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Introduction

The study of how a ligand material, such as a hormone or antibody, binds
to one or more kinds of molecular complexes, called sites, is of fundamental
importance in biochemistry. Sites are often embedded in cell membranes,
and the binding serves to control the behavior of the cell itself. Typically we
are interested in the number of distinct kinds of sites and their frequency of
occurrence, and also the equilibrium constants for each ligand-site binding
reaction which indicates the absolute strength of each such binding reaction.

Quantitative analysis of hormone-receptor binding data can be performed
using appropriate software such as MLAB. MLAB is a computer program
whose name is an acronym for “modeling laboratory”; it is an interactive
system for mathematical modeling, originally developed at the National In-
stitutes of Health. Detailed information about MLAB is available at the
web-site www.civilized.com. MLAB can fit multiple non-linear models to
data points obtained from standard direct-binding or competitive displace-
ment assays. Typical assays involve measuring the competition between ra-
diolabelled and cold ligand in detergent-solubilized membrane preparations
or on whole cells. Affinity constants and limit values of binding protein con-
centrations for single or multiple sites can be computed by fitting saturation
curves in MLAB. Output can include Scatchard plots obtained by a suitable
transformation.

In addition to ligand binding analyses, MLAB can be used in many
other curve fitting applications such as kinetic modeling, Michaelis-Menten
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enzyme kinetics, ultracentrifuge data analysis, and various statistical anal-
yses. Kinetic analysis involves fitting differential equation models, which is
an important core capability of MLAB.

The MLAB Mathematical Modeling System

MLAB has hundreds of useful functions, e.g., the discrete Fourier trans-
form function dft and the parametric spline interpolation function splinep.
One of the central components of the system is a curve fitting program which
will adjust the parameters of a model function to minimize the weighted sum
of the errors raised to a specified power. A repertoire of mathematical oper-
ators and functions, routines for solving differential equations, a collection
of routines for onscreen drawing and for hardcopy plotting, and mechanisms
for saving data between sessions provide a powerful and convenient environ-
ment for data manipulation, arithmetic calculations, and for building and
testing models.

One of MLAB’s main uses is to fit models to data via its curve-fitting
facilities. Curve-fitting is a useful analytical tool in many diverse disciplines.
The basic notion is easily described. Given data, say various points in the
plane (x1, y1), (x2, y2), .. . . , (xn, yn), and a function y = f(x) where f in-
volves some parameters, say a and b, as for example f(x) = axb+1, we may
wish to calculate values for the parameters a and b so that the function f
well-predicts the observed data, that is, so that f(xi) = yi for 1 ≤ i ≤ n.
In this case, we say we have fit the model f to the data by estimating the
parameters a and b. The end result is merely the values obtained for the ini-
tially unknown parameters. The same principles apply in higher dimensions
with arbitrarily many parameters. MLAB can simultaneously fit multiple
non-linear model functions, some or all of which may be implicit functions,
or may even be defined by a system of differential equations.

The curve-fitting and graphics display facilities of MLAB make it an
ideal tool for the estimation of equilibrium constants from ligand binding
data, which typically consist of observed amounts of ligand bound for various
specified amounts of ligand provided for binding.

The Mathematics of Multiple Site Binding

Suppose we have a ligand, F , which binds to each of N independently-

acting sites, S1, S2, . . . , SN , which are present in the various concentrations
of S10 µM, S20 µM, . . . , and SN0 µM respectively. Each reaction F+Si ⇀↽ Bi

forms a bound complex Bi, and we shall define ki to be the associated
equilibrium constant. Let F0 denote the concentration in µM of ligand
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present initially, and let F be the concentration in µM of free ligand at
equilibrium. Similarly, let Si denote the concentration in µM of free sites
of type i at equilibrium, and let Bi denote the concentration of bound site
i complex at equilibrium. Note we use the symbols F , Si, and Bi for the
numerical quantities in µM (micromolar) units of these materials, as well as
for the names of the materials themselves. Then:

ki = Bi/(FSi) and Bi + Si = Si0 for 1 ≤ i ≤ N, and

F = F0 −B1 −B2 − . . .−BN .

Note that ki is specified in liters/µMole units (which is 1/µM units), so
that 106

ki is the corresponding equilibrium constant in liters/Mole units.
Sometimes ki is called the equilibrium association constant, in contrast to
the value 1/ki which is called the equilibrium dissociation constant. The
unit of measurment for material amounts of F , Si, Bi, Si0 and F0 may
be chosen to be any convenient unit convertable to µM units, such as cpm
(counts per minute.) In general, the equilibrium constant ki will be specified
in the reciprocal of that unit. (Of course, an amount of non-labeled material
measured in cpm units is a fiction to be interpreted as if it were labeled.)

The fraction of Si-sites occupied by ligand molecules is r := F/(F+1/ki).
When F ¿ 1/ki, the occupancy fraction r is small, and when F À 1/ki, r
is nearly 1; when F = 1/ki, fifty percent of the Si-sites are occupied.

Often there is a fictitious (N + 1)-st site, X, which binds F molecules,
which is introduced to describe the non-specific binding of F molecules with
weak affinity to many locations, other than the N specific sites of interest.
Let k0 be the equilibrium constant for the fictitious non-specific binding
reaction F +X ⇀↽ Y . Then we have:

ki = Bi/(FSi) and Bi + Si = Si0 for 1 ≤ i ≤ N,

k0 = Y/(FX) and Y +X = X0, and

F = F0 −B1 −B2 − . . .−BN − Y,

where Y is the concentration of non-specifically bound ligand, X0 is the con-
centration of the fictitious non-specific binding site, and X is the concentra-
tion of the free fictitious site at equilibrium. Then Bi = kiSi0F/(1 + kiF )
for 1 ≤ i ≤ N , and Y = k0X0F/(1 + k0F ).

Now, to capture the notion of non-specific binding as a weak sticking
of F molecules almost everywhere, let k0 tend to zero and let X0 tend to
infinity such that k0X0 = c, where c is a fixed constant. Then Y → cF , and
we have:

Bi = kiSi0F/(1+kiF ) for 1 ≤ i ≤ N, Y = cF, and F = F0−B1−. . .−BN−Y.
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Note that the mathematical form Bi = Si0F/(1/ki + F ) is difficult to
handle when ki approaches 0, so that the form given above is more conve-
nient.

Usually values of F (free ligand) and/or B1 +B2 + . . .+BN + Y (total
bound ligand) are measured for different values of F0 and we wish to use
this data, which is generally of the form (F0, F ) or (F0, B1 + . . .+BN + Y ),
to estimate k1, k2, . . . , kN , c, and, if not already known, S10, S20, . . . ,
SN0. When only the total bound concentration B1 + B2 + . . . + BN + Y
is measured, rather than B1, B2, . . . , BN and Y separately, only a few
sites can be distinguished by curve-fitting. In order to determine how many
kinds of sites appear to be present, we must try each of the 1-site, 2-site,
etc. models and choose among them on the basis of how well the data is fit.
Note if the equilibrium constants obtained for two species of sites are close,
then there are no grounds for considering them to be distinct species, based
on this analysis alone.

Often people use the modelB(F ) = k1S10F/(1+k1F )+· · ·+kNSN0F/(1+
kNF ) + cF and fit it to data points of the form (F,B) where F is the free
ligand concentration at equilibrium and B is the total bound ligand concen-
tration at equilibrium (measured with error), with one such point for each
experiment. The difficulty with this approach is that we must compute F as
F0−B so that there is correlated error in both the dependent and indepen-

dent values used to form the data points. Our approach uses data points of
the form (F0, B), and since F0 can generally be accurately determined, we
avoid the aforementioned difficulty of error in the independent variable.

As an explicit example of the multiple-site binding model developed
above, the general two-site model with non-specific binding for a single lig-
and type can be defined in MLAB with the following dialog. Here and
hereafter, the text shown following the MLAB prompt asterisk is an MLAB
command statement entered by the user. (In practice, an MLAB do-file
would be used to permit repetitive use when desired.)

* FUNCTION B(F) = k1*S10*F/(1+k1*F) + k2*S20*F/(1+k2*F)

* FUNCTION F(F0) = ROOT(Z,0,F0,F0-B(Z)-Z*(1+c))

* FUNCTION Y(F0) = c*F(F0)

Here A(F0) = B1 + . . .+BN for N = 2.

These commands exemplify the MLAB FUNCTION statement, which is
used to define a function or differential equation. Note that arguments
of functions must be explicitly specified. Variables, such as k1 and k2,
which appear in the body of a function, but not in its argument list, are
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called parameters. Parameters must be assigned values before an associated
function can be evaluated.

ROOT is an operator which is built-in in MLAB. ROOT(Z,A,B,E) is a
value between A and B which, when taken as the value of the dummy vari-
able, Z, makes the expression, E, which involves Z, equal to zero. Thus
ROOT(Z,A,B,E) is a solution of E(Z) = 0. The model given above, involv-
ing a so-called implicit function, deserves careful study; it is easily extendible
to more than two sites. The amount F of free-ligand at equilibrium as a
function of F0 satisfies F0 − F = B(F ) + c · F .

An Example

Suppose we have measured F in µM units as a function of F0 in µM
units, as follows:

F0 F

.58668 .036
1.1734 .096
2.3467 .385
2.9334 .61
4.1068 1.15
4.6934 1.46
5.8668 2.11
7.0402 2.73

and we have S10 = S20 = 1.7121µM. (If S10 and S20 were unknown, we
could include them as fitting parameters.)

Then, we can introduce the appropriate constraints (which should always
be used for this particular model), guess k1, k2, and c and then estimate
them, as follows.

* constraints q ={k1>=0,k2>=0,c>=0,S10>=0,S20>=0}

The CONSTRAINTS statement permits the user to specify successive linear
inequalities or equations involving the parameters (or potential parameters).
Now we may specify values for the parameters, guessing when necessary.

* k1 = 10; k2 = 1; c = 0; S10 = 1.7121; S20 = S10;

Here the ASSIGNMENT statement is exemplified. In this case all the above
assignments are assigning values to scalar variables, but the assignment
statement is used to assign values to matrices as well. This can be seen in
the next assignment statement which defines a matrix, D.
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* D = Kread(8,2)

.58668 .036

1.1734 .096

2.3467 .385

2.9334 .61

4.1068 1.15

4.6934 1.46

5.8668 2.11

7.0402 2.73

The KREAD operator takes optional array size arguments; in this case
an 8 row by 2 column matrix is specified, and reads in numbers from the
keyboard to construct an appropriately-dimensioned matrix as the result.
An analogous function is used to read numbers from a file, which is preferred
manner in practice. This matrix is then, in this case, assigned to D. Note
the entry of the numbers which follow. Now we may examine D by “typing
it out” using the TYPE statement.

* type D

D: 8 by 2 matrix

1: .58668 .36E1

2: 1.1734 .96E-1

3: 2.3467 .385

4: 2.9334 .61

5: 4.1068 1.15

6: 4.6934 1.46

7: 5.8668 2.11

8: 7.0402 2.73

We have established a model function, F , and entered data, D. We
expect that f(D[i, 1]) ≈ D[i, 2] would hold, if only the parameters k1,
k2, and c were set to their “correct” values. The following FIT state-
ment requests MLAB to estimate k1, k2, and c by assigning them val-
ues which minimize the sum-of-squares objective function S(k1,k2, c) =
∑8

i=1 (F (D[i, 1])−D[i, 2])2.

* maxiter = 30; TOLSOS = .001

* fit(k1,k2,c), F to d, constraints q

final parameter values

value error dependency parameter
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13.86352736 2.331373145 0.665073064 K1

0.5321372226 0.06602915638 0.9432600296 K2

0.5874015019 0.02229743988 0.9171690302 C

5 iterations

CONVERGED

best sum of squares = 9.78763e-04

root mean square error = 1.39912e-02

deviation fraction = 6.82654e-03

R squared = 9.99854e-01

no active constraints

The behavior of the fit statement depends upon the supplied constraints
q, as well as upon the MLAB control variables: maxiter, the maximum
number of iterations and tolsos, the requested convergence factor. Many
multiple-site binding models are sensitive to the initial guesses used, and
care must be taken to obtain a physically-meaningful fit. Trial and error
fitting may be required to find the necessary guesses.

The material typed out above shows that the vector of parameters (k1,k2, c)
has been estimated to be (13.8633 ± 2.3315, .532151 ± .0660296, .587396 ±
.0222973), with reasonably small dependency values, and with an RMS er-
ror of about .014, which should be comparable with the experimental error
in our data, D. The sum-of-squares was reduced from an initial value of
2.64314 to .000978763 at the final parameter values. The standard-errors
of the parameters are normal-theory estimates and are often unreliable, al-
though they are of suggestive value.

In order to visually see how our model with its parameters set to their
best-estimated values corresponds to the data, we may draw a graph of the
data points and the model function. Although we are drawing only the sim-
plest and most direct kind of picture here, it should be noted that MLAB
provides facilities for many types of point-symbols and types of lines, axes
with arbitrarily-placed numeric labels in various formats, titles in the form
of text strings in arbitrary sizes and various fonts with subscripts and su-
perscripts, color, and a number of other special features. It is quite possible
to prepare more or less elaborate publication-quality graphs with a modest
amount of effort. Indeed this is one of MLAB’s most-used facilities. The
desired graph can be constructed as follows.

* draw D, linetype none,pointtype circle

* draw c2 = points(F,0:8:.2)

* VIEW
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The first DRAW command above plots the data points, while the second
draw command constructs a curve called C2, which is a graph consisting of
solid straight-lines connecting the points which are the rows of the 2-column
matrix which is the value of the expression POINTS(F,0:8:.2). This matrix
has the values 0 through 8 in steps of .2 in its first column and corresponding
values of the function F evaluated at 0 through 8 in steps of .2 in the second
column. The POINTS operator is very useful for graphing functions. Both
these curves are drawn in the default MLAB 2D-window called W (since
no other window is specified) which has predefined labeled axes already
present. The picture finally appears when its display is requested with a view
statement and a plot can be obtained if desired using the PLOT statement.

Often a Scatchard graph of Bound/Free vs. Bound (i.e., B(F (F0))/F (F0)
vs. B(F (F0))) is desired. Although such a formulation should not be used for
curve-fitting due to the non-normal error introduced by computing Bound/Free,
it is quite straightforward to draw the data and model Scatchard plots as
follows. Note the current picture in W is saved and restored.
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* SAVE W IN GW

* DELETE W

* FUNCTION R(X,Y)=IF Y=0 THEN (k1*s10+k2*s20) ELSE X/Y

* MF = F ON 0:8:.2

* M = B ON MF

* M = M&’(R ON M&’MF)

* DRAW M;

* MF = D COL 2

* M = (D COL 1)-(1+C)*MF

* M = M&’(R ON M&’MF)

* DRAW M, LINETYPE NONE, POINTTYPE "o"

* TOP TITLE "Bound/Free vs. Bound"

* VIEW

* DELETE W,MF,M

* USE GW
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The &óperator denotes column concatenation, while the ON operator, as
in F ON H, applies the function F to each row of the matrix H treated as an
argument list for F and returns the column vector of result values.

It is an enlightening exercise to fit the Scatchard model to the corre-
sponding transformed data and to then draw a graph of the original data
points and the function f using the parameter values obtained. An example
of this comparison is given in the following section.

In general, we should use weights which specify the relative accuracy of
each data point. For each data matrix, a vector of weight values may be given
as a clause in the FIT statement. The weight-value, gi, that corresponds to
an observation (xi, yi) should be 1/ var(yi). Of course, guesses or estimates
must generally suffice. The value 1/y2

i for yi corresponds approximately
to a constant percentage error in the observed value yi. Weight functions
are permitted in MLAB, and an often more accurate device is to use the
reciprocal of the square of the model function itself as the weighting function.
This results in an iterative reweighting process.

The use of weights permits data points of high reliability to exert greater
influence on the parameter estimates than data points of lesser reliability.
When simultaneous fitting is being done, weights have the additional func-
tion of compensating for differing units or magnitudes of the observations
from various data sets. Without weights, the curve-fitting process would
tend to favor one model component, fitting it at the expense of others, if the
deviations there were much larger than the others, even though this may be
an artifact of the use of different units.

MLAB includes an operator, EWT, which computes a vector of weight-
values for a given set of data points, M, by estimating the standard deviation
at each point by the difference between the data curve and a smoothed
form of it, which effectively assumes the error is due to white noise. These
standard-deviation estimates are, in turn, smoothed, and then used to form
reciprocal variance weight values. In our example, we shall use EWT to ob-
tain the necessary weight vectors, although this is not totally appropriate
for chemical binding data, which is often taken in a range where the mea-
surement accuracy improves as the amount of bound ligand increases. Also,
EWT is unreliable for small numbers of data points. Nevertheless, we shall
proceed as follows.

* DW = EWT(D); DN = EWT(N)

* TYPE D&’DW,N&’DN

: a 8 by 3 matrix

1: 0.58668 0.036 340.092919
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2: 1.1734 0.096 340.092919

3: 2.3467 0.385 271.140209

4: 2.9334 0.61 256.511957

5: 4.1068 1.15 193.017413

6: 4.6934 1.46 171.441311

7: 5.8668 2.11 93.14747

8: 7.0402 2.73 93.14747

a 5 by 3 matrix

1: 1.1734 0.3 159.445918

2: 2.5 0.5 159.445918

3: 3 0.3 156.341715

4: 3.98 0.7 134.665471

5: 6.5 1.6 134.665471

* fit (k1,k2,c), F to d with weight dw, Y to n with weight dn, CONSTRAINTS q

Begin iteration 1 bestsosq=5.86711e+01

Begin iteration 2 bestsosq=2.76531e+01

Begin iteration 3 bestsosq=2.69881e+01

final parameter values

value error dependency parameter

1.681292363 0.3984166729 0.6190759098 K1

1.905413519e-17 0.06987097833 0.6367292361 K2

0.6401358429 0.057666687 0.09280130233 C

3 iterations

CONVERGED

best sum of squares = 2.69879e+01

root mean square error = 1.64280e+00

deviation fraction = 6.88260e-02

lagrange multiplier[1] = -0

lagrange multiplier[2] = -73.23991748

lagrange multiplier[3] = -0

* delete w

* draw d line none pt circle

* draw points(F,0:8:.2)

* draw n line NONE pointtype "+"

* draw points(Y,0:8:.2) linetype dashed

* VIEW
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As mentioned above, MLAB also allows weights to be the reciprocals
or other functions of the actual squared deviations themselves. This device
is called curve-fitting with iterative reweighting and is invoked in MLAB
by specifying an appropriate weight function. Moreover MLAB employs an
iterative reweighting technique to allow the general form of a sum of pth
powers to be minimized, rather than just a sum-of-squares. This so-called
Lp-norm fitting is sometimes useful for p = 1 or 1.5 when the data is not
normally-distributed, and tends to contain some outliers. The value p is
specified as the value of the MLAB control variable fitnorm.

You can see that MLAB is an extremely flexible and general tool for
curve-fitting. Moreover, it has a broad range of other useful functions, only
a few of which have been alluded to here. (A more complete version of this
paper is available from the author.)

12


