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Cooperative effects often arise when there are multiple binding sites for
a ligand that are located spatially close to one another. Some of the is-
sues that arise are discussed in “Mixed and uniform cooperativity of ligand
binding to multisite proteins: The cooperativity types allowed by the Adair
equation and conditions for them” by Edward P. Whitehead, in the Journal
of Theoretical Biology, pp. 153:170, vol. 87, 1980.

A particular situation of interest is that where many F molecules bind
step-wise through a series of reactions to a G molecule with distinct affini-
ties. For example, oxygen binds to hemaglobin in this manner. This is one
explanation for apparent cooperative binding. Thus we may consider the
situation:

F +G0

A1⇀↽
D1

G1,

F +G1

A2⇀↽
D2

G2,

...

F +Gi−1

Ai⇀↽
Di

Gi,

...

F +GN−1

AN⇀↽
DN

GN ,

where G0 is defined as free G.

When N (the number of F-binding sites on each G molecule) is not
large, the kinetic model differential equations can be used in curve-fitting;
however, in general, we deal with the equilibrium model instead.
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Define the molar equilibrium constants Ki = Ai/Di. Let F (t) be the
concentration of (unbound) F at time t, let Gi(t) be the concentration of
Gi at time t, and let Fe and Gie be these concentrations at t = te, the time
when our system approaches equilibrium. Then: Ki = Gie/(Gi−1,eFe), so
K1K2 . . .Ki = Gie/(G0eF

i
e). Now we may define Bi = K1K2 . . .Ki.

Now, let Fb be the concentration of bound F molecules at equilibrium, so
Fb = G1e+2G2e+ . . .+NGNe. Note that Fb+Fe is the total concentration
of F present, i.e. Fb + Fe = F (0). Also, let H be the concentration of G
molecules in either a bound or free state, so H = G0e +G1e + . . .+GNe.

Now, define v as the mean number of F molecules bound to each G
molecule. Then v = Fb/H, or

v = (G1e + 2G2e + . . .+NGNe)/(G0e +G1e + . . .+GNe).

But, Gie = BiG0eF
i
e , so

v = (B1G0eFe+2B2G0eF
2
e+. . .+NBNG0eF

N
e )/(G0e+B1G0eFe+B2G0eF

2
e+. . .+BNG0eF

N
e ),

or

v = (B1Fe + 2B2F
2
e + . . .+NBNFN

e )/(1 +B1Fe +B2F
2
e + . . .+BNFN

e ).

This equation is known as the Adair-Klotz stepwise equilibrium model.

Now given data points (Fe, Fb), each based on different initial values of
H and Fe + Fb, corresponding data points of the form (Fe, Fb/H) can be
constructed, and v can be treated as a function of Fe and fit to such data
thus allowing the parameters B1, B2, . . . , BN to be estimated (which hence
provides estimates of the equilibrium constants K1, K2, . . . , KN ). If the
number of sites, N , is not known, N can be set to 1, 2, 3, etc., and that
value of N which yields the best fit can be taken as the estimate of the
true N -value. Note the model for data points of the form (Fe, G0e) can be
expressed in terms of a ROOT expression in G0(0) and K1, . . . , KN ; but no
nice general form is apparent. Note also that data of the form (Fe, Fb/H)
has error in both the first and second components. This means that, at a
minimum, correct weights should be used in fitting.

The following is a MLAB dialog that demonstrates the above mentioned
curve fitting for N = 4. We first define the model function v(Fe), read-in
the data, set the initial guesses for B1, B2, B3 and B4, and then fit the data
to the model.

fct p(x) = 1+sum(I,1,N, B[I]*x^I)
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fct v(fe) = fe*p’x(fe)/p(fe) /* model function */

N = 4 /* number of reaction steps */

data = read(msb, 21, 2)

t = minv((data col 1)):maxv(data col 1)!100

/* initial guesses */

B = 2:5

fit(B), v to data with weight ewt(data)

final parameter values

value error dependency parameter

2.7807664141 164.6641428061 0.9999816051 B[1]

0.0702266931 16.0436904339 0.999253623 B[2]

3.1455369331 133.7340925626 0.9999952965 B[3]

2.7828358122 116.4894630769 0.9999972398 B[4]

3 iterations

CONVERGED

best weighted sum of squares = 3.047449e+01

weighted root mean square error = 1.338886e+00

weighted deviation fraction = 9.451356e-03

R squared = 8.959082e-01

draw data lt none pt star ptsize 0.01

draw points(v,t)

top title "Step-Wise Multiple Site Binding"

view
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In order to curve-fit for B1, . . . , BN , this model often requires accurate
guesses, and these may be difficult to obtain. One method is to obtain such
guesses following section 10 of “Models in Regression”, by Peter Sprent. The
idea is to convert our model to a related linear model which admits a unique
solution with arbitrary guesses.

We have v = B1Fe(1−v)+B2F
2
e (2−v)+ . . .+BNFN

e (N −v), so we can
establish the data matrix whose columns are values of Fe(1− v), F 2

e (2− v),
. . . , FN

e (N − v), v, and fit the above model to obtain B1, . . . , BN , using
as weights the values 1 + B1Fe + . . . + BNFN

e , based on the initial guesses
for B1, . . . , BN . The resulting B-values should then be used to recompute
the weights 1+B1Fe+ . . .+BNFN

e , and then this fitting process should be
reiterated in this manner. MLAB can provide such iterative reweighting by
specifying a weight function. In general constraints must be used, or special
deviations from this process must be introduced to cope with negative B-
values; for example each value Bi may be replaced with max(Bi, 0). Finally,
the results obtained may be used as initial guesses for a non-linear regression
analysis using the original model for v.

Consider the polynomial p(x) = 1 + B1x + B2x
2 + . . . + BNxN . Note

v(Fe) = Fe
dp
dx
(Fe)/p(Fe). Fletcher, Spector, and Ashbrook have shown in

their paper, “Analysis of macromolecule-ligand binding by determination of
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stepwise equilibrium constants”, Biochemistry, Vol. 9, pp. 4580:4587, 1970,
that if p(x) has N real roots, R1, R2, . . . , RM of multiplicities N1, N2, . . . ,
NM respectively, then by partial-fraction decomposition, v can be written
as:

v(Fe) = N1r1Fe/(1 + r1Fe) + . . .+NMrMFe/(1 + rMFe),

where ri = −1/Ri, the negative reciprocals of the roots of p.
This form was suggested by Scatchard as a generalization of the form

rFe/(1 + rFe) which arises for a single-site simple binding reaction. Its
interpretation is that there are M classes of binding sites, with Ni sites in
the ith class, having an average equilibrium constant ri. If the number of
classes is not too large, this model can be used to describe (Fe, v(Fe)) data
by curve-fitting to find the parameters N1, N2, . . . , NM , and r1, r2, . . . , rM ,
under the constraints N1 + N2 + . . . + NM = N , and Ni > 0, and ri > 0.
(Then the values of Ni can be judiciously adjusted to integer-values so as to
preserve N1 +N2 + . . .+NM = N ; alternatively, M can be taken to be N ,
the Ni’s can be dispensed with (i.e. each Ni = 1), and the number of ri’s
increased accordingly.) Constraints are usually needed to get a satisfactory
fit.
Fletcher, et.al., have shown that, when v(Fe) can be expressed in Scatchard’s

form, the following relations hold. Let L1, L2, . . . , LN be defined by: Lj = ri

for Ni−1 + 1 ≤ j ≤ Ni, with N0 = 0.
Then: v(Fe) =

∑n
i=1 LiFe/(1+LiFe) andBj =

∑
1≤i1<i2<...ij≤N Li1Li2 . . . Lij .

Note, Bj is the jth elementary symmetric function on L1, . . . , LN . It
is the coefficient of zN−j in the polynomial (z + L1)(z + L2) · · · (z + LN ).
The symmetric functions can be defined in MLAB by the following recursive
function definitions.

*FUNCTION S(A,Z) = IF Z=N THEN SUM(I,A,Z,L[I]) ELSE \

SUM(I,A,Z,L[I]*S(I+1,Z+1))

*FUNCTION B(J) = IF J<1 OR J>N THEN 1 ELSE S[1,N-J+1]

Another relationship which could be used is:
Bj(i) = Bj(i − 1) + LiBj−1(i − 1), where Bj(i) is the jth symmetric

function on L1, L2, . . . , Li. Then Bj = Bj(N).
Now, the original equilibrium constants may be obtained as: Ki =

Bi/Bi−1 where B0 = 1.
When our polynomial, p(x), does not have N real roots, the Scatchard

form is not equivalent to the Adair form. Rather a partial-fraction expansion
yields a sum of rational terms with quadratic denominators. Sometimes,
there is a “near-by” polynomial with N real roots, and if a Scatchard form is
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fit to data, the resulting estimates of K1, . . . , KN can be useful, even though
we are using an inexact model. One usually would check the obtained Ki-
values in the Adair model in any event. Usually useful results can be had
only when N < 6, unless highly-accurate data over a wide range of Fe-values
is available.
The general analysis of multiple-site binding is quite complex. An excel-

lent survey, including many practical tips, is: “The analysis of equlibrium
binding data by the fitting of models” by John E. Fletcher, DCRT, N.I.H.,
May 1982.
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