This can be done by a straightforward elaboration of the equations
used above. This general situation is described by equations due to H. A.
Feldman (Analytical Biochemistry, Vol. 48, pp. 317-338, 1972.) Although
we shall not provide an example here, this is an important situation to
be kept in mind. It is also possible to model the situation of cooperative
binding, where the equilibrium constant of a ligand-site binding reaction
varies according to the concentration of ligand bound to that or some other
sites in some manner. Again, models may be written and studied with
MLAB.

As an explicit example of the multiple-site binding model developed
above, the general two-site model with non-specific binding for a single lig-
and type can be defined in MLAB with the following dialog. Here and
hereafter, the text shown following the MLAB prompt asterisk is an MLAB
command statement entered by the user. (In practice, an MLAB do-file
would be used to permit repetitive use when desired.)

* FUNCTION B(F) = k1*S10*F/(1+k1*F) + k2*S20*F/(1+k2*F)

* FUNCTION F(F0) = ROOT(Z,0,F0,F0-B(Z)-Z*(1+c))

* FUNCTION Y(F0) = c*F(F0)

Here A(F0) = B1 + . . .+BN for N = 2.

These commands exemplify the MLAB FUNCTION statement, which is
used to define a function or differential equation. Note that arguments
of functions must be explicitly specified. Variables, such as k1 and k2,
which appear in the body of a function, but not in its argument list, are
called parameters. Parameters must be assigned values before an associated
function can be evaluated.

ROOT is an operator which is built-in in MLAB. ROOT(Z,A,B,E) is a
value between A and B which, when taken as the value of the dummy vari-
able, Z, makes the expression, E, which involves Z, equal to zero. Thus
ROOT(Z,A,B,E) is a solution of E(Z) = 0. The model given above, involv-
ing a so-called implicit function, deserves careful study; it is easily extendible
to more than two sites. The amount F of free-ligand at equilibrium as a
function of F0 satisfies F0 − F = B(F ) + c · F .

An Example

Suppose we have measured F in µM units as a function of F0 in µM
units, as follows:

6



F0 F

.58668 .036
1.1734 .096
2.3467 .385
2.9334 .61
4.1068 1.15
4.6934 1.46
5.8668 2.11
7.0402 2.73

and we have S10 = S20 = 1.7121µM. (If S10 and S20 were unknown, we
could include them as fitting parameters.)
Then, we can introduce the appropriate constraints (which should always

be used for this particular model), guess k1, k2, and c and then estimate
them, as follows.

* constraints q ={k1>=0,k2>=0,c>=0,S10>=0,S20>=0}

The CONSTRAINTS statement permits the user to specify successive linear
inequalities or equations involving the parameters (or potential parameters).
Now we may specify values for the parameters, guessing when necessary.

* k1 = 10; k2 = 1; c = 0; S10 = 1.7121; S20 = S10;

Here the ASSIGNMENT statement is exemplified. In this case all the above
assignments are assigning values to scalar variables, but the assignment
statement is used to assign values to matrices as well. This can be seen in
the next assignment statement which defines a matrix, D.

* D = Kread(8,2)

.58668 .036

1.1734 .096

2.3467 .385

2.9334 .61

4.1068 1.15

4.6934 1.46

5.8668 2.11

7.0402 2.73

The KREAD operator takes optional array size arguments; in this case
an 8 row by 2 column matrix is specified, and reads in numbers from the
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keyboard to construct an appropriately-dimensioned matrix as the result.
An analogous function is used to read numbers from a file, which is preferred
manner in practice. This matrix is then, in this case, assigned to D. Note
the entry of the numbers which follow. Now we may examine D by “typing
it out” using the TYPE statement.

* type D

D: 8 by 2 matrix

1: .58668 .36E1

2: 1.1734 .96E-1

3: 2.3467 .385

4: 2.9334 .61

5: 4.1068 1.15

6: 4.6934 1.46

7: 5.8668 2.11

8: 7.0402 2.73

We have established a model function, F , and entered data, D. We
expect that f(D[i, 1]) ≈ D[i, 2] would hold, if only the parameters k1,
k2, and c were set to their “correct” values. The following FIT state-
ment requests MLAB to estimate k1, k2, and c by assigning them val-
ues which minimize the sum-of-squares objective function S(k1,k2, c) =
∑8

i=1 (F (D[i, 1])−D[i, 2])
2.

* maxiter = 30; TOLSOS = .001

* fit(k1,k2,c), F to d, constraints q

final parameter values

value error dependency parameter

13.86352736 2.331373145 0.665073064 K1

0.5321372226 0.06602915638 0.9432600296 K2

0.5874015019 0.02229743988 0.9171690302 C

5 iterations

CONVERGED

best sum of squares = 9.78763e-04

root mean square error = 1.39912e-02

deviation fraction = 6.82654e-03

R squared = 9.99854e-01

no active constraints

The behavior of the fit statement depends upon the supplied constraints
q, as well as upon the MLAB control variables: maxiter, the maximum
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number of iterations and tolsos, the requested convergence factor. Many
multiple-site binding models are sensitive to the initial guesses used, and
care must be taken to obtain a physically-meaningful fit. Trial and error
fitting may be required to find the necessary guesses.
MLAB uses a carefully-tuned version of the Marquardt-Levenberg magnified-

diagonal algorithm which is, in turn, a form of the Gauss-Newton procedure
for minimizing a function which is in the form of a sum-of-squares. This
process estimates the value of the parameter vector b = (k1,k2, c)

′ by suc-
cessive approximations b(0), b(1), . . . , b(n), where b(0) is the vector of initial
guesses for k1, k2, and c, and b

(j+1) = b(j) + β(j), where

β(j) = (X ′V −1X + εG)−1X ′V −1(y − (f(x1; b
(j)), . . . , f(x8; b

(j)))′), with

Xst = ∂f(xs; b
(j))/∂bt and

Gst = if s = t then (X ′V −1X)st else 0 and

xs = D[s, 1] for 1 ≤ s ≤ 8, and

y = (D[1, 2], . . . , D[8, 2])′,

where V is the estimated covariance matrix of the observations. In our
example, V = I, the identity matrix. In general V is determined from
weight-values supplied by the user.
An iteration consists of computing b(j+1) from b(j). Note that this re-

quires the partial derivatives of the model function with respect to the pa-
rameters evaluated at b(j), since these values form the matrix X. In MLAB,
these derivatives are automatically computed symbolically and evaluated to
form X. The convenience thus obtained is considerable and the parameter
estimation process is provided with more accurate derivative values. For
example the derivative of F with respect to k1 can be explicitly displayed
in MLAB as follows.

* type F’k1

FUNCTION F’K1(F0) = EVAL(Z,ROOT(Z,0,F0,(F0-B(Z))-Z*(1+c)),

-B’K1(Z)/(B’F(Z)-(1+c)))

Indeed derivatives are full-fledged members of the class of functions and
can be used in graphics or curve-fitting in MLAB just as can any other
user-defined function.
A sub-iteration consists of computing b(j+1) with a particular value of ε

which specifies the amount of diagonal magnification. At each iteration, the
value ε starts at 10−9 and is increased until the corresponding value of b(j+1)
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results in a smaller sum-of-squares value, whereupon this vector is taken to
be the final b(j+1) iterate.

The parameter estimation process stops when the limit of the number
of iterations is reached or, more usually, when the decrease in the sum-of-
squares value between successive iterations is less than a specified fractional
amount determined by the user-specified convergence factor in TOLSOS. For
TOLSOS = .001, the sum-of-squares must change by less than .1 percent for
the curve-fitting process to stop based on this criterion.

When the estimation process does stop, the parameters are reset to their
computed estimates, and they and their estimated standard deviations are
typed out. Associated values called dependency values, which lie between
0 and 1, are also typed out. It suffices here to remark that large depen-
dency values above .99 usually indicate a non-unique solution; that is, other
parameter estimates exist which would provide a nearly equally-small sum-
of-squares.

MLAB also types-out the root-mean-square error which is the estimate
of the standard deviation in each observation, given that they are identically
distributed. This quantity should roughly equal the experimental error in
the data. There are, of course, many caveats and restrictions which must
hold to insure the validity of the supporting statistics provided.

The material typed out above shows that the vector of parameters (k1,k2, c)
has been estimated to be (13.8633 ± 2.3315, .532151 ± .0660296, .587396 ±
.0222973), with reasonably small dependency values, and with an RMS er-
ror of about .014, which should be comparable with the experimental error
in our data, D. The sum-of-squares was reduced from an initial value of
2.64314 to .000978763 at the final parameter values. The standard-errors
of the parameters are normal-theory estimates and are often unreliable, al-
though they are of suggestive value.

In order to visually see how our model with its parameters set to their
best-estimated values corresponds to the data, we may draw a graph of the
data points and the model function. Although we are drawing only the sim-
plest and most direct kind of picture here, it should be noted that MLAB
provides facilities for many types of point-symbols and types of lines, axes
with arbitrarily-placed numeric labels in various formats, titles in the form
of text strings in arbitrary sizes and various fonts with subscripts and su-
perscripts, color, and a number of other special features. It is quite possible
to prepare more or less elaborate publication-quality graphs with a modest
amount of effort. Indeed this is one of MLAB’s most-used facilities. The
desired graph can be constructed as follows.
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* draw D, linetype none,pointtype circle

* draw c2 = points(F,0:8:.2)

* VIEW

The first DRAW command above plots the data points, while the second
draw command constructs a curve called C2, which is a graph consisting of
solid straight-lines connecting the points which are the rows of the 2-column
matrix which is the value of the expression POINTS(F,0:8:.2). This matrix
has the values 0 through 8 in steps of .2 in its first column and corresponding
values of the function F evaluated at 0 through 8 in steps of .2 in the second
column. The POINTS operator is very useful for graphing functions. Both
these curves are drawn in the default MLAB 2D-window called W (since
no other window is specified) which has predefined labeled axes already
present. The picture finally appears when its display is requested with a view
statement and a plot can be obtained if desired using the PLOT statement.
Often a Scatchard graph of Bound/Free vs. Bound (i.e., B(F (F0))/F (F0)

vs. B(F (F0))) is desired. Although such a formulation should not be used for
curve-fitting due to the non-normal error introduced by computing Bound/Free,
it is quite straightforward to draw the data and model Scatchard plots as

11



follows. Note the current picture in W is saved and restored.

* SAVE W IN GW

* DELETE W

* FUNCTION R(X,Y)=IF Y=0 THEN (k1*s10+k2*s20) ELSE X/Y

* MF = F ON 0:8:.2

* M = B ON MF

* M = M&’(R ON M&’MF)

* DRAW M;

* MF = D COL 2

* M = (D COL 1)-(1+C)*MF

* M = M&’(R ON M&’MF)

* DRAW M, LINETYPE NONE, POINTTYPE "o"

* TOP TITLE "Bound/Free vs. Bound"

* VIEW

* DELETE W,MF,M

* USE GW

The ampersand-prime operator denotes column concatenation, while the
ON operator, as in F ON H, applies the function F to each row of the matrix
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H treated as an argument list for F and returns the column vector of result
values.

It is an enlightening exercise to fit the Scatchard model to the corre-
sponding transformed data and to then draw a graph of the original data
points and the function f using the parameter values obtained. An example
of this comparison is given in the following section.

If we know we have non-cooperative two-site specific binding, with our
given S10 and S20 values, together with non-specific binding with no degra-
dation or other chemical modification of our mixture (degradation could be
due to the presence of various enzymes for example), then this curve-fit of
the correct model gives us the best available estimates of k1, k2, and c.
But if the model is possibly not correct, we have a more difficult problem of
deciding what the correct model is. This often cannot be resolved without
further experimentation.

The non-specific binding constant, c, can be independently estimated by
adding a large amount of unlabeled ligand, L, which is distinguishable from
F , to a mixture of F and the site-bearing material. Then virtually all the
bound F which results will be non-specifically bound and taking this value
as Y yields c ≈ Y/(F0 − Y ). With a value of c known from one or more
such experiments, c can be fixed in subsequent curve-fitting, or alternatively
the data can be modified by using F − cF for F and fitting an appropriate
model with c = 0.

If we have no such independent estimate of c, and we are unsure if non-
specific binding is occurring, we may test the possibility that there is no
non-specific binding as follows.

* tolsos = .0002

* c = 0

* fit(k1,k2), F to d, constraints q

final parameter values

value error dependency parameter

10.42883512 881.9654883 0.9989885554 K1

10.87461407 712.3997932 0.9989885554 K2

27 iterations

CONVERGED

best sum of squares = 1.31885e+00

root mean square error = 4.68838e-01

deviation fraction = 2.57765e-01

R squared = 8.02989e-01

no active constraints
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LSQRPT is a sum of zero or more of the values 1, 2, 4, and 8. When LSQRPT
contains 1, the best sum of squares obtained at each iteration is typed-out.
When LSQRPT = 1, the fit command directs MLAB to type-out only the
final results. All intermediate reports are suppressed. It is also possible to
use LSQRPT = 0 which suppresses all output, but the parameters are reset as
usual. In any event, a matrix called COVP (the estimated covariance matrix
of the parameters) and a scalar called SOSQ (the final sum-of-squares value)
are created, replacing any previous data objects with these names. The user
may examine these values, or employ them in further calculations as desired.

We may examine our fit by redefining the curve C2.

* draw c2 = points(F,0:8:.2); view

This is not an adequate fit, as we could have predicted by noting the
large parameter standard deviations and the large RMS error. Although
the dependency values are not extremely close to one, we may consider
the possibility that our fit is bad because we fell into an unfortunate local
minimum. A crude way to study this possibility is to draw a contour map
of the sum-of-squares surface to see if several local minima are apparent.
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This is possible in this case, since we have fewer than three parameters, and
MLAB can be used to view the sum-of-squares surface as follows. Drawing
this contour map can be time-consuming (on a slow computer) due to the
large number of root calculations required.

* FUNCTION FH(F0,K1,K2)=ROOT(Z,0,F0,F0-(K1*S10*Z/(1+K1*Z) \

+K2*S20*Z/(1+K2*Z))-Z*(1+C))

* FUNCTION S(k1,k2)=SUM(I,1,8,(FH(D[I,1],k1,k2)-D[I,2])^2)

* M=contour(points(S,cross(0:20,0:20)),1.3:1.35:.005&1.4:1.8:.2&2:5)

* DELETE W

* DRAW M, LINETYPE VMARKER; VIEW

The CROSS operator expression above constructs a 441 by 2 matrix whose
rows are all the pairs (i, j) with 0 ≤ i, j ≤ 20. The CONTOUR operator
expression constructs a specially-coded two-column matrix which is suitable
for drawing with line-type VMARKER. Contour lines are formed for the surface
height values in the list 1.3:1.35:.005 & 1.4:1.8:.2 & 2:5 where &
denotes row concatenation. Evidently, our solution is unique.
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We may try a one-site model with S10 equal to 3.4242µM by using our
two-site model where both sites are identical as follows. If S10 were not
known, we could add S10 to the parameter list to be adjusted.

* S10 = S10+S20; k2 = 0;

* fit(k1,c), F to d, CONSTRAINTS Q

final parameter values

value error dependency parameter

2.325176617 0.2567377717 0.5948957102 K1

0.4642651058 0.03442515131 0.5948957102 C

15 iterations

CONVERGED

best sum of squares = 1.55348e-02

root mean square error = 5.08835e-02

deviation fraction = 2.31134e-02

R squared = 9.97679e-01

no active constraints

*delete w

*draw D, line none, pointtype circle

*draw points(f,0:8:.2); VIEW
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This fit is not as good as the fit obtained with the two-site model, and
we can probably reject it. We should have an estimate of the variance of the
data in order to test the goodness-of-fit. Even with curve-fitting evidence,
it is best if there is independent evidence of multiple sites. Also, of course,
a three or more site model, with or without non-specific binding may be the
correct model.
Thus, in general, given the correct model, curve-fitting is a powerful de-

vice for estimating parameters; but curve-fitting is not always a very good
way to distinguish the correct model from alternate impostor models. Usu-
ally we must resort to discriminating experiments.
MLAB can handle simultaneous curve-fitting, where several functions

are to be fit to corresponding sets of data points and where, moreover,
these several functions share some parameters in common. MLAB model
functions can be functions of more than one formal argument, so that data
points may lie in n-space for arbitrary n, but we do not provide an example
here. However we shall provide an example of simultaneous curve-fitting.
Suppose we not only have the data given above for 2-site binding, but

also are given the following observations of the concentrations Y of F -ligand
which is non-specifically bound, for various amounts of ligand provided ini-
tially, denoted by F0.
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F0 Y

1.1734 .3
2.5 .5
3 .3

3.98 .7
6.5 1.6

Then we may enter this data as the rows of a matrix N and estimate k1,
k2, and c based on all the available data.

* N=KREAD(5,2)

1.1734 .3

2.5 .5

3 .3

3.98 .7

6.5 1.6

In general, we should use weights which specify the relative accuracy of
each data point. For each data matrix, a vector of weight values may be given
as a clause in the FIT statement. The weight-value, gi, that corresponds to
an observation (xi, yi) should be 1/ var(yi). Of course, guesses or estimates
must generally suffice. The value 1/y2

i for yi corresponds approximately
to a constant percentage error in the observed value yi. Weight functions
are permitted in MLAB, and an often more accurate device is to use the
reciprocal of the square of the model function itself as the weighting function.
This results in an iterative reweighting process.
The use of weights permits data points of high reliability to exert greater

influence on the parameter estimates than data points of lesser reliability.
When simultaneous fitting is being done, weights have the additional func-
tion of compensating for differing units or magnitudes of the observations
from various data sets. Without weights, the curve-fitting process would
tend to favor one model component, fitting it at the expense of others, if the
deviations there were much larger than the others, even though this may be
an artifact of the use of different units.
MLAB includes an operator, EWT, which computes a vector of weight-

values for a given set of data points, M, by estimating the standard deviation
at each point by the difference between the data curve and a smoothed
form of it, which effectively assumes the error is due to white noise. These
standard-deviation estimates are, in turn, smoothed, and then used to form
reciprocal variance weight values. In our example, we shall use EWT to ob-
tain the necessary weight vectors, although this is not totally appropriate
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for chemical binding data, which is often taken in a range where the mea-
surement accuracy improves as the amount of bound ligand increases. Also,
EWT is unreliable for small numbers of data points. Nevertheless, we shall
proceed as follows.

* DW = EWT(D); DN = EWT(N)

* TYPE D&’DW,N&’DN

: a 8 by 3 matrix

1: 0.58668 0.036 340.092919

2: 1.1734 0.096 340.092919

3: 2.3467 0.385 271.140209

4: 2.9334 0.61 256.511957

5: 4.1068 1.15 193.017413

6: 4.6934 1.46 171.441311

7: 5.8668 2.11 93.14747

8: 7.0402 2.73 93.14747

a 5 by 3 matrix

1: 1.1734 0.3 159.445918

2: 2.5 0.5 159.445918

3: 3 0.3 156.341715

4: 3.98 0.7 134.665471

5: 6.5 1.6 134.665471

* fit (k1,k2,c), F to d with weight dw, Y to n with weight dn, CONSTRAINTS q

Begin iteration 1 bestsosq=5.86711e+01

Begin iteration 2 bestsosq=2.76531e+01

Begin iteration 3 bestsosq=2.69881e+01

final parameter values

value error dependency parameter

1.681292363 0.3984166729 0.6190759098 K1

1.905413519e-17 0.06987097833 0.6367292361 K2

0.6401358429 0.057666687 0.09280130233 C

3 iterations

CONVERGED

best sum of squares = 2.69879e+01

root mean square error = 1.64280e+00

deviation fraction = 6.88260e-02

lagrange multiplier[1] = -0

lagrange multiplier[2] = -73.23991748

lagrange multiplier[3] = -0
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* delete w

* draw d line none pt circle

* draw points(F,0:8:.2)

* draw n line NONE pointtype "+"

* draw points(Y,0:8:.2) linetype dashed

* VIEW

As mentioned above, MLAB also allows weights to be the reciprocals
or other functions of the actual squared deviations themselves. This device
is called curve-fitting with iterative reweighting and is invoked in MLAB
by specifying an appropriate weight function. Moreover MLAB employs an
iterative reweighting technique to allow the general form of a sum of pth
powers to be minimized, rather than just a sum-of-squares. This so-called
Lp-norm fitting is sometimes useful for p = 1 or 1.5 when the data is not
normally-distributed, and tends to contain some outliers. The value p is
specified as the value of the MLAB control variable fitnorm.

Practical Direct and Competitive Ligand Binding Analysis

Given a radioactively-labeled (“hot”) ligand material F, we wish to mix
and incubate varying amounts of hot ligand each with the same fixed amount
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of site material, and obtain a table of the amounts of bound ligand corre-
sponding to the total amounts of ligand added. This requires that we be
able to separate the bound ligand from the free ligand and then measure
the amount of bound ligand by the numbers of radioactive-decay events per
minute for each distinct experiment. The separation process must be quick
compared to the incubation time needed to approach equilibrium.
There is an alternate device which sometimes has an advantage in sim-

plicity over this direct method. Let us add a single fixed amount of hot lig-
and to the site material and then add varying amounts of unlabeled (“cold”)
ligand. The cold ligand is often an unlabeled form of F, but the cold lig-
and may be a reactant distinct from F . The cold ligand competes with the
hot ligand in binding to the sites, and the effect is that, as we add more
cold ligand, the observed concentration of bound hot ligand decreases. We
may sometimes be able to add an incremental amount of cold ligand to our
mixture, incubate and then separate and measure the amount of bound hot
ligand, and then remix and add the next incremental amount of cold ligand;
when this is possible, the variability due to differing concentrations of sites
and hot ligand is reduced. Since replicate experiments suffer from using
slightly-differing amounts of site material and of hot ligand, it is often bet-
ter to expend effort getting more points for a single sample of site material
than to run replicate experiments (except as a gross check on the experi-
mental process.) In any event, the results of replicate experiments need not
be averaged; the MLAB curve-fitting process will, in effect, give each point
equal weight as is appropriate. Note this approach uses a smaller amount
of hot-ligand than direct-binding studies generally require.
We have a further complication to deal with. Both the hot and cold

ligand materials usually bind weakly and non-specifically throughout our
mixture, in addition to specifically binding the site material. The amount
YH of such non-specifically bound hot ligand is generally taken to be pro-
portional to the total amount of hot ligand present less the amount bound,
i.e. YH = cFH for some constant c where FH denotes the concentration of
free hot ligand at equilibrium. Let AH denote the concentration of bound
hot ligand, both specifically and non-specifically, and let BH denote the con-
centration of specifically-bound hot ligand. The concentration of hot ligand
in all forms is LH = AH +FH . Then AH = BH +YH . If we add a very large
amount of cold ligand to our mixture, almost all the specific binding sites
will be occupied by cold ligand. The amount of observed bound hot ligand
AH may then taken to be the amount of non-specifically bound hot ligand
YH , whence c ≈ YH/FH = AH/(LH − AH). We can thus use our other
observed AH values and compute corresponding BH values by subtracting
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c(LH − AH) from the AH values, where c has been estimated as indicated
above. Alternatively, it is possible, and generally preferable, to curve-fit for
the unknown non-specific binding constant c, as is done below.

In any event, for each observation point, we know the constant Molar
concentration LH of hot ligand present, the concentration LC of cold ligand
present and the observed concentration AH = BH +YH of bound hot ligand
(with due regard for the volume of the mixture). Computing the concentra-
tion AH requires a computation based on the following parameters.

1. the molecular weights of hot and cold ligand (often these are taken to
be the same.)

2. the half-life of the radioactive-label material and the age of the hot
ligand being used, measured in days.

3. the counting efficiency of the radioactive decay detector device, mea-
sured as the ratio of observed counts per minute to the actual number
of decay-events per minute.

4. the counting time period (minutes) during which decay events are mon-
itored.

5. the background radioactivity (in counts per time-period) in the site
material and the cold ligand taken together.

6. the specific activity of the hot ligand measured as the expected number
of decays per minute per mole of hot ligand of age 0.

7. the total counts over the counting time period for the total amount of
hot ligand material.

8. the bindable fraction of the hot ligand defined as the fraction of the ra-
dioactive label material attached to non-inert ligand which is actually
capable of binding.

9. the volume (milliliters) of the mixture.

10. the mass amounts (nanograms) of the cold ligand and the hot ligand
in our mixture.

11. the observed counts during the counting time-period for the bound
ligand component.
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Let WH be the molecular weight of hot ligand.
Let WC be the molecular weight of cold ligand.
Let HL be the half-life in days of the label material.
Let AL be the age in days of the label material.
Let CE be the counting efficiency in (cpm/dpm) units.
Let CT be the counting time period in minutes.
Let BR be the background radioactivity in counts per time period.
Let SA be the specific activity of the hot ligand in dpm/mole.
Let TC be the total counts per time-period of the hot ligand material.
Let BD be the bindable fraction of hot ligand material.
Let V be the volume in milliliters.
Let MH be the mass in nanograms of the hot ligand material.
Let MC be the mass in nanograms of the cold ligand material.
Let AO be the observed counts per time-period for the bound ligand com-
ponent.

Then we have LH =MH/[WH · V · 106] Molar units (M) of hot ligand.
As a check, LH = (1/SA)[TC/(CT ·CE)] · 2

AL/HL · (103/V ). This equation
can alternately be used to determine any of the other parameters involved,
given LH in Molar units. In particular, if the observed value of TC is not
close to the predicted value from this equation, there is some difficulty in the
experimental parameters. The corrected value of LH we use in subsequent
calculations is then obtained by multiplying LH by the bindable fraction
factor BD. The concentration in Molar units of the bound hot ligand is
computed as AH = (1/SA)[(AO −BR)/(CT · CE)] · 2

AL/HL · (103/V ).
The concentration of cold ligand is LC = MC/[WC · V · 106] M. (If a

fraction of cold ligand is inert, the corresponding correction should be made
to LC .) A series of competition experiments consists of varying MC and
observing the differing values of AO (and potentially BR) that result. The
final outcome is a sequence of (LC ,LH ,AH) triples, where LC and AH vary,
and LH is generally fixed. For a series of direct-binding experiments, MC
is 0, and we vary MH directly. The result is a sequence of (LC ,LH ,AH)
triples where LC = 0 and LH and AH vary. In either case, it is important to
include observations at very high levels of total hot and cold ligand to insure
that we have made at least one observation near the saturation limit where
almost all of the sites are bound with ligand. The danger and consequences
of failing to do this are covered briefly by Michael Johnson and Susan Frasier
in “Analysis of Hormone Binding Data”, pp. 45-61 of Methods in Diabetes
Research Vol. 1 (eds. J. larner and S. Pohl), Wiley, NY 1984.
The error in AH can usually be mainly attributed to the error in AO,

23



which is, in turn, due to the random variation seen in counting radioactive
decay events over the counting time-period CT . In order to minimize this
error, CT should be as large as is practicable. Johnson and Fraiser (cited
above) suggest that counting times be adjusted for each observation so that
the number of counts seen, AO, is about the same value, say 3000, for
each observation. This practice has the benefit that the standard-error of
each measured AO-value is nearly the same, so weights need not be used in
fitting. The drawback to this practice is that the counting time can become
excessively large when only a small amount of hot ligand is bound. Note the
observed-counts value AO is a sample from a Poisson-distributed random
variable which we treat as a normally-distributed random variable for the
purpose of curve-fitting.

Let us consider a single-site material S. Suppose our mixture contains
a concentration of S0 M of this site material together with LC M of cold
ligand and LH M of hot ligand. Our goal is to estimate the equilibrium
constant KC of the reaction LC+S ⇀↽ BC . Let BC denote the concentration
of bound cold ligand at equilibrium and let FC denote the concentration
of free (unbound) cold ligand at equilibrium, just as BH and FH denote
these quantities for hot ligand. Suppose the reactions LH + S ⇀↽ BH and
LC +S ⇀↽ BC have the not-necessarily-equal equilibrium constants KH and
KC , so that KH = BH/(FHSF ) and KC = BC/(FCSF ), where SF denotes
the concentration of free sites at equilibrium. Also, BH + FH + YH = LH ,
BC + FC + YC = LC , and SF + BH + BC = S0. All concentrations are in
Molar units (M).

Our goal is to estimate KC , given the varying observed concentrations of
bound hot ligand associated with the sequence of cold ligand concentrations
used. This cannot be done without knowing KH , or alternately, the ratio
p := KH/KC . Thus KC = KH/p, and either KH or p, but not both, is to
be determined. Often we may assume p = 1.

A pre-computer-style Scatchard-plot analysis of non-competitive binding
data is often employed to estimate the equilibrium constant KC . Suppose
that KC = KH/p, where p is known, so estimating KH will produce an
estimate for KC . Now suppose LC = 0, so only hot ligand is present. Then
we have KH = BH/(FHSF ) and BH + SF = S0. Then BH = S0 −

1
KH
· BH

FH
,

or BH

FH

= −KH(BH − S0). This last relationship is a linear relation between
BH/FH and BH . If we graph BH/FH vs. BH for varying amounts of LH ,
we obtain a straight-line graph with slope −KH and x-axis intercept S0

and y-axis intercept KHS0. Note that BH/FH is a dimensionless quantity,
so we could compute BH and FH separately in any desired units (such as
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cpm), and obtain the same ratio when BH/FH is formed. This is the so-
called Scatchard plot commonly used when a more advanced analysis is not
available; the unknown parameters KH and S0 are estimated directly from
looking at a straight-line fit of the experimental points (BH ,BH/FH). Then
KC = KH/p. As LH increases, both BH and FH increase, but FH increases
faster; this is reflected in the fact that the Scatchard plot line has a negative
slope. If the plotted points do not approximately lie on a negatively-sloped
straight line, the one-site binding model that has been assumed is probably
incorrect. (What do you think about the example presented below?)

For a sequence of competitive binding experiments, the crucial point is
that when we have 100α % hot ligand and 100(1 − α) % cold ligand, then
both forms of ligand participate in every chemical state in this proportion
(modified by the equilibrium proportionality constant p.)

When p = 1, so that KC = KH , we then have BH/FH = −KH [BH +
BC−S0]. And BH = α(BH +BC) and BC = (1−α)(BH +BC), where α :=
LH/(LH+LC). Thus BC = ((1−α)/α)BH , so BH/FH = −KH [BH/α−S0],
analogous to the non-competitive binding case!

Because of the error introduced in both coordinates by using data of the
form (F , B), it is preferable to use the data (F0,B), where F0 = LC + LH

and B = AH/α = (BH+YH)/α = (BH+YH)F0/LH , and fit the model given
above for multiple-site binding with a single ligand where the independent
variable is the total concentration of (hot and cold) ligand supplied, and
the dependent variable is the concentration of (hot and cold) ligand bound
(specifically and non-specifically). When p 6= 1, using a variation of this
model for two distinct ligands is required.

Thus we may construct the data points (F0,B) where F0 = LC+LH and
B = AHF0/LH for each experimental data point (LC ,LH ,AH), and then fit
the function A to this data in order to estimate the parameters c, S10, K1,
(and S20, K2, if a two-site model is desired). When p 6= 1, we must use a
modified model and modified data.

A general do-file based on the MLAB statements given above can be
constructed which queries the user for the experimental parameters: HL,
AL, CE, CT , BR, SA, TC, BD, V ,MH and for the sequence of value-pairs
(MC,BO), and then fits the desired model, reports the estimated values of
c, S10, and K1(= KC), and graphs the corresponding saturation plot and
Scatchard plot for the data. A simplified example of such a do-file (called
liganal.do is shown below, together with an example of its use.

"liganal.do = competitive single site binding analysis"

echodo=0 /* echodo=0 inhibits screen and log-file output */
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reset

namesw=0

type "Specify the COLD ligand molecular weight"

wc=kread("wc=")

type "Specify the HOT ligand molecular weight"

wh=kread("wh=")

type "Specify the half-life in days of the HOT ligand label"

hl=kread("hl=")

type "Specify the age in days of the HOT ligand label"

al=kread("al=")

type "Specify the counting-efficiency (cpm/dpm) of the label"

ce=kread("ce=")

type "Specify the counting time-period in minutes"

ct=kread("ct=")

type "Specify the background radioactivity in cpp(counts per period)"

br=kread("br=")

type "Specify the specific activity of the HOT ligand(in dpm/mole)"

sa=kread("sa=")

type "Specify the total counts per period of HOT ligand(in cpp)"

tc=kread("tc=")

type "Specify the HOT ligand bindability fraction"

bd=kread("bd=")

type "Specify the Volume (in milliliters)"

v=kread("v=")

type "Specify the mass in ng of the HOT ligand

(or enter -1 to have the mass computed for you.)"

mh=kread("mh=")
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/*Compute the mass in ng of the HOT ligand! */

mhx=(v*wh*1e6)*(1e3/sa)*(tc/(ct*ce))*(2^(al/hl))/v

type "specified mh value (in ng):", mh

mh=mhx

type "computed mh (hot mass) value (in ng) based on tc:",mh

type "Specify the number of experimental observation points"

nb=kread("nb=")

type "type-in the sequence of "+strval(nb)+" data points"

type "as: ([COLD ligand mass in ng], [observed bound cpp]) pairs"

type "on successive lines"

namesw=1

d=kread(nb,2); d=sort(d)

/* 2 classes-of-sites binding model.

We use k2=0 and s20=0 for the 1-class-of-sites specialization*/

FCT A(F0)=G(F(F0))

FCT G(F)=B(F)+C*F

FCT B0(F0)=B(F(F0));

FCT B(F)=K1*S10*F/(1+K1*F)+K2*S20*F/(1+K2*F);

FCT F(F0)=ROOT(Z,0,F0,F0-B(Z)-Z*(1+C));

FCT Y(F0)=C*F(F0);

CONSTRAINTS CQ={K1>=0,K2>=0,C>=0,S10>=0,S20>=0};

lh=mh/(wh*v*1e6)

lhck=(tc/(ct*ce))*(1e3/sa)*(2^(al/hl))/v

namesw=0

type "Molar conc. of HOT ligand based on supplied molecular wt.",lh

type "Molar conc. of HOT ligand based on total cpp supplied",lhck

namesw=1

lh=lh*bd /* compensate for inert hot ligand */

fct m0(x)=if x>0 then x else 0

fct cconc(mc)=mc/(wc*v*1e6)

fct bconc(a0)=((a0-br)/(ct*ce))*(1e3/sa)*(2^(al/hl))/v

dm col 1 = cconc on (d col 1) /*total cold (M)*/

dm col 2= m0 on bconc on (d col 2) /*bound + non-spec. bound (M)*/
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/*type-out the raw and converted input data*/

type "D=input data [Cold Ligand (ng) | Hot counts]", d

type "DM=[Cold Ligand (M) | Hot Spec.+Non-Spec.bound(M)]",dm

/* compute da col 1= LH+LC, da col 2= AH/alpha */

da=lh+(dm col 1) /*total (hot+cold) */

alpha=lh/’da /* vector of scale-factors*/

da col 2=(dm col 2)/’alpha /* scaled bound+non-spec. bound */

/* compute guesses for K1 and S10 from the Scatchard fit.

estimate C from the largest cold ligand data point. */

i=maxrow(dm col 1);

c=m0(dm[i,2]/(lh-dm[i,2]))

fre=lh-(dm col 2) /*free hot (FH) in Molar units */

yns=c*fre /*non-spec. bound hot */

sd =m0 on ((Dm COL 2)-yns); /* spec. bound hot*/

sd2 = sd/’fre /*bound/free */

sd col 2=sd2

sd col 1 = (sd col 1)/’alpha /* spec. bound (all =H+C) */

sd=compress(sd);

type "directly-estimated non-spec. binding coef.", c

ltot=(da col 1)

ftot=((da col 1)-(da col 2))

ytot=yns/’alpha

btot = sd col 1

mmt=ltot&’btot&’ytot&’ftot

type "MMT=[L Total | B Total | Y Total | F Total]", mmt

mmh=mmt/’(alpha^^’4)

type "MMH=[L Hot | B Hot | Y Hot | F Hot]", mmh

mmcOA=mmt-mmh

type "MMC=[L Cold | B Cold | Y Cold | F Cold]", mmt

/*Remember BH/FH = -K1*BH/alpha +K1*S10 */

fct lin0(b)=-k1*b+k1s10 /* simple linear form */
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fct lin(b) = -k1*(b-s10)

k1=1; k1s10=lh

lsqrpt=0

fit(k1,k1s10), lin0 to sd

s10=k1s10/k1

fit(k1,s10),lin to sd

type "Scatchard model linear-regession fit estimates",k1,s10

ok1=k1; os10=s10

draw sd lt none pt circle color orange

draw points(lin,0:s10!4) lt dashed

top title "Scatchard plot"

title "[dashed=regression-fit line]" at (.5,.75) fract size .14 inches

title "[hashed=euclidean-fit line]" at (.5,.7) fract size .14 inches

/* compute k1 and s10 for the best euclidean-fitting line */

qb=mean(sd)

q=sd-(qb’)^^nrows(sd)

m=q’*q

z=eigen(m) row (1,3,5)

rno=if z[1,1]>z[1,2] then 2 else 3

v1=(z row rno)’

k1=-v1[2]/v1[1]

s10=(qb[2]-v1[2]*qb[1]/v1[1])/k1

type "Scatchard model euclidean-fit estimates;", k1,s10

draw points(lin,0:s10!50) pt nbar ptsize .01

unview;

ws=w; blank ws;

k2=0; s20=0;

/*define our weighting function (fixed-percentage error assumed) */

fct wvf(x)=1/x^p

p=2;

wv1=.00000001*(wvf on (da col 2));

lsqrpt=8

maxiter=90

FIT(K1,s10,C),A TO da with wt (wv1), CONSTRAINTS CQ;
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/* Draw the (full) relative saturation curve log-plot form ------------*/

FL = (da[1,1]*.9):((da[nrows(da),1])*1.1)!100;

am= POINTS(a,FL);

lda= (log on da col 1)&’((da col 2)/’(da col 1))

draw lda lt none pt circle ptsize .01

lam =(log on am col 1)&’ ((am col 2)/’(am col 1))

draw lam

nk1=k1; ns10=s10; k1=ok1; s10=os10

am = points(a,fl)

k1=nk1; s10=ns10

lam =(log on am col 1)&’ ((am col 2)/’(am col 1))

draw lam lt dashed

top title "Log-Percent Saturation Plot"

bottom title "log(TOTAL LIGAND)"

left title "(spec. bound)/(total)"

title "[dashed=regression-fit line]" at (.5,.8) fract size .15 inches

title "[solid=MLAB model-fit line]" at (.5,.75) fract size .15 inches

VIEW;

/*Now draw the Scatchard form of the data +fit-curves -------*/

w = ws; unblank w

draw points(lin,0:s10!4) color yellow

TOP TITLE "Scatchard Plot: Bound/Free vs. Bound" color green;

title "[solid=MLAB model-fit line]" at (.5,.8) fract size .14 inches

left title "(bound)/(free)"

bottom title "bound ligand"

lowy=minv(sd col 2); hiy=maxv(sd col 2)

window 0 to 2*s10, lowy to hiy adjust wnice

VIEW;

The MLAB log-file result of running the above do-file on some actual
experimental data is shown below.

MLAB Mathematical Modeling System, Revision: April 24, 1996

Copyright: Civilized Software, Inc. (301)652-4714, email: csi@civilized.com

Sat May 18 15:29:38 1996

’* ’ is the command prompt

30



* do liganal

Specify the COLD ligand molecular weight

wc= 1100

Specify the HOT ligand molecular weight

wh= 1130

Specify the half-life in days of the HOT ligand label

hl= 2

Specify the age in days of the HOT ligand label

al= 0

Specify the counting-efficiency (cpm/dpm) of the label

ce= .5

Specify the counting time-period in minutes

ct= 5

Specify the background radioactivity in cpp(counts per period)

br= 0

Specify the specific activity of the HOT ligand(in dpm/mole)

sa= 2.5086e18

Specify the total counts per period of HOT ligand(in cpp)

tc= 65789

Specify the HOT ligand bindability fraction

bd= 1

Specify the Volume (in milliliters)

v= .5

Specify the mass in ng of the HOT ligand

(or enter -1 to have the mass computed for you.)

mh= -1

specified mh value (in ng):

-1

computed mh (hot mass) value (in ng) based on tc:

1.18538739E-2

Specify the number of experimental observation points

nb= 10

type-in the sequence of 10 data points

as: ([COLD ligand mass in ng], [observed bound cpp]) pairs

on successive lines

Type in numbers for KREAD. End lines with <Enter>

0 8118

.05 7694
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.1 7480

.2 7080

.5 6360

1 6170

3 5397

10 5096

30 5096

1000 4714

Molar conc. of HOT ligand based on supplied molecular wt.

2.09803077E-11

Molar conc. of HOT ligand based on total cpp supplied

2.09803077E-11

D=input data [Cold Ligand (ng) | Hot counts]

D: a 10 by 2 matrix

1: 0 8118

2: 0.05 7694

3: 0.1 7480

4: 0.2 7080

5: 0.5 6360

6: 1 6170

7: 3 5397

8: 10 5096

9: 30 5096

10: 1000 4714

DM=[Cold Ligand (M) | Hot Spec.+Non-Spec.bound(M)]

DM: a 10 by 2 matrix

1: 0 2.58885434E-12

2: 9.09090909E-11 2.45363948E-12

3: 1.81818182E-10 2.38539424E-12

4: 3.63636364E-10 2.25783305E-12

5: 9.09090909E-10 2.02822291E-12

6: 1.81818182E-9 1.96763135E-12

7: 5.45454545E-9 1.72111935E-12
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8: 1.81818182E-8 1.62512955E-12

9: 5.45454545E-8 1.62512955E-12

10: 1.81818182E-6 1.50330862E-12

directly-estimated non-spec. binding coef.

C = 7.71837904E-2

MMT=[L Total | B Total | Y Total | F Total]

MMT: a 10 by 4 matrix

1: 2.09803077E-11 1.16933226E-12 1.41952208E-12 1.83914534E-11

2: 1.11889399E-10 5.45935993E-12 7.62606519E-12 9.88039735E-11

3: 2.0279849E-10 9.18445554E-12 1.38730875E-11 1.79740946E-10

4: 3.84616671E-10 1.48997633E-11 2.64914424E-11 3.43225466E-10

5: 9.30071217E-10 2.50658571E-11 6.48466349E-11 8.40158725E-10

6: 1.83916213E-9 4.38447819E-11 1.28640441E-10 1.6666769E-9

7: 5.47552576E-9 6.12326499E-11 3.87952055E-10 5.02634106E-9

8: 1.82027985E-8 1.13851314E-10 1.29613305E-9 1.67928141E-8

9: 5.45664349E-8 3.41291496E-10 3.88541133E-9 5.0339732E-8

10: 1.8182028E-6 1.16933226E-12 1.30280259E-7 1.68792254E-6

MMH=[L Hot | B Hot | Y Hot | F Hot]

MMH: a 10 by 4 matrix

1: 2.09803077E-11 1.16933226E-12 1.41952208E-12 1.83914534E-11

2: 5.96713722E-10 2.91151354E-11 4.06703209E-11 5.26928266E-10

3: 1.9602776E-9 8.87781883E-11 1.34099139E-10 1.73740028E-9

4: 7.05089676E-9 2.73146488E-10 4.85648281E-10 6.29210199E-9

5: 4.12306854E-8 1.11118638E-9 2.87469514E-9 3.72448039E-8

6: 1.61223437E-7 3.84349283E-9 1.12767949E-8 1.46103149E-7

7: 1.42902491E-6 1.59807452E-8 1.012493E-7 1.31179486E-6

8: 1.57929939E-5 9.87789387E-8 1.12454254E-6 1.45696724E-5

9: 1.41918596E-4 8.87644758E-7 1.01053353E-5 1.30925616E-4

10: 0.15756973 1.01337083E-7 1.12903936E-2 .146279336

MMC=[L Cold | B Cold | Y Cold | F Cold]

MMT: a 10 by 4 matrix
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1: 2.09803077E-11 1.16933226E-12 1.41952208E-12 1.83914534E-11

2: 1.11889399E-10 5.45935993E-12 7.62606519E-12 9.88039735E-11

3: 2.0279849E-10 9.18445554E-12 1.38730875E-11 1.79740946E-10

4: 3.84616671E-10 1.48997633E-11 2.64914424E-11 3.43225466E-10

5: 9.30071217E-10 2.50658571E-11 6.48466349E-11 8.40158725E-10

6: 1.83916213E-9 4.38447819E-11 1.28640441E-10 1.6666769E-9

7: 5.47552576E-9 6.12326499E-11 3.87952055E-10 5.02634106E-9

8: 1.82027985E-8 1.13851314E-10 1.29613305E-9 1.67928141E-8

9: 5.45664349E-8 3.41291496E-10 3.88541133E-9 5.0339732E-8

10: 1.8182028E-6 1.16933226E-12 1.30280259E-7 1.68792254E-6

Scatchard model linear-regession fit estimates

K1 = 138222119

S10 = 3.0576542E-10

Scatchard model euclidean-fit estimates;

K1 = 287268836

S10 = 1.82633621E-10

final parameter values

value error dependency parameter

1187347821 228157865.8 0.9547016996 K1

4.947046514e-11 8.636211996e-12 0.9633732247 S10

0.0804516126 0.001324755233 0.5724726409 C

19 iterations

CONVERGED

best weighted sum of squares = 4.378871e-11

weighted root mean square error = 2.501106e-06

weighted deviation fraction = 1.716122e-02

R squared = 9.982448e-01

no active constraints
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Note that the log-percent saturation plot using the estimated values for
K1 and S10 obtained by linear-regression with the bound/free vs. bound
Scatchard-plot form of the data is decidedly inferior to the graph using the
direct saturation model-based estimates. Of course, as the following picture
shows, this situation is not so clear in the Scatchard plot itself. But the log-
percent saturation plot is the more faithful form of the data with regard to
minimal error in the x-values, and thus the associated estimated parameters
are likely to be the most accurate.
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You can see that MLAB is an extremely flexible and general tool for
curve-fitting. Moreover, it has a broad range of other useful functions, only
a few of which have been alluded to here.
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