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Windkessel models have been used to describe the load faced by the heart
in pumping blood through the pulmonary or systemic arterial system, and
the relation between blood pressure and blood flow in the aorta or the pul-
monary artery. Characterizing the pulmonary or systemic arterial load on
the heart in terms of the parameters that arise in Windkessel models, such
as arterial compliance and peripheral resistance, is important, for example,
in quantifying the effects of vasodilator or vasoconstrictor drugs. Also, a
mathematical model of the relationship between blood pressure and blood
flow in the aorta and pulmonary artery is useful, for example, in the de-
velopment and operation of mechanical heart and heart-lung machines. If
blood is not supplied by these devices within acceptable ranges of pressure
and flow, the patient will not survive.

This paper will briefly describe three Windkessel models and demonstrate
the use of the MLAB mathematical modelling computer program in solving
Windkessel model differential equations, estimating values of Windkessel
model parameters from laboratory data, comparing differential equation
models, and generating graphs that can be displayed on computer screens
and incorporated into word processor documents. MLAB is the best com-
mercially available software for these purposes.

A description of an early Windkessel model was given by the German phys-
iologist Otto Frank in an article published in 1899 [6]. The model has been
applied recently in studies of chick embryo [17] and rat [12]. It likens the
heart and systemic arterial system to a closed hydraulic circuit comprised
of a water pump connected to a chamber. The circuit is filled with water
except for a pocket of air in the chamber. (Windkessel is the German word
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for air-chamber.) As water is pumped into the chamber, the water both
compresses the air in the pocket and pushes water out of the chamber, back
to the pump. The compressibility of the air in the pocket simulates the elas-
ticity and extensibility of the major artery, as blood is pumped into it by the
heart ventricle. This effect is commonly referred to as arterial compliance.
The resistance water encounters while leaving the Windkessel and flowing
back to the pump, simulates the resistance to flow encountered by the blood
as it flows through the arterial tree from the major arteries, to minor arter-
ies, to arterioles, and to capillaries, due to decreasing vessel diameter. This
resistance to flow is commonly referred to as peripheral resistance.

Assuming the ratio of air pressure to air volume in the chamber is constant
and the flow of fluid through the pipes connecting the air chamber to the
pump follows Poiseuille’s law and is proportional to the fluid pressure, the
following differential equation is found to relate water flow and pressure:

I(t) =
P (t)

R
+ C

dP (t)

dt
. (1)

Here I(t) is the water flow out of the pump as a function of time measured
in volume per time units, P (t) is the water pressure as a function of time
measured in force per area units, C is the constant ratio of air pressure to
air volume, and R is the flow-pressure proportionality constant.

The same equation describes the relationship between the current, I(t), and
the time-varying electical potential, P (t), in the following electrical circuit:

In this circuit, I2 is the current in the middle branch of the circuit, I3 is the
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current in the right branch of the circuit, R is the resistance of the resistor,
and C is the capacitance of the capacitor. Because there are only two passive
elements in this circuit, the resistor and capacitor, this model is commonly
referred to as the 2-element Windkessel model.

According to Ohm’s Law, the drop in electrical potential across the resistor
is I3R. The drop in electrical potential across the capacitor is Q

C , where Q

is the instantaneous charge on the capacitor and dQ
dt = I2. From Kirchhof’s

First Law, the net change in electrical potential around each loop of the
circuit is zero; therefore P (t) = I3R and P (t) = Q

C . From Kirchhof’s Second
Law, the sum of currents into a junction equals the sum of currents out of
the same junction: I(t) = I2 + I3. Eliminating I2 and I3 from the junction
equation leads to the the differential equation shown above.

In terms of the physiological system, I(t) is the flow of blood from the
heart to the aorta (or pulmonary artery) measured in cubic centimeters per
second (cm3/sec), P (t) is the blood pressure in the aorta (or pulmonary
artery) in millimeters of mercury (mmHg), C is the arterial compliance in
the aorta (or pulmonary artery) in units of cubic centimeters per millimeter
of mercury (cm3/mmHg), and R is the peripheral resistance in the systemic
(or pulmonary) arterial system in units of millimeters of mercury per cubic
centimeter per second (mmHg.s/cm3).

During diastole, when there is no blood flow from the heart, I(t) = 0 and
the Windkessel equation can be solved exactly for P (t):

P (t) = P (td)e
−(t−td)/(RC) (2)

where td is the time at the start of diastole and P (td) is the blood pressure
in the aorta (or pulmonary artery) at the start of diastole.

Another model of the circulatory system is the Broemser model, which was
described by the Swiss physiologists Ph. Broemser and Otto F. Ranke in an
article published in 1930 [3]. Also known as the 3-element Windkessel model,
the Broemser model adds a resistive element to the 2-element Windkessel
model between the pump and the air-chamber to simulate resistance to blood
flow due to the aortic or pulmonary valve. More recently it has been used
to study blood pressure and flow in the aorta of chick embryo [16,17], and
dog [5], and in the pulmonary artery of pig [10].

Here is a schematic of the electrical circuit corresponding to the 3-element
Windkessel model:
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Using the same circuit analysis technique as for the 2-element Windkessel
model circuit, the differential equation for the 3-element Windkessel model
is found to be:

(1 +
R1

R2
)I(t) + CR1

dI(t)

dt
=

P (t)

R2
+ C

dP (t)

dt
(3)

where R1 represents the resistance due to the aortic valve or pulmonary
valve, and R2 represents the peripheral resistance. I(t), P (t), and C have
the same meanings as in the 2-element Windkessel equation.

Note that if R1 = 0 and R2 = R, the 3-element Windkessel equation reduces
to the 2-element Windkessel equation. Also, during diastole when I(t) and
its derivatives with respect to time are equal to zero, the solution of the
3-element Windkessel equation is:

P (t) = P (td)e
−(t−td)/(R2C) (4)

which is the same function, P (t), found for the 2-element Windkessel equa-
tion during diastole, if R2 = R.

Many modifications to the 2- and 3-element Windkessel models have been
suggested. The electrical circuit corresponding to one such model that was
used in studies of systemic circulation in chick embryo [17] and pulmonary
circulation in the cat [13] and dog [7], resembles the 3-element Windkessel
model, above, with a fourth inductor element added in the main branch of
the circuit:
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An inductor in the main branch of the circuit is said to simulate inertia of
the fluid in the hydrodynamic model, which was neglected in the 2- and
3-element Windkessel models.

The drop in electrical potential across an inductor with inductance, L, is
LdI(t)

dt . Following the circuit analysis method applied in the 2- and 3-element
Windkessel models, one finds the following differential equation for this 4-
element Windkessel model:

(1 +
R1

R2
)I(t) + (R1C +

L

R2
)
dI(t)

dt
+ LC

d2I(t)

dt2
=

P (t)

R2
+ C

dP (t)

dt
. (5)

In this equation, L has units of mass per length to the fourth power. Note
that for L = 0, this 4-element Windkessel equation reduces to the 3-element
Windkessel equation. Also, during diastole when I(t) and its derivatives
vanish, we can solve for P (t) and get the same exponentially decreasing
pressure function with decay time constant R2C as in the 3-element Wind-
kessel model.

The three Windkessel models described above, as well as any other Wind-
kessel circuit analog, lead to an equation that relates blood pressure, blood
flow, and various-order time derivatives thereof, via a set of parameters,
such as (R, C), (R1, R2, C), and (R1, R2, C, L). Given a general equation
such as (1), (3), and (5), there are three basic problems one can solve with
MLAB:

• find values of the pressure function given values of the flow function
and the parameters;
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• find values of the flow function given values of the pressure function
and the parameters; or

• find values of the parameters that best-fit values of the flow and pres-
sure functions.

As an example of how to solve the first problem with MLAB, suppose the
blood flow to the aorta and pulmonary artery is given by:

I(t) =

{

q0 sin(πmod(t, s)/h) for mod(t,s) ≤ h
0 otherwise

where t is time in seconds from an agreed initial time, s is the period of the
cardiac cycle in seconds, h is the length of time the aortic and pulmonary
valves are open, in fractions of a second, during one cardiac cycle, and
mod(t, s) denotes the remainder of t divided by s (i.e. mod(t,s) = t−⌊t/s⌋s).

The following MLAB statements find the value of q0 such that the volume
of blood for one cardiac cycle is 90 cubic centimeters, and then compute
the time-course values for the aortic and pulmonary artery pressure during
3 cardiac cycles, assuming a 2-element Windkessel model equation with
hemodynamic variables appropriate for a normal adult human. (Comments
delimited by /* and */ are ignored by the MLAB interpreter.)

/* define normal human, hemodynamic constants in 2-element Windkessel model */

pl = 72 /* cardiac cycles per minute */

s = 60/pl /* period of cardiac cycle in seconds */

h = (2/5)*s /* period of systole in seconds */

ml = 90 /* blood output to aorta or pulmonary artery per

cardiac cycle in cm^3 */

/* define function for blood flow as variable amplitude sine wave */

fct i(t,q0) = q0*sin(pi*t/h)

/* find peak amplitude of flow such that the total cardiac output is ml */

fct ampl() = root(z,0,1000,ml-integral(t,0,h,i(t,z)))

q0 = ampl()

/* define and compute flow for 3 cardiac cycles */

fct i1(t) = if ((tmd_mod(t,s))<h) then i(tmd,q0) else 0

af = points(i1,0:(3*s)!200)
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/* define function for the derivative of the pressure, and initial

condition */

fct p’t(t) = (i1(t)-p(t)/r)/c

init p(0) = p0

/* set r,c constants for systemic arterial system and compute aortic

pressure for 3 cardiac cycles */

r = .9000 /* systemic peripheral resistance in (mmHg/cm^3/sec) */

c = 1.0666 /* systemic arterial compliance in (cm^3/mmHg) */

p0 = 80 /* systemic diastolic pressure in (mmHg) */

ms = points(p,0:(3*s)!200)

/* redefine constants for pulmonary arterial system and pulmonary artery

pressure for 3 cardiac cycles */

r = .075 /* pulmonary peripheral resistance in (mmHg/cm^3/sec) */

c = 2.2666 /* pulmonary arterial compliance in (cm^3/mmHg) */

p0 = 1 /* pulmonary diastolic pressure in (mmHg) */

mp = points(p,0:(3*s)!200)

The MLAB points operators invoke a numerical ordinary differential equa-
tion solver that uses the Adams method [13, pp. 740-744]. (MLAB also
provides Gear and hybrid methods for solving ordinary differential equa-
tions, which may be more effective if the system of equations that is to be
solved is stiff.)

The values of normal human peripheral resistance and arterial compliance
for systemic and pulmonary arterial systems used above, were taken from
Westerhof [15], and converted to the stated units using the fact that 760
mmHg = 1.0133 × 106 dynes/cm2. By assigning other values to the pa-
rameters for peripheral resistance (r), arterial compliance (c), pulse (pl),
period of systole (h), and volume of cardiac output (ml), this script can be
used to find values of aortic and pulmonary artery pressure specified by the
2-element Windkessel model for a wide variety of conditions in humans or
other animals.

The flow function, aortic pressure, and pulmonary pressure curves can be
graphed with the following additional MLAB commands:

draw af

left title "Blood Flow (ml/sec)" size .007
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frame 0 to 1, .66 to .99

w1 = w

draw ms

left title "Aortic Pressure (mmHg)" size .007

frame 0 to 1, .33 to .66

w2 = w

draw mp

left title "Pulmonary Artery Pressure (mmHg)" size .007

frame 0 to 1, 0 to .33

view

The view command causes the graphs shown below to appear on the com-
puter display:

The MLAB command:

plot in "wk.ps"

then can be given to create a PostScript file named wk.ps that may be
printed directly on a PostScript printer or inserted into a document using a
word processor such as MSWord or WordPerfect.

While running the script above with different values for the initial pressure,
p0, we noticed that the computed pressure function may not satisfy: P (0) =
P (s); in other words, P (t) may not be periodic. This effect is evident in the
following figure:
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where there appears to be a decreasing trend underlying the oscillating pres-
sure if P (0) is 145.7 mmHg, and an increasing trend underlying the oscillat-
ing pressure if P (0) is 36.4 mmHg.

The MLAB FIT statement can be used to enforce the periodic boundary
condition, P (0) = P (s). This is done by inserting the following two state-
ments in the script above, immediately before the statements involving the
points operator:

fct f(t) = p(t)-p0

fit (p0), f to s&’0

The first statement defines the function f as the difference between the
pressure at time, t, and the initial pressure. The second statement invokes
the MLAB Levenberg-Marquardt least-squares fitting algorithm [14, pages
678-683] to find the value of the initial pressure, p0, that best fits the data
point (s,0), i.e. that imposes the boundary condition f(s) = 0.

As an example of how to solve the second problem with MLAB, suppose
blood pressure measurements have been made through the course of a car-
diac cycle and (time,pressure) ordered pairs have been stored in a file called
press.dat. Then the following MLAB statements can be used to determine
(time,flow) ordered pairs at the same times at which the pressure data was
given, assuming the 2-element Windkessel model:

/* read (time,pressure)-ordered pairs from press.dat */

pdat = read(press,71,2) /* format = 71 rows, 2 columns */
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/* define function for blood pressure as linear interpolation into pdat,

and compute pressure for 1 cardiac cycle */

fct p(t) = lookup(pdat,t)

ap = points(p,0:pdat[71,1]!100)

/* define function for arterial flow under 2-element Windkessel model */

fct i(t) = p(t)/r+c*p’t(t)

/* set r,c constants for systemic arterial system and compute aortic

flow for 1 cardiac cycles */

r = .9000 /* systemic peripheral resistance in (mmHg/cm^3/sec) */

c = 1.0666 /* systemic arterial compliance in (cm^3/mmHg) */

mi = points(i,0:pdat[71,1]!100)

/* draw aortic pressure and aortic flow */

draw ap

draw pdat lt none pt crosspt ptsize .005

left title "Aortic Pressure (mmHg)" size .01

no framebox

frame 0 to 1, 0 to .5

w1 = w

draw mi

left title "Aortic Flow (ml/sec)" size .01

frame 0 to 1, .5 to 1.

no framebox

view

The following graph results:
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Note that there is considerable noise in the derived aortic flow curve. This is
due to error and insufficient sampling in the pressure curve for times at the
beginning of systole. The derived aortic flow depends on the time-derivative
of p(t), which MLAB estimated numerically.

As an example of how to use MLAB to solve the third problem, we estimate
3- and 4-element Windkessel model parameters from data given by Molino,
et. al., in reference [12]. Figure 1 of that reference presents graphs of
aortic flow and aortic pressure during a cardiac cycle in a rat, and reports
2-parameter Windkessel model parameters for the rat’s systemic circulation.
We digitized the base aortic pressure and flow curves for the rat, and stored
the resulting coordinates in a file called MOL.DAT. Then we used MLAB to:

(1) read the data file,
(2) solve the 2-element Windkessel model using Molino’s reported peripheral

resistance and arterial compliance,
(3) find parameters for 3- and 4-element Windkessel models that minimize the sum-of-squares,
(4) compute the Akaike Information Criterion (AIC) for each model, and
(5) graph the flow data, the pressure data, and the pressure curve predicted by each model.

The values of the minimum sum-of-squares and the Akaike Information Cri-
terion [1] are quantitative measures of how well a model fits a given data
set; the lower the value, the better the fit.

/* read digitized from MOL.DAT: time in seconds in column 1, pressure in

mmHg in column 2, flow in ml/sec in column 3. */
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dt = read(mol,65,3)

n = nrows(dt)

tv = dt col 1 /* time in seconds */

pdat = tv&’(dt col 2) /* time,pressure ordered pairs */

idat = tv&’(dt col 3) /* time,flow ordered pairs */

/* define flow function and evaluate for one cardiac cycle */

fct i1(t) = lookup(idat,mod(t,tv[n]))

af = points(i1,0:tv[n]!100)

/* define function for evaluating Akaike criterion given s=sum-of-squares,

nd=number of data points, and np=number of parameters in model */

fct aic(s,nd,np) = nd*log(s)+2*np

/* 2-element Windkessel model with rw = peripheral resistance and

cw = arterial compliance. Calculate values for parameters following

Molino et al: peripheral resistance = mean pressure/mean flow;

arterial compliance = time constant/peripheral resistance, where

time constant = .529 seconds. */

fct pw’t(t) = (i1(t)-pw(t)/rw)/cw

init pw(0) = pdat[1,2]

rw = mean(pdat col 2)/mean(idat col 2)

cw = .529/rw

mw2 = points(pw,0:tv[n]!100)

maxiter = 0

fit (cw), pw to pdat

a[1] = aic(sosq,n,2)

maxiter = 20

/* 3-element Windkessel model with rb1 = valve resistance, rb2 = peripheral

resistance, and cb = arterial compliance */

fct pb’t(t) = rb1*i1’t(t)+((1+rb1/rb2)*i1(t)-pb(t)/rb2)/cb

init pb(0) = pdat[1,2]

rb1 = 0

rb2 = rw

cb = cw

fit (rb1), pb to pdat

a[2] = aic(sosq,n,3)

mb3 = points(pb,0:tv[n]!100)
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/* 4-element Windkessel model with lm = inertial mass of fluid, rm1 = valve

resistance, rm2 = peripheral resistance, and cm = arterial compliance. */

fct pm’t(t)=lm*i1’’t(t)+(rm1+lm/(cm*rm2))*i1’t(t)+((1+rm1/rm2)*i1(t)-pm(t)/rm2)/cm

init pm(0) = pdat[1,2]

rm1 = rb1

rm2 = rb2

cm = cb

lm = 0 /* in grams/cm^4 */

constraints q1 = {lm > 0}

fit (lm), pm to pdat constraints q1

a[3] = aic(sosq,n,4)

mm4 = points(pm,0:tv[n]!100)

/* draw graphs */

draw af

draw idat lt none pt circle ptsize .005

left title "Flow (ml/sec)" size .01

frame 0 to 1, .66 to .99

no framebox

w1 = w

draw mw2

draw mw2 row 1:100:15 lt none pt triangle ptsize .01

draw mb3

draw mb3 row 1:100:15 lt none pt square ptsize .01

draw mm4

draw mm4 row 1:100:15 lt none pt star ptsize .01

draw pdat

draw pdat row 1:n:2 lt none pt crosspt ptsize .01

left title "Pressure (mmHg)" size .01

title "Pressure data = +" at (.2,.85) ffract size .01

title "2-element = ’27TC’R, AIC = "+a[1] at (.2,.8) ffract size .01

title "3-element = ’27TB’R, AIC = "+a[2] at (.2,.75) ffract size .01

title "4-element = ’27TE’R, AIC = "+a[3] at (.2,.7) ffract size .01

frame 0 to 1, 0 to .66

no framebox

view

plot in molwtp.ps

The resulting graph is:
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For the data from Molino, et.al, the parameters for the 2-element Windkessel
model in a rat are 81.68 mmHg/cm3/sec for systemic peripheral resistance
and 0.00648 cm3/mmHg for arterial compliance. The sum-of-squares for
this model equals 8608.11 and the Akaike Information Criterion equals 574.8.
The value for systemic peripheral resistance is a thousand times greater than
the value for a human, and the value of arterial compliance is a thousand
times less than the value for a human.

The value found by the statement fit (rb1), pb to pdat for the aortic
valve resistance in the 3-elementWindkessel model, equals 4.285 mmHg/cm3/sec.
The sum-of-squares value of 471.9 and the Akaike Information Criterion
value of 393.9 indicate that this 3-element Windkessel model is a better
model for this data than the 2-element Windkessel model. From the graph,
it is clear that this improvement arises primarily in the systole part of the
cardiac cycle.

The value found by the statement fit (lm), pm to pdat constraints

q1 for the inductance in the 4-element Windkessel model is 0. The constraint
q1 was necessary to prevent the value of lm from becoming negative. The
sum-of-squares value of 471.9 and the Akaike Information Criterion value
of 395.9 indicate that the 4-element Windkessel model does not provide a
significant improvement over the 3-element Windkessel model.

The MLAB scripts above demonstrated how to obtain pressure or flow curves
for the 2-,3-, and 4-element Windkessel models. It is a simple matter to
obtain pressure or flow curves for any other differential model. Once the
differential equation has been derived by analysis of an hydraulic or electrical
circuit, simply: 1) re-arrange the differential equation so that the highest
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order derivative of the desired curve (P (t) or I(t)) is alone on the left side
of the equation (say this is the nth-order derivative); 2) write an MLAB
function definition statement for the highest time-derivative of the desired
curve (a jth-order derivative with respect to time is expressed by typing
the function name, followed by j apostrophes, followed by t(t)); 3) add
an MLAB initial condition statement, such as init p’’t(0) = 800, for
each jth-order derivative, where j = 1, 2, ..., (n − 1); 4) add an assignment
statement with an appropriate value for each parameter in the model; 5)
define the known function (I(t) or P (t)); and 6) use the points operator to
solve for the desired curve.

Related problems one can solve with MLAB:

The Windkessel models described above assume constant values for periph-
eral resistance and arterial compliance. Apter [2] noted that the assumption
of constant peripheral resistance is not justifiable since carotid sinus barore-
ceptors are stimulated in late systole and early diastole and they change the
peripheral resistance. One could, for example, accomodate variable periph-
eral resistance in the 2-element Windkessel model by using the following
MLAB statements to define the derivative of pressure with respect to time:

/* define function for the derivative of the pressure, but use a

function for resistance, rather than a constant */

fct p’t(t) = (i1(t)-p(t)/r(t))/c

/* define the function for variable resistance */

fct r(t) = r0-g*(p(t-tau)-ps0)

The definition of the function r(t) in this example would accomodate delays
in the pressure, much as Apter described in her paper.

Similarly, Fogliardi [5] cited constant arterial compliance as a limitation
in the 3-element Windkessel model and proposed introducing a non-linear
function of pressure for the constant arterial compliance. A non-linear func-
tion of pressure for arterial complaince could be introduced in the 3-element
Windkessel as follows:

/* define function for the derivative of the pressure, but use a

function for capacitance, rather than a constant */

fct p’t(t) = r1*i1’t(t)+((1+r1/r2)*i1(t)-p(t)/r2)/c(t)
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/* define an exponential function for variable capacitance */

fct c(t) = a*exp(b*p(t))

Another way in which variable arterial compliance in the Windkessel model
might be introduced is by including higher order terms in pressure. The
derivation of the 2-element Windkessel equation assumed the air pressure
and volume were related by dP

dV = C or P (t) = CV (t). One could derive
a different equation by assuming a non-linear relation between P and V ,
such as PV = constant, which would hold for an ideal gas, and solve that
equation with MLAB.

Karamanoglu [8] describes a method for measuring pressure curves away
from the aorta, for example at the brachial artery. MLAB includes signal
analysis functions which could be used to derive the aortic pressure curve
given the remote pressure curve and appropriate transfer function. With
simultaneous EKG and pressure curves, one could use MLAB to develop
models for the electrical activity of the heart.

Another research question is: are there chaotic trajectories for Windkessel
differential equations? Such behavior could be useful in understanding ar-
rythmias.

References:

1. Akaike, H., “A new look at the statistical model identification”, IEEE
Trans. Automat. Contr. AC-19 (1974) 716-723.

2. Apter, Julia T., “An Analysis of the Aortic Pressure Curve During Dias-
tole”, Bull. Math. Biophys. 25 (1963) 325-339.

3. Broemser, Ph., et. al., “Ueber die Messung des Schlagvolumens des
Herzens auf unblutigem Weg”, Zeitung für Biologie 90 (1930) 467-507.

4. Dinnar, Uri, Cardiovascular Fluid Dynamics (Boca Raton, FL: CRC
Press, 1981), pp. 139-147.

5. Fogliardi, Roberto, et.al., “Comparison of linear and nonlinear formula-
tions of the three-element windkessel model”, Am. J. Physiol. 271 (1996)
H2661-H2668.

6. Frank, Otto, “Die Grundform des arteriellen Pulses”, Zeitung für Biologie
37 (1899) 483-586.

7. Grant, B.J.B., et.al., “Characterization of pulmonary arterial input
impedance with lumped parameter models”, Am. J. Physiol. 252 (1987)
H585-H593.

16



8. Karamanoglu, Mustafa, “A System for Analysis of Arterial Blood Pres-
sure Waveforms in Humans”, Computers and Biomedical Research 30 (1997)
244-255.

9. Kenner, Thomas, “Chapter 2: Physical and Mathematical Modeling
in Cardiovascular Systems” appearing in Quantitative Cardiovascular Stud-

ies, Clinical Research Applications of Engineering Principles, ed. by Ned
Hwong, D.R.Gross, D.J.Patel, (Baltimore, MD: University Park Press, 1979)
pp. 41-109.

10. Lambermont, B., et.al., “Comparison between Three- and Four-Element
Windkessel Models to Characterize Vascular Properties of Pulmonary Cir-
culation”, Arch. Physiol. and Biochem. 105 (1997) 625-632.

11. Lieber, B.B., et.al., “Beat-by-Beat changes of viscoelastic and inertial
properties of the pulmonary arteries”, J. Appl. Physiol. 53 (1994) 2348-
2355.

12. Molino, Paola, et.al.,“Beat-to-beat estimation of windkessel model pa-
rameters in conscious rats”, Am. J. Physiol. 274 (1998) H171-H177.

13. Piene, H., et.al., “Does normal pulmonary impedance constitute the
optimum load for the right ventricle?”, Am. J. Physiol. 242 (1982) H154-
H160.

14. Press, W.H., et.al., Numerical Recipes in Fortran: The Art of Scientific

Computing, (Cambridge University Press: NY, 1992).

15. Westerhof, Nicolaas, et.al., “An artificial arterial system for pumping
hearts”, Journal of Applied Physiology 31 (1971) 776-781.

16. Yoshigi, Masaaki, et.al., “Dorsal aortic impedance in stage 24 chick em-
bryo following acute changes in circulating blood volume”, Am. J. Physiol.

270 (1996) H1597-H1606.

17. Yoshigi, Masaaki, et.al., “Characterization of embryonic aortic impedance
with lumped parameter models”, Am. J. Physiol. 273 (1997) H19-H27.

17


