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Consider the reaction F +G
K1⇀↽
K2

B.

The study of this reaction is common in chemistry and biochemistry.
For example, F could be a hormone or drug and G the associated receptor
sites. The symbol B represents the bound complex.
Let us also allow F (t), G(t), and B(t) to be functions which specify the

concentrations of F , G, and B respectively at time t. Then we have the
differential equation model:

dB/dt(t) = K1F (t)G(t)− K2B(t), B(0) = B0,

F (t) = F0 − (B(t)− B0),

G(t) = G0 − (B(t)− B0),

where F0, G0, and B0 are the initial concentrations of F , G, and B respec-
tively, and the molar association and dissociation rate constants K1 and K2

appear as the proportionality constants for the terms which occur in dB/dt.
Note that K1 = (dB/dt(0) + K2B0)/(F0G0), so K1 may be estimated

from the initial velocity dB/dt(0), which can, in turn, be estimated from a
few points.
The solution to our differential equation is:

B(t) = (S(B0 − R)− R(B0 − S)ed·K1·t)/(B0 − R − (B0 − S)ed·K1·t),

where

S = A+ d/2

R = A − d/2

d = 2(A2 − (F0 +B0)(G0 +B0))
1/2

A = (F0 +G0 + 2B0 +K2/K1)/2

1



An appropriate definition of this function in MLAB involves using aux-
iliary functions as follows:

fct B(T) = H1((F0+G0+2*B0+K2/K1)/2,T)

fct H1(A,T) = H2(A,SQRT(4*(A^2-(F0+B0)*(G0+B0))),T)

fct H2(A,D,T) = H3(A+D/2,A-D/2,EXP(D*K1*T))

fct H3(S,R,E) = ((B0-R)*S-(B0-S)*R*E)/(B0-R-(B0-S)*E)

It is useful to study this example carefully. Many occasions will arise
where functions will need to be expressed with sub-functions in a similar
manner.
Suppose we have specific kinetic data, time versus B-concentration,

appearing as the rows of a two-column matrix, BM . Note time vs. G-
concentration or time vs. F -concentration can be easily converted to time
vs. B-concentration. In MLAB, if GM is a 2 column matrix of time vs.
G-concentration for example, we merely type

* BM = (GM COL 1)&’(G0-B0-(GM COL 2))

and BM is then the desired time vs. B-concentration matrix of data points.
We may use the curve-fitting facility of MLAB to compute estimates of

K1 and K2, and even F0, G0, and/or B0 if necessary.
The equilibrium constant, K, of the reaction, is defined as K = K1/K2.

At equilibrium (say at time te) we have dB/dt(te) = 0, and henceK1F (te)G(te)−
K2B(te) = 0.
Thus, K = B(te)/(F (te)G(te)) = B(te)/((F0 + B0 − B(te))(G0 + B0 −

B(te))).
Define Be(F0, G0, B0) = B(te), the amount of B at equilibrium or “sat-

uration”. Then solving for Be(F0, G0, B0), we have the following equation,
called the saturation equation.

Be(F0, G0, B0) = [(F0+G0+2B0+1/K)−((F0+G0+2B0+1/K)
2−4(F0+B0)(G0+B0))

1/2]/2.

If we have data points for a so-called saturation curve consisting of pairs
of F0 values with associated Be values for fixed values of G0 and B0, then
curve-fitting can be used with the above function in order to estimate K.
Indeed K can be estimated even when we have points (F0, G0, Be) from the
saturation surface in 3-space, where arbitrary values of F0 and G0 have been
paired, and B0 is fixed.
Define Be = B(te), Fe = F (te), and Ge = G(te). Then from the basic

relations: K = Be/(FeGe), Fe +Be = F0 +B0, and Ge +Be = G0 +B0, we
may write a number of equivalent relationships.
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Michaelis-Menten Equation(1) (Be vs. Fe):

Be = K(G0 +B0)Fe/(1 +KFe)

Michaelis-Menten Equation(2) (Be/(B0 +G0) vs. Fe):

Be/(B0 +G0) = KFe/(1 +KFe)

Lineweaver-Burk Equation (1/Be vs. 1/Fe):

1/Be = (1/(K(G0 +B0))(1/Fe) + 1/(G0 +B0)

Eadie-Wilkinson-Dixon Equation (Fe/Be vs. Fe):

Fe/Be = Fe/(G0 +B0) + 1/(K(G0 +B0))

Scatchard Equation (Be/Fe vs. Be):

Be/Fe = −KBe +K(G0 +B0)

Hill Equation (log[(Be/(G0 +B0))/(1− Be/(G0 +B0)] vs. logFe):

log((Be/(G0 +B0)/(1− Be/(G0 +B0))) = logFe + logK

(Also see the “direct linear plot” of Cornish-Bowden in Biochem. J. Vol
137, p. 143, 1974)
Some of these relationships are inspired by analogous relations for en-

zyme reactions where they arise in different forms. Most are linear relations
in K or 1/K for simple binding, and this accounts for their popularity—they
are easy to use as models with linear regression methods in order to estimate
K. For the non-linear Michealis-Menten forms, constraints are often neces-
sary. In spite of their traditional use, however, the errors introduced when

transforming data to the appropriate form may limit the accuracy obtainable

when using any of these models; and in general biased estimates of K can

result. See Rodbard, D., “Mathematics of Hormone-Receptor Interaction”,
in Receptors for Reproductive Hormones, Plenum Pub. Corp.
The saturation equation above may thus be preferred, although usually

there is little difference. At any rate, the values of K obtained using various
models should be checked by computing theoretical predicted values for Be

vs. F0 and comparing them to the observed values. The major difficulty for
the various linear forms is that both the independent and the dependent-
variable data values have non-normally-distributed error. As a result, linear
Euclidean curve-fitting (with appropriate weights) should be employed with
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these models. The results should be checked in the saturation equation.
That value of K which yields the lowest sum-of-squares in the saturation
model should be used.

Here is an example comparing the saturation equation model with the
Michaelis-Menten (1) model and the Scatchard model.

FCT B(F0)=((F0+G0+2*B0+1/K)-SQRT((F0+G0+2*B0+1/K)^2-4*(F0+B0)*(G0+B0)))/2

FCT BE(FE) = (G0+B0)*FE/(1/K+FE)

FCT BS(BE) = -K*BE+K*(G0+B0)

B0 = 0; G0 = 1;

/* M = F0 values, BE values */

M = read(data,100,2)

/* generate M1 = corresponding data (FE,BE) for the Michaelis-Menten model */

M1 = (M COL 1) - (M COL 2) + B0

M1 COL 2 = M COL 2

/* generate M2 = corresponding data (BE/FE,BE) for the Scatchard model */

M2 = (M COL 2)

M2 COL 2 = (M1 COL 2)/’(M1 COL 1)

K = 2

FIT(K), B TO M

final parameter values

value error dependency parameter

1.996602727 0.0420400256 0 K

1 iterations

CONVERGED

best weighted sum of squares = 1.446128e-02

weighted root mean square error = 1.925622e-02

weighted deviation fraction = 1.849765e-02

R squared = 9.691570e-01

KS = K

FIT(K), BE TO M1

final parameter values

value error dependency parameter

2.0043749954 0.0397621839 0 K
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1 iterations

CONVERGED

best weighted sum of squares = 1.769429e-02

weighted root mean square error = 2.130023e-02

weighted deviation fraction = 2.026365e-02

R squared = 9.622617e-01

KM = K

FIT(K), BS TO M2

final parameter values

value error dependency parameter

2.0008431423 0.0360417006 0 K

1 iterations

CONVERGED

best weighted sum of squares = 1.242737e-01

weighted root mean square error = 5.644913e-02

weighted deviation fraction = 8.426590e-02

R squared = 9.358569e-01

KC = K

/* draw MM model + data with the above K */

K = KS

TOP TITLE "Saturation Model"

DRAW M, LT NONE, PT STAR

DRAW POINTS(B, 1:5!101)

K = KM

DRAW POINTS(B, 1:5!101) LT DASHED

K = KC

DRAW POINTS(B, 1:5!101) LT ALTERNATE

VIEW
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K = KS

TOP TITLE "Michaelis-Menten Model"

DRAW M1, LT NONE, PT STAR

DRAW POINTS(BE, MINV(M1 col 1):MAXV(M1 col 1)!101)

K = KM

DRAW POINTS(BE, MINV(M1 col 1):MAXV(M1 col 1)!101) LT DASHED

K = KC

DRAW POINTS(BE, MINV(M1 col 1):MAXV(M1 col 1)!101) LT ALTERNATE

VIEW
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/* draw Scatchard model + data with the above K */

K = KS

TOP TITLE "Scatchard Model"

DRAW M2, LT NONE, PT STAR

DRAW POINTS(BS, MINV(M2 col 1):MAXV(M2 col 1)!101)

K = KM

DRAW POINTS(BS, MINV(M2 col 1):MAXV(M2 col 1)!101) LT DASHED

K = KC

DRAW POINTS(BS, MINV(M2 col 1):MAXV(M2 col 1)!101) LT ALTERNATE

VIEW
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Note that for the data studied above, all the models give comparable
results. Indeed the estimated K-values are so close, the curves are almost
superimposed.
The second Michaelis-Menten equation is useful when the amount, G0+

B0, is not known. Then measuring a quantity proportional to Be/(G0+B0)
vs. Fe is commonly done, and K can be determined in unknown units.
Indeed, by introducing another parameter, D, to obtain Be/(B0 + G0) =
DKFe/(1 + KFe) and computing D and K by fitting this model to data
points (Fe, Be/(B0 + G0)), where Fe and Be are measured in moles and
B0 +G0 is measured in grams, then D(B0 +G0) has the unit moles, and so
(B0 + G0)/(D(B0 + G0)) = 1/D is the molecular weight of a G molecule.
(This device for computing molecular weight assumes that B0 = 0 or that
an F molecule is much lighter than a G molecule.) Fitting the saturation
equation to obtain both K and G0 +B0 may be a better approach.

Cooperative Binding
Often the binding of F and G is complicated by cooperative effects.

Namely, K1 and/or K2 appear to be dependent upon the relative amount of
B. This can be due to allosteric shape changes in the molecules or sites G
which occur during binding. Various other explanations, including multiple
classes of sites, are also possible. If K1/K2 increases as B increases, we have
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positive cooperativity; if K1/K2 decreases as B increases we have negative
cooperativity.

Suppose, then, that K1 and K2 are functions of B. Thus,

dB/dt(t) = K1(B(t)) · F (t) · G(t)− K2(B(t)) · B(t),

with F (t) = F0 − (B(t)− B0), G(t) = G0 − (B(t)− B0), and B(0) = B0, as
before.

Now suppose that all cooperative effects are due to changes in K2, in
particular, suppose

K1(B) = K0
1 , and K2(B) = K0

2 (1 + p · B/(G0 +B0)).

This is the same as saying K2(B)− K2(0) = pB/(G0 +B0), thus we as-
sume that the change in K2 from the “ground state” K2(0) = K0

2 , is propor-
tional to the fraction of occupied sites, B/(G0+B0), with the proportionality-
constant p.

Note then, that dK2/dt(B(t)) = (p/(G0+B0))dB/dt(t), so dK2/dB(B) =
p/(G0 +B0).

There are of course many other functional relationships which could be
postulated. For example, we could assume that dK2/dt(B(t)) = A(dB/dt)h,
or we could assume K1 and K2 vary together in certain ways. Indeed,
changes in K1 will give cooperative effects unobtainable by changes in K2

alone. K1 and K2 need not change monotonically; we may have variation
which results in intervals of positive cooperativity and other intervals of
negative cooperativity.

Since cooperativity, without qualification as to its cause, is merely a
mathematical description, and not a structural description, the choice of
how K1(B) and K2(B) are defined is dependent upon the actual physical
situation and the desired uses of the mathematical model. The particular
choice here has the same effect as that made by DeMeyts in his analysis of
cooperativity (DeMeyts, P., Woebroeck, M., “The structural basis of insulin-
receptor binding and cooperative interactions”, in Membrane Proteins (ed.
P.Nicholls et al.) FEBS 11th Meeting, Vol. 45 Symposium A4, Pergamon
Press, pp. 319–323, 1977).

Now let te be the time when equilibrium is approached, and let B(te) =
Be, F (te) = Fe, and G(te) = Ge. Then, at equilibrium, we have the
equilibrium constant K as a function of Be, K(Be) = K1(Be)/K2(Be) =
Be/(FeGe). Thus, K(Be) = K0

1/(K0
2 (1 + pBe/(G0 + B0))), or, K(Be) =

K0/(1 + pBe/(G0 +B0)), where K0 = K(0).
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Note for −1 < p < 0, we have positive cooperativity, for p = 0, we
have no cooperativity (K(Be) = K(0)), and for p > 0, we have negative
cooperativity.
It is convenient to define p in terms of another parameter, a, called the

F , G interaction factor, so that p = (1 − a)/a, and hence a = 1/(1 + p).
Note for 0 < a < 1, we have negative cooperativity, for a = 1, we have no
cooperativity, and for a > 1, we have positive cooperativity.
Indeed, if ∆G0 is the energy needed (or released) (i.e., the change in free

energy) for binding the first F molecule to a G molecule, and if ∆G1 is the
energy used (or released) for binding an F molecule to the last unoccupied
G molecule (whereupon B = G0+B0), then we have the classical thermody-
namic relations: ∆G0 = −RT logK(0), and ∆G1 = −RT logK(G0 + B0),
where R is the gas constant (about 1.987 calories/degree/mole) and T is the
absolute temperature. Thus, K(G0+B0)/K(0) = exp(−(∆G1−∆G0)/RT ),
and, by assumption, K(G0 +B0)/K(0) = 1/(1 + p) = a, so a has the inter-
pretation: a = K(B0+G0)/K(0); it is the ratio of the equilibrium constant
K with all G-sites occupied, to K with no occupied G-sites.
DeMeyts has observed that the relation K(Be) = K0/(1 + ((1 − a)/a) ·

Be/(G0 +B0)) may be used in the various equilibrium models given before
to obtain the corresponding cooperative models. Thus, we substitute K(Be)
for K to obtain models which now involve the parameters F0, G0, B0, a, and
K0. Curve-fitting which yields a value for a obviously different from one,
should be followed by fitting with a fixed to one. If the latter fit is clearly
inferior, cooperative binding phenomena may be present.
In particular, for a 6= 1, the cooperative Michaelis-Menten(2) relation is:

Be/(B0+G0) = (−a(1+K0Fe)+[a
2(1+K0Fe)

2+4a(1−a)K0Fe]
1/2)/(2(1−a)).

The cooperative Scatchard equation is:

Be/Fe = K0(B0 +G0 − Be)/(1 + (1− a)Be/(a(G0 +B0))).

The cooperative Hill equation is obtainable by substitution from the
cooperative Michaelis-Menten (2) equation above, however, it can be plotted
in MLAB, without using explicit algebra, as follows, assuming B0, G0, K0,
and a are already set, with a 6= 1.

FCT BE(FE) = (B0+G0)*(-A*(1+K0*FE)+ \

SQRT(A*A*(1+K0*FE)^2+4*A*(1-A)*K0*FE))/(2*(1-A))

FUNCTION HILLT(BE) = LOG((BE/(G0+B0))/(1-BE/(G0+B0)))

LFEV = -12:2:.2
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M = LFEV &’ (HILLT ON BE ON EXP ON LFEV)

DRAW M

The Hill-plot matrix M has rows which are points of the form:

log((Be/(G0 +B0))/(1− Be/(G0 +B0))) vs. logFe.

Normally a Hill-plot, as defined above, is a straight line with slope 1,
however, this is not the case for a 6= 1. DeMeyts has shown that, in general,
the slope

d(log((Be/(G0 +B0))/(1− Be/(G0 +B0))))/d(logFe)

decreases when a decreases and increases when a increases, and attains its
minimum value when Fe = 1/K0, independently of a.
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