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The MLAB computer program is an advanced mathematical and statis-
tical modeling system. The example developed and discussed herein shows
several important features of MLAB. These features include simultaneously
fitting several functions with shared parameters to different data sets. The
functions which make up the model are defined by a set of differential equa-
tions. These differential equations turn out to be stiff and thus require a
suitable implicit method such as Gear’s method to solve them numerically in
a reasonable amount of time. The data used here was provided by Nicholas
Holford as a challenge for modelers; it is widely disparate in scale, and we
show how to use weight vectors to handle this. There is also missing data
at different time points; MLAB handles this problem automatically (zero
weights are generated internally to correspond to missing data).

The problem setting is as follows: 48.15milligrams of a drug D is given
by mouth, and blood concentrations of the drug D and also of its only
metabolite M are measured. Also the cumulative amounts of D and M in
the urine are measured. Thus, we have the following data.

Note: In the data table below, blanks represent missing data. In order to
prepare the data for input, some value must be supplied at each place where
a number is missing. Any unique value may be used for these missing values
since we will remove them later. For this example, zero will be entered for
the missing table values.
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time blood-D blood-M urine-D urine-M
(hours) (mg/liter) (mg/liter) (mg) (mg)

.82 .1746 .822051
1 1.87 7.23
1.2 .166 1.143786
1.4 .1264 1.152462
2 .1092 .859647 3.23 15.53
2.4 .0904 .648531
2.9 .0828 .601536
3 4.02 21.15
3.38 .0704 .381744
3.92 .0591 .402711
4 4.59 25.88
4.42 .0511 .30366
5.18 .0355 .252327
6 5.77 32.42
6.35 .0148 .143154
8 6.3 34.89
8.3 .0081 .063624
10 6.51 36.16
10.28 .0047 .033258
12 6.65 37.06
12.4 .0026 .020967
24 6.92 38.7
24.57 .0009 .006507
48 7.3 40.29
72 7.38 40.77

We wish to devise a model for the uptake, metabolic conversion and
excretion of this drug, and curve-fit to adjust the model to fit the observed
data.

The error in the blood concentration measurements has a variance which
is roughly proportional to the square of the true measurement value. The
error in the urine amounts has a more-rearly constant variance. Whatever
model we use to predict D(t) (blood drug concentration at time t), M(t)
(blood metabolite concentration at time t), A(t) (urine drug amount at time
t), and B(t) (urine metabolite amount at time t), we will want to weight
our observations by weights which are proportional to the reciprocals of the
variances.
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We will use the MLAB EWT operator which employs the deviations from
a smoothed spline to estimate the errors in data values. Using EWT on the
various data sets produces error estimates scaled comparably to the underly-
ing error of the data sets themselves. This has the effect that the deviations
will each be approximately sized so that each of our sets of observed data is
given more or less correct weight in the sum of squares to be minimized.

As a model, let us consider the following compartmental form.
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tissue storage
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This is a highly simplified model; the path from the blood drug com-
partment to the blood metabolite compartment should probably include a
metabolic conversion compartment, and perhaps the metabolite should go
in and out of tissue as does the drug D, but this model is already near the
limit of what we can usefully fit to the data.

Let VB be the volume in liters of the blood and let VS be the volume
in liters of the tissue of the subject being studied. We let VM denote the
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volume in liters of the blood-metabolite compartment; we would expect that
VM = VB, but we may obtain a better fit when this constraint is not honored.

Let D(t) = the concentration of the drug D in the blood at the time t,
let M(t) be the concentration of the metabolite M in the blood at time t,
let S(t) be the concentration of the drug D in the tissue at time t. Also,
let A(t) be the cumulative amount of drug D which has appeared in the
urine by time t, and let B(t) be the cumulative amount of the metabolite
M which has appeared in the urine by time t.

We can write the following model involving a first-order ordinary differ-
ential equation for each compartment.

D′ = (I(t)− (k1 + kD + kC)D + k2S)/VB

S′ = (k1D − k2S)/VS

M ′ = (kCD − kMM)/VM

A′ = kDD

B′ = kMM

with D(0) = 0, M(0) = 0, S(0) = 0, A(0) = 0, and B(0) = 0.

The choice of the input function, I, is somewhat arbitrary. However, if
the drug is absorbed as fast as it passes at a constant rate into the small
intestine, we may choose I(t) = if t < ET then 48.15/ET else 0, so 48.15mg.
of the drug is introduced at a constant rate over ET hours.

We could instead use the form I(t) = 48.15·H ·exp(−H ·t), and introduce
the constraint H > 0. It turns out this makes little difference in the final
results.

Note that kM , kC , k1 and k2 are in units of liters/hour, the derivatives
D′, S′, and M ′ are in units of mg/liter/hour, A′ and B′ are in units of
mg/hour, D, S, and M are in units of mg/liter, A and B are in units of mg,
VB, VS and VM are in units of liters, and I(t) is in units of mg/hour, and
these units are dimensionally consistent.

It is necessary to use constraints for fitting this model; without them,
the parameters may well be assigned foolish values where the differential
equations cannot be integrated numerically. Let us assume the following
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constraints.

{ .1 < ET < 70, 0 < k1, 0 < k2, 0 < kD, 0 < kC , 0 < kM , 3 < VB < 7, 10 < VS < 100, VM > .01}

Now we need initial guesses for all the parameters. These guesses must be
suitable; arbitrary guesses can lead to unreasonable final fit values, or even
cause the fitting process to be unable to proceed due to excessive stiffness
of the differential equations!

Suppose a unit amount of drug diffuses from blood into tissue so that
half of it is transfered in one hour. Then if y is the amount of drug in the
blood, we have y′ = −k1y with y(0) = 1, and y(1) = .5, and so k1 ≈ .7. Let
us also guess that k2 = .7.

If half of a unit amount of drug is cleared from the blood and transferred
to the urine by the kidneys in about 4 hours, then kD ≈ .17. Let us also
guess that kM = .17. Similarly, let us guess kC = .17.

Finally we choose VB = 5, VM = 5, VS = 40, and ET = 1.

Now we may proceed in MLAB as follows. First we enter the data listed
above, with zeros for missing values, and then we construct the correspond-
ing weight vectors WD, WM, WA, and WB.

n = read(dataf, 100, 5)

tv = n col 1; "tv = time values"

dv = n col 2; "dv = blood drug data."

mv = n col 3; "mv = blood metabolite data."

av = n col 4; "av = urine drug data."

bv = n col 5; "bv = urine metabolite data."

dv = tv &’ dv; dv = compress(dv,2); wd =ewt(dv)

mv = tv &’ mv; mv = compress(mv,2); wm =ewt(mv)

av = tv &’ av; av = compress(av,2); wa =ewt(av)

bv = tv &’ bv; bv = compress(bv,2); wb =ewt(bv)

Now we enter our model, our constraints, and our inital guesses.

function d’t(t) = (i(t) - (k1 + kd + kc)*d + k2*s)/vb
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function s’t(t) = (k1*d - k2*s)/vs

function m’t(t) = (kc*d - km*m)/vm

function a’t(t) = kd*d

function b’t(t) = km*m

function i(t) = if t<et then dose/et else 0

initial d(0) = d0

initial s(0) = 0

initial m(0) = 0

initial a(0) = 0

initial b(0) = 0

d0 = 0; dose = 48.15

k1=.7;k2=k1;kd=.17;km=kd;kc=kd;vb=5;vs=40;et=1;vm=5

constraints c = {k1>0, k2>0, kc>0, km>0, et>.1, et<70, vb>3, \

: vb<7, vs>10, vs<100, vm>.01}

Now we proceed to fit. Due to the large amount of time needed to fit
this stiff model, we use Gear’s method with a tolerance of .01.

method = gear;

maxiter = 100

errfac = 0.01

fit(k1,k2,kc,kd,km,et,vb,vs,vm), \

: d to dv with weight wd, m to mv with weight wm, \

: a to av with weight wa, b to bv with weight wb, constraints c

final parameter values

value error dependency parameter

19.55670378 12.41128315 0.7277144348 K1

4.829029615 56.05648908 0.9970952774 K2

95.71231349 18.05875113 0.9611351847 KC

17.29009355 3.174400652 0.9601255658 KD

13.57478156 2.526143866 0.6637941471 KM

4.835844445 0.8222361079 0.945128974 ET

4.168221663 13.3558721 0.5651377681 VB
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88.309337 930.8309603 0.997317646 VS

3.929260682 8.161760496 0.9041479451 VM

22 iterations

CONVERGED

best weighted sum of squares = 3.054944e+02

weighted root mean square error = 2.665431e+00

weighted deviation fraction = 5.505088e-02

R squared = 9.959130e-01

no active constraints

Now we will graph our four data sets together with the best-fit curves
produced by solving our system of differential equations with the parameter
values obtained above.

Note that we must beware of assuming that our obtained parameters
have any physical significance. It is unlikely, for example, that the actual
compartment volumes are close to the values we have for VB, VM and VS .
Our model may be useful for prediction purposes, but it is not useful for
gaining insight into any actual physiological mechanisms.

tv=0:75!120

draw points(d,tv) color brown

draw dv color red pt xpt lt none

image color white

top title " Drug concentration in Blood" font 11 size .03

left title "’-90AD" font 11 size .03

bottom title "time"

frame 0 to .5, 0 to .5

w1=w

draw points(m,tv) color blue

draw mv color blue pt octagon lt none

image color yellow; frame color green

top title "Metabolite concentration in Blood" font 11 color brown size .03

left title "’-90AM" font 11 size .03

bottom title "time"

frame .5 to 1, 0 to .5

w2=w
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draw points(a,tv) color purple

draw av color red pt square lt none

image color grey; frame color brown

top title " Drug amount in Urine" font 11 size .03

left title "’-90AA" font 11 size .03

bottom title "time"

frame 0 to .5, .5 to 1

w3=w

draw points(b,tv) color brown

draw bv color blue pt crosspt lt none

image color aqua; frame color red

top title " Metabolite amount in Urine" font 11 size .03

left title "-90AB" font 11 size .03

bottom title "time"

window 0 to 80, 0 to 45

frame .5 to 1, .5 to 1

w4=w

view
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This is not the only reasonable fit. Starting from other guesses, for
example: K1 = 223, K2 = 14.7, KC = 66, KD = 11.7, KM = 9.7, ET =
1.95, VB = 6.24, VS = 12.35, and VM = 0.04, we can obtain other, quite
different, results. The large dependency values of the parameters indicate
that this problem does not have a unique answer. Probably the problem is
over-parameterized.

k1 = 223; k2 = 14.7

kd = 11.7; km = 9.7; kc = 66

vb = 6.24; vs = 12.35; vm =.04; et = 1.95;

fit(k1,k2,kc,kd,km,et,vb,vs,vm), \

: d to dv with weight wd, m to mv with weight wm, \

: a to av with weight wa, b to bv with weight wb, constraints c

final parameter values

value error dependency parameter

222.3296966 27.76132266 0.8337053755 K1

14.7359648 3117.341849 0.9999999383 K2

65.98333895 3.836887237 0.9399933157 KC

11.7407663 0.692533352 0.938315949 KD

9.697523939 0.6754487655 0.6928345824 KM

1.960006851 0.059767016 0.9654962599 ET

5.964737228 3.990424231 0.866044195 VB

12.31946483 2605.653695 0.9999999384 VS

0.04208395842 0.01012174536 0.9703620604 VM

3 iterations

CONVERGED

best weighted sum of squares = 4.491649e+01

weighted root mean square error = 1.022042e+00

weighted deviation fraction = 2.993774e-02

R squared = 9.941458e-01

no active constraints

The graphical results of this fit are shown below. Note we fit the blood-
drug and blood-metabolite concentrations more closely at the expense of
urine-drug and urine-metabolite fitting.
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The existence of multiple local minima corresponding to different param-
eter values is further indication that our model is not physically accurate.
Thus, we should choose our parameter values so that the four curves are
adequately predicted without concern for the physical meanings of the pa-
rameters.

10


