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In many cases, you run into data which has an understood physical basis
and you can come up with a model–a set of equations that describe it–to
describe or predict its behavior. The modeling job then becomes one of
finding the best model parameters, which you do by applying a method
such as least-squares curve fitting.

Matters get more complicated if you can’t find a model from theory that
adequately describes the data. Then you may try an alternative approach
to describing the data that doesn’t use a data-independent equation. Such a
description is called a nonparametric model. Situations where nonparamet-
ric models are needed often arise with economic time-series data or other
phenomenological data. Indeed, when working with such data, using a for-
mulaic model is often a poor approach because the selected model is almost
certainly logically wrong.

There are a variety of methods for obtaining a non-parametric model
for given data. These methods include kernel estimation, polynomial fit-
ting with moving-weights, smoothing splines, moving-means and moving-
medians. Here we will concentrate on kernel estimation and moving-means;
moving-weight polynomial fitting and smoothing splines have comparable
performance properties, but they are far more mathematically-elaborate
methods.
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Let us focus on the 2-dimensional case where we have a collection of data
points (x1, y1), . . . , (xn, yn) for which a model f(x) is desired. In this context,
kernel non-parametric regression estimation of f entails computing f as a
weighted sum of the values y1, . . . , yn where the weights are normalized peaks
defined by some kernel form with each peak centered at xi so as to represent
the contribution of the data point (xi, yi). Thus using kernel estimation
defines f as

f(x) =
∑

1≤i≤n

yi[K((x− xi)/u)/
∑

1≤j≤n

K((x− xj)/u)].

The kernel functionK can be chosen in a variety of ways. One reasonable
choice is as a truncated gaussian density function: K(v) = if |v| > 6 then 0
else g(v), where g(v) = 1

2πe
−v2

. Acutually, as you can see, the 1/(2π) factor
is not necessary.

The parameter u is called the kernel width; it determines the spread of
the kernel function. The larger u is, the more unimportant the differences in
the individual yi-values become. As u tends to ∞, f(x) tends to a constant
value independent of x. [What happens as u→ 0?] A reasonable choice for
u is [(max1≤i≤n xi − min1≤i≤n xi)/(2n/5)]

1/2. A more elaborate approach
might use dynamically-varying values of u depending upon the x-values.

We may look at an example of non-parametric regression via kernel es-
timation using the mathematical and statistical modeling system MLAB.
The MLAB computer program was originally developed at the National In-
stitutes of Health and includes curve-fitting, differential equation-solving,
statistics and graphics as some of its major capabilities. MLAB is a tool for
researchers in science and engineering. MLAB is an ideal tool for solving
simulation and parameter-estimation problems such as chemical kinetics, or
neurophysiological models.

We’ll actually use MLAB to generate our example data as well as to
compute and display the kernel-based model function; this shows the ability
of MLAB to do discrete simulation studies, in addition to its central focus
of doing continuous simulation via solving systems of differential equations.
The text below shown in “typerwriter” font presents the MLAB commands
used to compute and draw the exhibited results.

We will use the “trend” curve sin(x) + x and add normal random noise
to obtain our “data”. We will arrange to generate some data points with du-
plicate x-values in order to subsequently demonstrate the handling of such
data. The expression a:b!k denotes a column vector of k equally-spaced
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values starting with a and ending with b. The operator & denotes row-
concatenation and the operator &’ denotes column-concatenation. The ex-
pression points(f,((0:8!90)r)&(0:8!50)) denotes the 230-row, 2-column
matrix whose first column contains the values 0:8!90 repeated twice fol-
lowed by the values 0:8!50 and whose second column contains the f-values
corresponding to the x-values in the first column.

fct f(x)=g(x)+2*normran(0)

fct g(x)=sin(x)+x

m=sort(points(f,((0:8!90)^^2)&(0:8!50)))

draw m lt none pt crosspt ptsize .01

xv=0:8!120

draw trend = points(g,xv)

view

delete trend

Now we will compute the kernel-based non-parametric estimate for the
data points in m. In order to be more efficient, we use embedded assignment
operator ( ) in the definition of the kernel estimator function sf. This allows
us to accumulate the required denominator sum in the variable ks without
repetitive computation.
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n=nrows(m)

x= m col 1; y=m col 2;

fct sf(x)=(ks_0)+sum(j,1,n,[ks_ks+[kv_Kr((x-m[j,1])/u)]]*0+kv*m[j,2])/ks

fct Kr(x)=if abs(x)>6 then 0 else gaussd(x)

u = sqrt((maxv(x)-minv(x))/(2*n/5))

s=points(sf,xv)

draw kernel = s color orange lt (1,0,0,0,0,.005,0)

top title "Kernel Smoothing Fit" color red font 17

view

delete kernel

Note that the resulting curve is relatively smooth, but not as smooth
as the underlying trend curve. The degree of “oscillation” is controlled by
the kernel width parameter u. The greater u is, the smoother the kernel-
estimator is and the less it tracks local features in the data.

Another very common approach to non-parametric regression is to use a
moving-average method. The basic idea is that the value at xi should be the
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weighted average of the nearby data points. This has the effect of smoothing
the variation in the data to yield less extreme and less oscillatory data points.
Indeed all non-parametric regression schemes can be considered to be forms
of data smoothing. Thus, for example, we may define our moving-average
model as:

m(xi) =
∑

1≤j≤k

wjyi−1−bk/2c+j

Here k is the size of the moving data “window” and w1, . . . , wk are
weights which sum to 1. Generally these weights should taper down to
0 at each end of the sequence; otherwise the moving-average model will be
non-continuous. The moving-average method is a certain form of kernel es-
timation method restricted to estimating values only at the given ordinal
locations x1, . . . , xn. We can extend the moving-average method by using
an interpolating function such as a cubic spline interpolating function of the
points (x1,m(x1)), . . . , (xn,m(xn)) produced by the moving-average compu-
tation.

MLAB contains a built-in moving-average operation together with vari-
ous other weighted moving window computations. We can demonstrate the
moving-average non-parametric model for the data exhibited above using
MLAB.

Below we show the weighted moving-average non-parametric model curve
and an associated 2σ standard-deviation error band. These curves are all
computed using the corresponding builtin functions within MLAB in order
to produce the non-parametric model curves and associated error bands for
the data that we generated above. Note that the data has multiple points
with the same x-values, which is easily handled by MLAB. In this case we
will use a moving window of 45 points which are weighted with the weight-
values specified in the vector wm.

* wm=(0:1!15)&(1^^15)&(1:0!15)

* a=mmean(m col 2,45,0,4,wm)

* s=mstddev(m col 2,45,0,4,wm)

* draw m lt none pt crosspt ptsize .01

* za=(m col 1)&’a&’s; za=rdup(za); tx = za col 1;

* draw za col (1,2) color red lt (1,0,0,0,0,.005,0)

* draw tx &’((za col 2)+1.96*(za col 3)) color brown lt (1,0,0,0,0,.005,0)
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* draw tx &’((za col 2)-1.96*(za col 3)) color brown lt (1,0,0,0,0,.005,0)

* top title "Non-parametric Moving Weighted Mean Fit" font 17

* view

Again the degree of “oscillation” is governed by the size of the moving
window and the weights that are used.

When the data has large variations or outliers, a more robust method of
estimating a central trend function is to use a moving-median non-parametric
method. An example is shown below using the built-in weighted moving-
quantile function mquantile found in MLAB.

* a=mquantile(m col 2,.5,45,0,4,wm)

* q1=mquantile(m col 2,.05,45,0,4,wm)

* q2=mquantile(m col 2,.95,45,0,4,wm)

* draw m lt none pt crosspt ptsize .01

* za=(m col 1)&’a&’q1&’q2; za=rdup(za);

* draw za col (1,2) color red lt (1,0,0,0,0,.005,0)

* draw za col (1,3) color brown lt (1,0,0,0,0,.005,0)

* draw za col (1,4) color brown lt (1,0,0,0,0,.005,0)

* top title "Moving Quantile Fit and Error Curves" font 17

* view
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In this situation the estimated curve is noticablly “rougher”, but less
influenced by outlier points. One sometimes useful-strategum is to use .05
and .95 quantile curves to determine a data band region, discard those points
outside the band, and then fit the remainning points with a moving mean
curve.
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